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Abstract 
In this paper1 I present a novel polynomial regression method called Finite 
Difference Regression for a uniformly sampled sequence of noisy data points 
that determines the order of the best fitting polynomial and provides esti-
mates of its coefficients. Unlike classical least-squares polynomial regression 
methods in the case where the order of the best fitting polynomial is unknown 
and must be determined from the R2 value of the fit, I show how the t-test 
from statistics can be combined with the method of finite differences to yield a 
more sensitive and objective measure of the order of the best fitting poly-
nomial. Furthermore, it is shown how these finite differences used in the de-
termination of the order, can be reemployed to produce excellent estimates of 
the coefficients of the best fitting polynomial. I show that not only are these 
coefficients unbiased and consistent, but also that the asymptotic properties of 
the fit get better with increasing degrees of the fitting polynomial. 
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1. Introduction 

In this paper I present a novel polynomial regression method for a uniformly 
sampled sequence of noisy data points that I call the method of Finite Difference 
Regression. I show how the statistical t-test2 can be combined with the method 
of finite differences to provide a more sensitive and objective measure of the or-
der of the best fitting polynomial and produce unbiased and consistent estimates 
of its coefficients. 

 

 

1Portions of this independent research were submitted to the 2013 Siemens Math, Science, and 
Technology Competition, and to the 2014 Intel Science Talent Search Competition for scholarship 
purposes. It received the Scientific Research Report Badge from the latter competition. 
2The t-test often called Student’s t-test was introduced in statistics by William S. Gosset in 1908 and 
published under the author’s pseudonym “Student” (see [10]). 
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Regression methods, also known as fitting models to data, have had a long 
history. Starting from Gauss (see [1] pp. 249-273) who used it to fit astronomical 
data, it is one of the most useful techniques in the arsenal of science and tech-
nology. While historically it has been used in the “hard” sciences, both natural 
and biological, and in engineering, it is finding increasing use in all human en-
deavors, even in the “soft” sciences like social sciences (see for example [2]), 
where data is analyzed in order to find an underlying model that may explain or 
describe it.  

Polynomial regression methods are methods that determine the best poly-
nomial that describes a sequence of noisy data samples. In classical polynomial 
regression methods when the order of the underlying model is known, the coef-
ficients of the terms are estimated by minimizing the sum of squares of the resi-
dual errors to the fit. For example, in classical linear regression (see [2] pp. 
675-730) one assumes that the order of the fitting polynomial is 1 and then 
proceeds to find the coefficients of the best fitting line as those that minimize the 
sum of the squares of its deviations from the noisy samples. The same method 
can be extended to polynomial regression. On the other hand, when the model 
order is unknown, the order of the best fitting polynomial must be determined 
before finding the coefficients of the polynomial terms. In classical regression 
methods this order is determined from the R2 value of its fit. More on these two 
different aspects of polynomial regression are provided below. 

1) Determining the order of the best fitting polynomial (Model order un-
known) 

In classical regression, the goodness of the order of the fitting polynomial is 
given by the R2 value of the best fitting polynomial—the greater the R2 value the 
better the fit. However, this means that one can go on fitting with higher degree 
polynomials and thereby increasing R2 values. Given the insensitivity of these R2 
values (see for example Section 2.4) it is indeed hard to find a stopping criterion. 
To get around this problem, heuristic methods like AIC, BIC, etc. (see [3] for 
example) that penalize too many fitting parameters have been proposed. In con-
trast, in the method of Finite Difference Regression described below, the order of 
the best fitting polynomial is determined by using a t-test, namely determining 
the index of a finite difference row (or column) that has a high probability 
(beyond a certain significance level) of being zero. The sensitivity of this method 
is high compared to classical regression methods as I shall demonstrate in Sec-
tion 2.5. 

2) Determining the coefficients of the best fitting polynomial (Model order 
known/determined) 

In classical polynomial regression, the polynomial coefficients of the fit that 
minimizes the sum of squares of the residual errors are found by a computation 
that is equivalent to inverting a square matrix. In contrast in the method I de-
scribe below, I once again employ the finite differences I used to find the order, 
to iteratively determine the polynomial coefficients. In Section 2.7, I show that 
the results of this method are remarkable—not only are the coefficients unbiased 
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and consistent, but also that the asymptotic properties of the fit get better with 
increasing degrees of the fitting polynomial. 

