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Abstract 
We introduce the Fourier-Cosine method for pricing and hedging insurance 
derivatives. We implement this method for a particular problem of variable 
annuities under the Black-Scholes model for the investment account. The 
numerical results show the reliability of the Fourier-Cosine method for pricing 
and hedging insurance derivatives. 
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1. Introduction 

Life insurance products with guarantees dependent on stock market indicator 
are sold in insurance markets of different countries. For instance we can cite 
united-linked contracts sold in the United Kingdom since the late 1960s, the va-
riable annuities in the United States which form a major part of the sells in an-
nuities market, the segregated fund contracts in Canada since late 1990s and the 
variable annuities starting to sell from 2011 in China. This kind of insurance prod-
ucts offer the opportunity to earn money from the bull financial market, while pro-
viding the protection against bear financial market. The opportunity to earn money 
and the protection from losing money become an ideal management tool for fi-
nancing the post-retirement income of the policyholder, this leads to the popu-
larity of variable annuities in many insurance markets. Concerning the popula-
tion aging problem in the world and the potential inflation risk in economic, the 
demand of this kind of products will continue to grow. 
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As far as the financial market is considered, the insurer of the equity-linked 
insurance (see Hardy [1]) faces the financial risk in addition to mortality risk and 
lapse risk. Thus the valuation of this kind of insurance contracts corresponds to find 
hedging against the risk of the contracts. The financial risk stems from the guar-
anteed benefits, it can be treated as an embed option in the contract. Properly 
evaluate the financial risk is essential to the insurer. This kind of contracts caused 
inefficient financing to their providers during the financial crisis in 2008, forcing 
some insurers to reconsider the design and pricing of these products. As an in-
surance risk, the mortality risk is usually hedged by diversification, which means 
that we can assume that the mortality rate is to be deterministic when there are a 
sufficiently large number of contracts. In some cases, the lapse risk is also treated 
as diversifiable, thus it is also assumed as a deterministic probability of the contracts 
in force at maturity, however for the contract provided guarantees of withdrawal 
benefit, the lapse risk depends on the guaranteed benefits, then it will be consi-
dered in the pricing of the embed option. In order to price the equity-linked in-
surance it is essential to evaluate the guaranteed benefit as an embed option while 
considering the lapse risk. 

The research about the valuation of equity-linked insurance began with the work 
of Boyle and Brennan, Schwartz in [2] and [3]. They assumed both mortality and 
lapse risk to be diversifiable and the stock indicator to follow the Black-Scholes 
models, thus the embed guaranteed benefits can be priced by applying the fam-
ous Black-Scholes formulas in option pricing. More recently a general framework 
to price different guaranteed benefits has been proposed in [4] using Monte 
Carlo simulation, where the close formula is not available due to the complexity 
of some guaranteed benefits, especially when the lapse risk cannot be treated as 
diversifiable, the guaranteed benefits with the lapse risk is a path dependent op-
tion. Other authors use Monte Carlo methods. Bacinello et al. [5] evaluate varia-
ble annuities (including GLWBs) are priced using a Monte Carlo approach. Holz 
et al. [6] and Kling et al. [7] used a Monte Carlo approach to price variables an-
nuities products. As Monte Carlo simulation is time consuming for path depen-
dent option, other methods for option pricing would help to increase the com-
putation efficiency of valuation of the guaranteed benefits. PDE methods for 
these types of guarantees are proposed in Chen et al. [8], Forsyth et al. [9] and 
Belanger et al. [10]. 

The Fourier-Cosine method, which was first introduced to option pricing by 
Fang and Oosterlee in [11], is based on the risk-neutral option valuation formula 
(discounted expected payoff approach). Classically the option value of a financial 
product could be known without the knowledge of the transitional density func-
tion. But this density can be recovered from its characteristic function by a trun-
cated Fourier-Cosine expansion. Thus this approach permits to price approximately 
the option value, by computing its Fourier-Cosine coefficients. Here we propose 
to introduce this Fourier-Cosine method for pricing and hedging the guaranteed 
benefits, and to prove its efficiency with a comparison with already known nu-
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merical methods. 
In order to compare with already known results, we present the implementa-

tion of this methodology for the valuation of Guaranteed Lifelong Withdrawal 
Benefits (GLWB) fully described in [9] for the Black-Scholes model and in [12] 
for Black-Scholes model with stochastic interest rates. 

The paper is organized as follows. In Section 1 we describe the Fourier-Cosine 
methodology, in Section 2 the treated insurance derivative, and in Section 3 we 
propose the numerical results. Finally we give some conclusion and remarks about 
all the methodology and perspectives in the last section. 

2. Fourier-Cosine Methodology 

Let us give a brief introduction of the COS option pricing method. The concept 
behind COS pricing method is to recover the conditional density by its characte-
ristic function through Fourier-Cosine expansions. It can be applied for all processes 
as soon as the characteristic function is available, which includes all affine processes. 
The method performs impressively, especially when the underlying follows a Lévy 
processes. 

Everything starts from the risk-neutral valuation formula 

( ) ( ) ( )0, e , | d ,r tv x t v y T f y x y
∞− ∆

−∞
= ∫  

where ( ),v x t  is the option value, and ,x y  can be any increasing functions of 
the underlying at 0t  and T respectively. In order to numerically evaluate this 
integral, we truncate the integration range, aiming at 

( ) ( ) ( )0, e , | d .
br t
a

v x t v y T f y x y− ∆≈ ∫               (2.1) 

The integration range has to been chosen such that the condition 

( ) ( )| d | d
b

a
f y x y f y x y TOL− <∫ ∫

 

is satisfied, where TOL is a pre-specified tolerance value An error analysis of the 
various approximations can be found in [11] [13]. 

The conditional density function of the underlying is then approximated by 
means of the characteristic function via a truncated Fourier-Cosine expansion of 
order N, as follows: 

( ) 1

0

2 π π| ; exp cos π ,N

k

k ak y a'f y x x i k
b a b a b a b a

φ−

=

  −     ≈ ℜ −      − − − −      
∑ (2.2) 

where ℜ  means taking the real part of the expression in brackets, and ( ); xφ ω  
is the characteristic function of ( )|f y x  defined as: 

( ); e | .i yx xωφ ω  =                        (2.3) 

The prime at the sum symbol in (2.2) indicates that the first term in the ex-
pansion is multiplied by one-half. Replacing ( )|f y x  in (2.1) by its approxi-
mation (2.2) and interchanging integration and summation, we obtain the COS 
algorithm to approximate the value of a European option: 
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( ) 1
0 0

π π, e ; exp ,Nr t
kk

k ak'v x t x i V
b a b a

φ−− ∆

=

    = ℜ −    − −    
∑         (2.4) 

where 

( )2 , cos π d
b

k a

y aV v y T k y
b a b a

− =  − − ∫                 (2.5) 

is the Fourier-Cosine coefficient of ( ),v y T , which is available in closed form 
for several payoff functions of European options. 

The COS algorithm exhibits an exponential convergence rate for all processes 
whose conditional density ( )|f y x  is in ( )( ),C a b∞ ⊂  . The size of the inte-
gration interval [ ],a b  can be determined with help of the cumulants [11]. 

3. Insurance Derivatives 

In this section, divided into two subsections, we present the Guaranteed Lifelong 
Withdrawal Benefits contract description. In the first subsection we describe the 
dynamics of the proposed insurance product between monitoring dates, and in 
the second subsection we describe the events occurring at monitoring dates. 