Before describing the Finite Difference Regression method in Section 2, I 
briefly recapitulate the general method of finite differences whose formulation 
can be traced all the way back to Sir Isaac Newton (see [4]). The finite differenc-
es method (see [5]) is used for curve fitting with polynomial models. On its 2nd 
row, Table 1 shows the y-value outputs for the sequence of regularly spaced 
𝑥𝑥-value inputs at points 1,2, ,10  shown on the 1st row. A plot of this data is 
shown in Figure 1. The problem is to determine the order of the polynomial that 
can generate these outputs and to find its coefficients. 

The remaining rows in Table 1 show the successive differences of the y-values. 
The fact that the 3rd difference row in Table 1 is composed of all zeros implies 
that a quadratic polynomial best describes this data. In fact this data was gener-
ated by the quadratic polynomial: 22 3y x x= + + . 

I assume throughout this paper that the data are sampled at regular intervals. 
Without loss of generality these intervals can be assumed to be of unit length. 
Then the following general observations can be made: 

1) If the ( )st1m +  difference row is all zero, then the data is best described by 
an mth order polynomial: 1

1 1 0
m m

m ma x a x a x a−
−+ + + +  

2) If the ( )st1m +  difference row is all zero, then ! mm a  is the constant in 
the mth row. From this observation the coefficient of the highest term can be 
found. For example in Table 1 since the 3rd difference row is all zero then 22!a  
is the constant in the 2nd difference row. Since this constant is 4, it immediately 
follows that the highest term should be 2 24 2! 2x x=  

3) The lower order terms can be found successively by back substituting and 
subtracting the highest term. In this method, the data y in Table 1 is replaced by 
y′  where m

my y a x′ = − , and then reapplying the method of finite differences 
on the y′  data. Using this approach for the data in Table 1, one obtains the 
next term as follows: 
 

 
Figure 1. Graph of data in Table 1. 
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In Table 2 the 2nd difference row is all zero. Hence 11!a  is the constant in the 
1st difference row. Since this constant is 1, the next highest term should be 
1 1!x x= . 

Again, the final term can be found by replacing y′  in Table 2 by y′′  where 
1

1
m

my y a x −
−′′ ′= − : 

The computation in Table 3 yields 3 as the constant term for the polynomial 
fit. 

Hence, by successive applications of the finite difference method in this man-
ner, the best fit polynomial to the 𝑦𝑦 data in Table 1 is found to be 22 3x x+ + . 

2. The Method of Finite Difference Regression 

In this section I describe the Finite Difference Regression method, compare the 
results obtained from this method to those from classical regression, and show 
unbiasedness and consistency properties of the Finite Difference Regression 
coefficients. 

The intuitive idea behind the method of Finite Difference Regression is simple. 
Suppose one were to add normally distributed noise with mean 0 independently 
to each of the y-values for example in Table 1 to make them noisy, then unlike 
the non-noisy situation, one cannot expect all entries in a difference row to be all  
 
Table 1. Finite Differences on y-value outputs for the sequence of regularly spaced 
x-value inputs. 

x 1 2 3 4 5 6 7 8 9 10 

y 6 13 24 39 58 81 108 139 174 213 

1st Difference  7 11 15 19 23 27 31 35 39 

2nd Difference  4 4 4 4 4 4 4 4  

3rd Difference   0 0 0 0 0 0 0  

4th Difference   0 0 0 0 0 0   

 
Table 2. Second iteration of finding terms to fit the model. 

x 1 2 3 4 5 6 7 8 9 10 

y 6 13 24 39 58 81 108 139 174 213 

22y y x′ = −  4 5 6 7 8 9 10 11 12 13 

1st Difference  1 1 1 1 1 1 1 1 1 

2nd Difference  0 0 0 0 0 0 0 0  

 
Table 3. Final iteration of finding terms to fit the model. 

x 1 2 3 4 5 6 7 8 9 10 

y′  4 5 6 7 8 9 10 11 12 13 

y y x′′ ′= −  3 3 3 3 3 3 3 3 3 3 

1st Difference  0 0 0 0 0 0 0 0 0 
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identically equal to zero. However, since differences between normally distri-
buted random variables are also normally distributed (albeit with higher va-
riance), each of the samples in a difference row (as in the rows of Table 1) would 
also be normally distributed with different means until one hits a difference row 
where the mean is zero with high probability. It is this highly probable ze-
ro-mean row that should be the all zero difference row in the absence or elimi-
nation of noise. The condition that the mean is zero with high probability can be 
objectively tested on each difference row using a t-test on the samples in that 
row, where the null hypothesis H0 tests for zero population mean and the alter-
native hypothesis Ha tests for non-zero population mean. This is the main idea 
behind the method of Finite Difference Regression—the replacement of the no-
tion of an all zero difference row in the non-noisy case by the notion of a highly 
probable row of all zeros in the noisy case and usage of the statistical t-test to test 
for the zero population mean hypothesis. 

2.1. Statistical Independence and Its Relation to the Degrees of  
Freedom 

While it is true that successive differences will produce normally distributed 
samples, not all the samples so produced are statistically independent of one 
another. For example as shown in Figure 2, the noisy data samples 1 2 3 4, , ,y y y y  
generate the next difference sequence 1 2 3, ,y y y′ ′ ′—not all of these values are in-
dependent. Since 1y′  and 2y′  both depend upon the value of y2 they are not 
independent. Similarly, 2y′  and 3y′  are not independent because both depend 
upon 3y . However, 1y′  and 3y′  having no point in common, are independent! 

This observation can be generalized by the following process. Suppose I had K 
observations to begin with. If I were to produce successive differences by skip-
ping over every other term, in the manner of a binary tree as shown in Figure 3, 
I would obtain independent normally distributed samples. Each level of the tree 
would have independent normally distributed finite differences denoted in Fig-
ure 3 (shown with 8K = ) by , ,y y′ ′′

  and so on. This method would retain 
all the properties of finite differences, in particular the highly probable zero 
mean row; plus it would have the added benefit of not having any dependent 
samples. If this method were implemented, and a t-test invoked at every level of 
the binary tree, then the number of samples in the test would be halved at each 
level, and consequently the degrees of freedom would be affected. In other words, 
if k denotes the number of samples3 at a particular level of the tree, then in the 
next level one would get k/2 samples. Then according to the theory of t-tests, the 
degrees of freedom for the first level would be 1k − , in the next level it would be 

2 1k − , and so on. However, discarding good data will have negative conse-
quences for coefficient estimation (see Section 2.6). While some of the data at 
every level of a successive finite difference table (Table 1 for example) are not 
independent, they could still be used for t-tests. The only thing to remember is  

 

 

3Assume that K and k are powers of 2 for the purposes of this discussion. 
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Figure 2. Successive finite differences. 

 

 
Figure 3. A binary tree of successive differences. 

 
that at every stage the number of independent samples is halved and therefore 
the degrees of freedom is one less than this number.  

2.2. An Example of Order Finding 

Table A1 in Appendix 2 gives an example of how the Finite Difference Regres-
sion method works to find the order of the best fitting polynomial. The 1st two 
columns of Table A1 are the pivoted rows of Table 1. Independent zero-mean 
normally distributed random noise with standard deviation of 30.0 is generated 
in the 3rd column and added to the values of y in the 4th column. Thus, the 4th 
column represents noisy values of the data y. A graph of this noisy data is shown 
in Figure 4. Finally, columns 5 through 9 represent successive finite differences 
from 1st to 5th, computed in the same way as in Table 1. The last 6 rows of Table 
9 highlighted in yellow show the statistical computations associated with the 
method. These are described below in Section 2.3. 

2.3. The Statistical Computations 

The last 6 rows of Table A1 use the one-sample t-test for a population mean as 
described in [2] pp. 547-548. Note that the Null Hypothesis is 0 : 0H µ =  be-
cause the hypothesized value is 0. The Alternative Hypothesis is : 0aH µ ≠ . 
The descriptions of these rows are: 

https://doi.org/10.4236/ojs.2018.81005


A. Banerjee 
 

 

DOI: 10.4236/ojs.2018.81005 55 Open Journal of Statistics 
 

 
Figure 4. Graph of the noisy data in Table 5 with insert showing magnified view for 
10 20x≤ ≤ . 