3.1. Guaranteed Lifelong Withdrawal Benefits Model 

In this section we will consider the index Ŝ  which follows a Geometric Brownian 
motion with initial value 0Ŝ , constant drift r and volatility σ  (Black-Scholes 
model). It satisfies the following stochastic differential equation: 

ˆ ˆ ˆd d d ,t t t tS rS t S Wσ= +                       (3.1) 

where tW  is a Brownian motion. 
Let the mortality function ( )M t  be defined as the fraction of the original 

owners of the Guaranteed Lifelong Withdrawal Benefits (GLWB) contract who 
die in the interval [ ], dt t t+  ( ( )M t  is assumed to be constant in this fixed in-
terval of size dt ). This number can be computed from a mortality table, given 
the probability ( )x  that an owner which is x years old will die the next year. 
The fraction of the original owners still alive at time t, denoted by ( )R t  is 

( ) ( )
0

1 d .
t

R t M s s= − ∫  

Time t is measured in years from the contract inception date, so the maturity 
corresponds to the moment when everyone has died (and of course the end of 
the mortality table). 

Let S be the amount in the investment account (i.e. mutual fund) of any hold-
er of the GLWB contract still alive at time t. We suppose that this investment 
account tracks an index Ŝ  previously described. Let A be the guarantee ac-
count balance. We suppose that percentage fees based on the value of the in-
vestment account S are charged to the policy holder at the annual rate totα  and 
withdrawn continuously from that account. These fees include mutual fund 
management fees mα  and a fee charged to fund the guarantee (also known as 
the rider) gα , so that tot g mα α α= + . Let ( ), ,V S A t  be the value of the entire 
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contract (express in backward time) as sum of the no-arbitrage value of the 
guarantee only portion of the contract (the GLWB rider) and the amount in the 
investment accounts of those remaining alive. We have the following dynamics 
for ( ), ,V S A t : 

( ) ( ) ( )
2 2

,
2t SS tot S m
SV V r SV rV R t S M t Sσ α α= + − − + +     (3.2) 

with initial value ( ), ,0 0V S A =  (which is in fact the terminal condition in real 
life time). 

Between two annual dates it  and 1it + , the contract follows this partial diffe-
rential equation. At date 1it +  there are jumps depending on the specification of 
the contract. 

3.2. Jumps Events 

At each monitoring date it  there are jumps events to take into account the prod-
uct features, e.g. withdrawal, bonus, ratchet, penalties. We assume that the order 
of event occurring at an event time it  is first the ratchet event then the withdraw-
al events containing possibly bonus or penalties. 

Ratchet Event. If the contract specifies a ratchet (step-up) feature, then the 
value of the guarantee account A is increased if the investment account has in-
creased. The guarantee account A can never decrease, unless the contract is par-
tially or fully surrendered. At a ratchet event time it  we have the following rela-
tion 

( ) ( )( ), , ,max , , .i iV S A t V S S A t+ −=  

General Withdrawal Event. The contract will typically specify a withdrawal 
rate rG . Given a time interval of 1i it t −−  between withdrawals, the contract 
withdrawal amount at it t=  is ( )1r i iG t t A−− . At this point we do not make any 
particular assumptions about the withdrawal strategy of the policy holder. In 
general terms, the policy holder’s actions at it  can be represented by a policy 
parameter iγ , where 0 2iγ≤ ≤ . Withdrawals of amounts less than or equal to 
the contract withdrawal amount ( )1r i iG t t A−−  are represented by [ ]0,1iγ ∈ . 
Withdrawals in excess of the contract amount are indicated by ( ]1,2iγ ∈ , with 

2iγ =  corresponding to full surrender. Withdrawal events can be written in the 
general form 

( ) ( ) ( ), , , , Cash Flow , , , ,i i
i i i iV S A t V S A t S A tγ γ γ+ −= +  

where iS γ  and iAγ  are particular values depending on the withdrawal event, 
and where “Cash Flow” is the cash flow from the event depending on the with-
drawal event represented by the value iγ . 