 
Header titled n = Number of samples 
Header titled x  = Sample mean 
Header titled s = Sample standard deviation 

Header titled t = Test statistic = x x
s n s n

µ−
=  (substituting 0µ = ) 

Header titled df = Degrees of freedom computed as detailed in Section 2.1 

Header titled P-value = 
2 Area to right of  with given for 0
2 Area to left of with given for 0

t df t
t df t

× >
 × <

 

2.4. Conclusions from the t-Test 

One of the assumptions of the t-test is that the sample size n is large. Typically, 
30n ≥  is required. This assumption is violated in some of the columns of Table 

A1. However the table is merely for illustrative purposes. Even so, it shows the 
power of the method to correctly ascertain the order of the best fitting poly-
nomial because one can hardly fail to notice the precipitous drop in P-value in 
the 3rd difference column (titled Diff 3). The plot in Figure 5 showing the 
P-values of the 5 difference columns graphically displays this drop. 

The insignificant P-value in the 3rd difference column implies that with high 
probability the order of the best fitting polynomial should be 2m = , i.e. a qua-
dratic polynomial is the best fit polynomial to the data in Table A1. 

2.5. Comparison to Classical Regression 

In classical polynomial regression, 2R  values instead of P-values represent the 
goodness of fit. Using Microsoft Excel’s built-in program to generate 2R  values 
to polynomial fits, I generated Table 4 by restricting the highest degree m of the 
best fitting polynomial 1

1 1 0
m m

m ma x a x a x a−
−+ + + +  for the noisy data in Ta-

ble A1. 
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Figure 5. Graph of P-value vs. Diff. 
 
Table 4. R2 values in classical regression as a function of degree m. 

m 1 (Linear) 2 (Quadratic) 3 (Cubic) 4 5 

R2 value 0.9403 0.9999 0.9999 0.9999 0.9999 

 
Table 4 shows that the R2 values used in classical regression do not have the 

sensitivity that the P-values with t-tests possess. The clear drop that occurs in the 
P-values as shown in Figure 5 does not have a corresponding sharp rise in R2 
values in Table 4. Also, unlike classical regression which requires R2 values to be 
fitted with every polynomial the Finite Difference Regression is a one-shot test 
that gives a clear estimate of the order of the best fitting polynomial by testing 
the significance of the probabilities (P-values). The first successive difference 
column whose P-value is less than the significance level (a belief threshold for 
the viable model) comes out to be the best fitting polynomial model.  

Unlike classical regression, however, this method requires a large sample size 
n, preferably one that is a power of 2. Also, because the degrees of freedom get 
halved at each successive difference and the degrees of freedom have to remain 
positive, the highest order polynomial that can be fit by this method is of the or-
der 2log n . This is generally acceptable because the order of the best fitting po-
lynomials should by definition be small constants. Other classical model order 
selection heuristics like AIC or BIC (see [3]) would also heavily penalize high 
order models. 

2.6. Determining the Coefficients 

Once the order of the best fitting polynomial has been found using the t-test in 
combination with finite differences, I will evaluate the coefficients of the best 
fitting polynomial using the method of successive finite differences as detailed 
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in Section 1. 
In the non-noisy situation described in Section 1, the matter was simple: there 

was a difference row of all zeros and therefore the previous difference row was a 
constant that could be used to determine the coefficient of the highest degree. In 
the noisy case, the issue is complicated because there is no such row that consists 
of all zeros and therefore the previous difference row is not a constant. However, 
the intuitive idea behind the method of Finite Difference Regression (see the 2nd 
paragraph of Section 2), led me to assume that the sample mean x  would be an 
excellent choice for the previous difference row constant, since it is the unique 
number that minimizes the sum of squares of the residuals. From Table A1, 
the all zero column is the 3rd difference column, and therefore 4.29x =  (the 
sample mean of the 2nd difference column in Table A1) corresponds to the 
constant difference. Thus as described in Section 1, the highest term should be 

2 22! 2.145xx x= ; the next term determined from the sample mean of the “con-
stant” column after subtracting the values of the highest term yields −7.464x; 
and finally the constant term is 78.69. Thus 2ˆ 2.145 7.464 78.69y x x= − +  is the 
estimated polynomial model. 