Bonus Event ( 0iγ = ). If the contract holder chooses not to withdraw at 

it t= , this is indicated by 0iγ = . Let the bonus fraction be denoted by ( )iB t  
(if no bonus is possible at it t= , then ( ) 0iB t = ). Thus we define 

( )( ): , : 1 and Cash Flow 0.i i
iS S A A B tγ γ= = + =  
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Withdrawal Not Exceeding Contract Amount ( ( ]0,1iγ ∈ ). Note that with-
drawals at the contract rate (or less) are allowed even if the amount in the in-
vestment account is 0S = . The withdrawal amount is ( )1i r i iG t t Aγ −−  and we 
obtain the following definitions 

( )( )
( ) ( )

1

1

: max ,0 ,

: and Cash Flow .

i

i

i r i i

i i r i i

S S G t t A

A A R t G t t A

γ

γ

γ

γ
−

−

= − −

= = −
 

Partial or Full Surrender ( ( ]1,2iγ ∈ ). Finally consider the case of a with-
drawal of an amount greater than the contract amount ( )1r i iG t t A−− , i.e. the 
withdrawal amount is given by 

( ) ( ) ( )( ) ( )( )1 11 max ,0 1r i i i r i i iG t t A S G t t A tγ κ− −− + − − − −  

where ( ) [ ]0,1itκ ∈  is a penalty for withdrawal above the contract amount. In 
this case we have to define the following quantities 

( ) ( )( ) ( )1: 2 max ,0 , : 2i i
i i r i i iS S G t t A A Aγ γγ γ γ−= − − − = −  

and 

( ) ( ) ( ) ( )( ) ( )( )1 1Cash Flow 1 max ,0 1 .i r i i i r i i iR t G t t A S G t t A tγ κ− −= − + − − − −  

Note that it is assumed that the guarantee account value A is reduced propor-
tionately for any withdrawal above the contract rate. 

Now we consider the withdrawal strategy. The risk neutral price is the cost of 
hedging. If we consider that the insurer should charge a price which ensures that 
no losses can occur (assuming that the claim is hedged), then the withdrawal strate-
gy is assumed to verify 

[ ]
( ) ( )( )

0,2
, , Cash Flow , , , .arg maxi i iV S A t S A tγ γ

γ
γ γ−

∈
= +  

Assuming such a strategy by policy holders, and hedging against it, is ob-
viously very conservative from the standpoint of the insurer, since it seeks to 
provide complete protection against policy holder withdrawal behavior (given 
assumptions about parameter values such as volatilities). In other words, if in-
vestors follow this strategy, and if the insurer hedges continuously, the balance 
in the insurer’s overall hedged portfolio will be zero. On the other hand, if the 
investor deviates from this strategy, then the insurer’s portfolio will have a posi-
tive balance. 

4. Numerical Results 

At each date it , we need to compute the withdrawal strategy, so we look for the 
maxima by a linear search on values [ ]0,2γ ∈ . From the previous experiments 
on this model, the authors can say that only values 0, 1 and 2 are actually selected 
by this linear search. That is to say: when withdrawal is chosen, only full with-
drawal is selected, and in case of surrender event, only a full surrender event is 
selected. 

With this optimal dynamical approach, or in a static approach where all iγ  
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values are fixed at the beginning of the contract, it is possible to compute (back-
ward in real life time, but forward here) the value ( ), ,V S A t  for all variables S, 
A and [ ]0,t T∈ . 

The pricing problem now reduces to find the rider fee *
gα  (driving the dy-

namic between time events) such that 

( )*
0 0 0, , ,gV S A T Sα  =                  (4.1) 

when *
gV α    is the solution of the partial differential Equation (3.2) when 

*
g gα α= . Viewing gV α    as being parametrized by the rider fee gα , we solve 

the Equation (4.1) using a classical secant method. Typically, only 5 or 7 itera-
tions are necessary to obtain convergence of the algorithm under a fixed toler-
ance of 10−8. 

4.1. Numerical Parameters 

In all our numerical experiments we have used the following parameters which 
are compatible with actual literature on GLWB. Table 1 refers to the Black-Scholes 
parameters, Table 2 refers to the product features and Table 3 refers to the pol-
icy holder parameters describing its behavior. 

We consider that there are no initial fees and that all the fees and the death 
benefits are paid continuously. There is no ratchet feature. The bonus is of 5% if 
there is no withdrawal. If there is a partial surrender then there are penalties 
given in Table 4. 

Moreover we used the DAV 2004R mortality Table, 65 year old German male 
(see [9] for the table). 

We have used the following parameters for the Fourier-Cosine method. The 
range of integration is given by ( ) ( )0logga r L Sα σ= − − +  and  

( ) ( )0loggb r L Sα σ= − + +  with 17.5L = . We have remarked that a number 
 
Table 1. The Black-Scholes parameters. 

investment volatility interest rate dividend guarantee 

S0 σ r q A0 

100 0.10/0.15 0.04 0 100 

 
Table 2. The product features. 

maturity withdrawal rate management fees 

T Gr αm 

57 0.05 0 

 
Table 3. The policy holder parameters. 

policy holder behavior age of policyholder withdrawal frequency first withdrawal 

withdraw every time 65 years old 1 per year 1st year 
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Table 4. The surrender penalties. 

κ  t  

0.05 0 1t≤ ≤  

0.04 1 2t< ≤  

0.03 2 3t< ≤  

0.02 3 4t< ≤  

0.01 4 5t< ≤  

0.00 5 t<  

 
20N =  of Fourier-Cosine coefficients provides a fast method, but the choice of 
90N =  seems better and more stable. 

For the partial differential equation method (PDE), we use an implicit finite 
difference scheme with a time step 0.01tδ =  and a non-uniform mesh of 750 
points in the space variable. 

4.2. Pricing and Hedging the Insurance Product 

We compute the fee gα  such that (4.1) is verified with a tolerance of 10−5 i.e. 

( )* 5
0 0 0, , 10 .gV S A T Sα −  − <   

We perform all these computations with parameters detailed in Tables1-4. 
We only change the value of the volatility parameter, respectively 0.10σ =  and 

0.15σ = .The numerical results are presented in Table 5. 
With this method it is possible to numerically compute the classical greeks. 

But in the insurance market, and for this kind of product, an interesting value 
could be given by the sensibility with respect to the mortality table. The authors 
have implemented a ±10% shock on the probability ( )x  given by the mortal-
ity table. Table 6 gives the sensibility with respect to this shock when 0.15σ = . 

The numerical results provide that Fourier-Cosine method may be a reliable 
method in order to price variables annuities. The parameters defining the Fouri-
er-Cosine method have been chosen in order to obtain fast and accurate results. 

5. Conclusions 

In this article we have introduced the Fourier-Cosine method for pricing and 
hedging insurance derivatives. We have investigated the efficiency of such a me-
thod on a particular insurance product which is the Guaranteed Long life With-
drawal Benefits model of variable annuities. We have assumed that the index 
tracked by the investment account follows a Geometric Brownian Motion, but 
this method can be extended to various models as soon as we have an explicit 
formula for the density function for the underlying process. 

First numerical results say us that Fourier-Cosine method seems to be a prom-
ising technique in order to price and hedge variable annuities. 

Future research can be extended to take into account a model for the index  
 

DOI: 10.4236/tel.2018.83020 289 Theoretical Economics Letters 
 

https://doi.org/10.4236/tel.2018.83020


L. Goudenège et al. 
 

Table 5. Values gα  of the fee. 

 Fourier-Cosine PDE 

0.10σ =  0.002970 0.002450 

0.15σ =  0.004891 0.004290 

 
Table 6. Sensibility with respect to ±10% shocks on mortality probabilities. 

0.15σ =  Fourier-Cosine PDE 

shock +10% 0.004498 0.003993 

no shock 0.004891 0.004290 

shock −10% 0.005353 0.004519 

 
with stochastic volatility and/or stochastic interest rate. For instance in the Hes-
ton model we have an explicit formula for the density function, then the exten-
sion to this case could be straightforward. 
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