Table A2 in Appendix 2 compares the noisy data to the best fit polynomial 
estimate using the method of successive finite differences. Note that the residuals 
are not very small; however, their average turns out to be −0.00078 indicating a 
good fit. The polynomial fit is overlaid on the noisy y data in Figure 6, in which 
the blue line shows the noisy data, and the dashed red line depicts the values of 
the estimated ŷ . 
 

 
Figure 6. Graph of best fitting polynomial 2ˆ 2.145 7.464 78.69y x x= − +  overlaid on the 
noisy observations of Table A1. 
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2.7. Unbiasedness and Consistency of the Coefficient Estimates 

In this section I prove that the coefficients estimated by the Finite Difference 
Regression method as detailed in Section 2.6 are unbiased and consistent. The 
properties of unbiasedness and consistency are very important for estimators 
(see [6] p. 393). The unbiasedness property shows that there is no systematic 
offset between the estimate and the actual value of a parameter. It is proved by 
showing that the mean of the difference between the estimate and the actual 
value is zero. The consistency property shows that the estimates get better with 
more observations. It is proved by showing that a non-zero difference between 
the estimate and the actual value becomes highly improbable with a large num-
ber of observations. The analysis focuses on the estimate of the leading coeffi-
cient i.e. that associated with highest degree because the asymptotic properties of 
the polynomial fit will be most sensitive to that value. 

Consider the following table that shows the symbolic formulas for the succes-
sive differences for the n observations 1 2, , , ny y y : 

For subsequent ease of notation, I introduce a change of variables def
1i iz y +=  

for 0 1i n≤ ≤ − . With this renaming/re-indexing, Table 5 can be rewritten as 
(note that the row indices have also changed): 

For any m, 0 1m n≤ ≤ − , the mth Diff column consists of expressions in rows 
indexed from m through 1n − . Using mathematical induction, the mth Diff 
column can be shown to be: 

If the underlying polynomial is an mth order polynomial  
( ) 1

1 1 0
m m

m mf x a x a x a x a−
−= + + + + , then in the case of noiseless observations, 

every row of Table 7 evaluates to the constant ! mm a . In particular, for the kth 
row in the mth Diff column shown in Table 7 one gets: 
 

Table 5. Successive differences for n observations 1 2, , , ny y y
. 

 Diff 0 Diff 1 Diff 2 
  

1st Row 1y     

2nd Row 2y  2 1y y−    

3rd Row 3y  3 2y y−  3 2 12y y y− +   

         

nth Row ny  1n ny y −−  1 22n n ny y y− −− +   

 
Table 6. Changing 1iy +  from Table 5 to iz  for 0 1i n≤ ≤ − . 

 Diff 0 Diff 1 Diff 2 
  

0th Row 0z     

1st Row 1z  1 0z z−    

2nd Row 2z  2 1z z−  2 1 02z z z− +   

         

(n − 1)th Row 1nz −  1 2n nz z− −−  1 2 32n n nz z z− − −− +   
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Table 7. The mth diff column. 

 Diff m 

mth Row ( )1 2 01
0 1 2

m

m m m

m m m m
z z z z

m− −

       
− + + + −       

       
  

(m + 1)th Row ( )1 1 11
0 1 2

m

m m m

m m m m
z z z z

m+ −

       
− + + + −       

       
  

    

kth Row ( )1 2 1
0 1 2

m

k k k k m

m m m m
z z z z

m− − −

       
− + + + −       

       
  

    

(n − 1)th Row ( )1 2 3 11
0 1 2

m
n n n n m

m m m m
z z z z

m− − − − −
       

− + + + −       
       

  

 

( )

( )

( ) ( ) ( ) ( ) ( )

1 2

1 1 1

1
0 1 2

1
0 1 2

1 1 1 1
0 1 2
!

m
k k k k m

m
k k k k m

m

m

m m m m
z z z z

m

m m m m
y y y y

m

m m m m
f k f k f k f k m

m
m a

− − −

+ − + −

       
− + + + −       

       
       

= − + + + −       
       
       

= + − + − + + − + −       
       

=







  (1) 

In case of noisy observations, let each re-indexed observation z now be cor-
rupted by a sequence of additive zero-mean independent identically distri-
buted random variables 0 1 1, , , n−N N N , each with variance 2σ . In other 
words: 

[ ] 2 20 a f rnd o 0i i i nσ = = ≤ < N N   

[ ] 0 0fori j i j i j n   = = ≤ < <   N N N N    

where [ ]  denotes the expectation operator. (See for example [7] pp. 220-223.) 
This addition of random variables makes the z’s also random variables de-

noted now as Z , and so ( )1i if i= + +Z N  for 0 i n≤ < . In this case, the kth 
row in the mth Diff column shown in Table 7 is the random variable kR  where: 

( )

( )

( ) ( ) ( ) ( ) ( )

1 2

1 2

1

1
0 1 2

1
0 1 2

1 1 1 1
0 1 2

0 1 2

m
k k k k k m

m
k k k k m

m

k k

m m m m
m

m m m m
m

m m m m
f k f k f k f k m

m

m m m
N

− − −

− − −

−

       
= − + + + −       
       
       

= − + + + −       
       
       

+ + − + − + + − + −       
       

     
= − +    
    

R Z Z Z Z

N N N N

N







( )2 1 !m
k k m m

m
m a

m− −
 

+ + − +  
  

N N

 (2) 
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where, the last step of Equation (2) follows from the identity in Equation (1). 
Let the random variable ( )ˆ

m nA  denote the estimate of ma  with the n ob-
servations. Then as described in Section 2.6, since there are ( )n m−  rows in the 
mth Diff column, the sample mean of the R’s divided by !m  provides the re-
quired estimate. In other words, 

( ) ( )
11ˆ

!

n

m k
k m

n
m n m

−

=

=
− ∑A R                       (3) 

Now, define the reduced row random variable kQ  for the mth Diff column 
shown in Table 7 as: 

def ! for 1k k mm a m k n= − ≤ ≤ −Q R                   (4) 

Then, substituting back into Equation (3): 

( ) ( ) ( )

( )
( )

( )

( )

1 1

1

1

1 1ˆ !
! !

!1
! !

1
!

n n

m k m
k m k m

n
m

k
k m

n

k m
k m

n m a
m n m m n m

m a n m
m n m m n m

a
m n m

− −

= =

−

=

−

=

= +
− −

−
= +

− −

= +
−

∑ ∑

∑

∑

A Q

Q

Q

 

Which, upon rearranging yields: 

( ) ( )
11ˆ

!

n

m m k
k m

n a
m n m

−

=

− =
− ∑A Q                      (5) 

Note that it is the statistics of the expression ( )ˆ
m mn a−A  on the left-hand 

side of Equation (5) that will prove the properties of unbiasedness and consis-
tency of the estimate ( )ˆ

m nA . Also note that by definition (4) and from Equa-
tion (2), the reduced row random variable kQ  for the mth Diff column can be 
explicitly written as: 

( )1 2 1
0 1 2

m
k k k k k m

m m m m
Q

m− − −
       

= − + + + −       
       

N N N N         (6) 

2.7.1. Result 1: ( )ˆ
mA n  Is an Unbiased Estimate of ma  

Taking the expectation operator [ ]  on both sides of Equation (6): 

[ ] ( )

[ ] [ ] ( ) [ ]

1 2

1

1
0 1 2

1 0
0 1

m
k k k k k m

m
k k k m

m m m m
m

m m m
m

− − −

− −

        
= − + + + −        

        
     

= − + + − =     
     

Q N N N N

N N N





 

  
      (7) 

The last step in Equation (7) follows from the fact that the random variables 

iN  are all zero-mean. Then, taking the expectation operator on both sides of 
Equation (5), and using the result from Equation (7): 

( ) ( ) [ ]
11ˆ 0

!

n

m m k
k m

n a
m n m

−

=

 − = =  − ∑A Q               (8) 

https://doi.org/10.4236/ojs.2018.81005


A. Banerjee 
 

 

DOI: 10.4236/ojs.2018.81005 61 Open Journal of Statistics 
 

Hence, ( )ˆ 0m mn a − = A  for all n. This proves the unbiasedness property 
of ( )ˆ

m nA . 
∎ 

2.7.2. Result 2: ( )ˆ
mA n  Is a Consistent Estimate of ma  

Since the random variable ( )ˆ
m mn a−A  has been shown to be of zero-mean by 

virtue of its unbiasedness property, the variance of this random variable is  

simply ( )( )2ˆ
m mn a −  

A . I show the consistency property of the estimate

( )ˆ
m nA  by way of deriving an upper-bound for ( )( )2ˆ

m mn a −  
A  and show-

ing that this upper-bound vanishes to 0 in the limit n →∞ . 
Writing out the reduced row random variables kQ  for each row k for the mth 

Diff column from Equation (6) one gets the following series of ( )n m−  equa-
tions: 

( )1 2 01
0 1 2

m
m m m m

m m m m
m− −

       
= − + + + −       
       

Q N N N N  

( )1 1 1 11
0 1 2

m
m m m m

m m m m
m+ + −

       
= − + + + −       
       

Q N N N N  

  

( )1 2 1
0 1 2

m
k k k k k m

m m m m
m− − −

       
= − + + + −       
       

Q N N N N  

  

( )1 1 2 3 11
0 1 2

m
n n n n n m

m m m m
m− − − − − −

       
= − + + + −       
       

Q N N N N  

Summing up these ( )n m−  equations column by column: 

( )
1

1 2 3 1
1 2 01

0 1 2

n
mn n n n m

k m m m
k m

m m m m
m

−
− − − − −

− −
=

       
= − + + + −       
       

∑Q S S S S        (9) 

where for ( ) ( )1 1n m i n− − ≤ ≤ −  and 0 j m≤ ≤  define: 

def i
i
j k

k j=

= ∑S N                            (10) 

Squaring both sides of Equation (10), and then taking expectations: 

( )

[ ]( ) ( )

2
2 2

2 2 21

i i
i
j k k

k j k j

i i

k
k j k j

i jσ σ

= =

= =

       = = +           

 = + = = − + 

∑ ∑

∑ ∑

S N N

N

  

 

SCT

SCT

        (11) 

In Equation (11) I have invoked the zero-mean, independent nature of the N’s 
to cause the “sum of cross-terms” term SCT to vanish. 

Define a new sequence of ( )1m +  random variables 0 1, , , mT T T  as follows: 

( )def 11 for 0i n i
i m i

m
i m

i
− −
−

 
= − ≤ ≤ 

 
T S                 (12) 
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By squaring both sides of definition (12), and then taking expectations: 

( ) ( ) ( ) ( )
2 2 2

2 222 1 1 21 i n i n i
i m i m i

m m m
n m

i i i
σ− − − −

− −

         = − = = −                 
T S S    (13) 

where, the final step in Equation (13) follows from Equation (11). 
Using definition (12), Equation (9) can be rewritten as: 

1

0 1

n

k m
k m

−

=

= + + +∑Q T T T
                     (14) 

Then as ( ) ( )( )2 2 2 2
0 1 0 11m mm       + + + ≤ + + + +      T T T T T T      (see 

Appendix 1, squaring both sides of Equation (14), and then taking expectations: 

( ) ( )( )

( )( ) ( )

( )( ) [ ]

21
2 2 2 2

0 1 0 1

2 2 2
2

2

1

1    From Equation 13

[From binomial ident

0 1

2
1 ity (see 8  pg  .  

n

k m m
k m

m

m m m
m n m

m

m
m n m

m

σ

σ

−

=

          = + + + ≤ + + + +            
      
 = + − + + +            
 

= + −  
 

  

∑  



Q T T T T T T    

64)]

(15) 

Finally, by squaring both sides of Equation (5), and then taking expectations I 
obtain the following inequality from inequality (15): 

( )( )
( ) ( )

( )( )
( ) ( )

2 212

2 2 4

1 2 !1ˆ
! !

n

m m k
k m

m m
n a

m n m m n m

σ−

=

  +  − = ≤     − −   
∑A Q     (16) 

where, the last step in (16) is a rewriting of the binomial coefficient 
2m
m

 
 
 

 in 

terms of factorials and subsequent simplification. 
It can be seen that the factor ( )( ) ( )41 2 ! !m m m+  on the right hand side of 

inequality (16) is a super-exponentially decreasing function of m (above a con-
stant) due to presence of the large ( )4!m  factor in its denominator. This factor 
is evaluated for a few values of m in Table 8. 

Table 8 shows that: 

( )( ) ( )
22 4.5ˆ

m mn a
n m

σ× − ≤   −
A                   (17) 

For the Finite Difference Regression method, 2logm n≤  (see Section 0 and 
the comments in Section 0). Thus, the right-hand-side denominator  

2logn m n n− ≥ −  in inequality (17) and therefore, 

( )( ) ( )
22

2

4.5ˆ
logm mn a

n n
σ× − ≤   −

A                   (18) 

Taking limits on both sides of inequality (18), 

( )( ) ( )
22

2

4.5ˆlim lim 0
logm mn n

n a
n n

σ
→∞ →∞

× − ≤ =   −
A              (19) 
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Table 8. The factor ( )( ) ( )41 2 ! !m m m+  evaluated for a few values of m. 

m 0 1 2 3 4 5 6 

( )( ) ( )41 2 ! !m m m+  1.000 4.00 4.500 2.222 0.608 0.105 0.012 

m 7 8 9 10 11 12 13 

( )( ) ( )41 2 ! !m m m+  1.1 × 10−3 7.1 × 10−5 3.7 × 10−6 1.5 × 10−7 5.3 × 10−9 1.5 × 10−10 3.8 × 10−12 

 

However, as ( )( )2ˆ 0m mn a − ≥  
A , inequality (19) implies that: 

( )( )2ˆlim 0m mn
n a

→∞

 − =  
A                      (20) 

Then invoking Chebyshev’s inequality (see [7] p. 233, [9] p. 151) yields: 

( )
( )( )2

2

ˆlim
ˆlim 0, for any 0

m mn
m mn

n a
Prob n a ε ε

ε
→∞

→∞

 −   − > ≤ = > 

A
A


 

This proves the consistency property of ( )ˆ
m nA . 

∎ 

2.7.3. A Note on the Asymptotic Properties of the Fit 
Inequality (16) and the values in Table 8 show that the higher the degree m of 
the polynomial, the lower is the variance of the estimate of its leading coefficient. 
This excellent property implies that the asymptotic properties of the fit (that are 
most sensitive to this leading coefficient) are stable, in the sense that the value of 
the asymptote becomes less varying with increasing degrees of the fitting poly-
nomial. 

3. Conclusions and Further Work 

In this paper I have presented a novel polynomial regression method for un-
iformly sampled data points called the method of Finite Difference Regression. 
Unlike classical regression methods in which the order of the best fitting poly-
nomial model is unknown and is estimated from the R2 values, I have shown 
how the t-test can be combined with the method of finite differences to provide 
a more sensitive and objective measure of the order of the best fitting polynomi-
al. Furthermore, I have carried forward the method of Finite Difference Regres-
sion, reemploying the finite differences obtained during order determination, to 
provide estimates of the coefficients of the best fitting polynomial. I have shown 
that not only are these coefficients unbiased and consistent, but also that the 
asymptotic properties of the fit get better with increasing degrees of the fitting 
polynomial. 

At least three other avenues of further research remain to be explored: 
1) The polynomial coefficients obtained by this method do not minimize the 

sum of the squared residuals. Is there an objective function that they do minim-
ize? 
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2) The classical regression methods work on non-uniformly sampled data sets. 
Extending this method to non-uniformly sampled data should be possible. 

3) Automatically finding a good t-test significance level i.e. the precipitously 
low P-value that sets the order of the best fitting polynomial (as described in 
Section 2.4) remains an open problem. For this, heuristics in the spirit of AIC or 
BIC methods (see [3]) in the classical case may perhaps be required. 
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Appendix 1 

To show that for any sequence of ( )1m +  random variables 0 1, , , mT T T : 

( ) ( )( )2 2 2 2
0 1 0 11m mm       + + + ≤ + + + +      T T T T T T      

The proof follows from a variance-like consideration. Given the random variables 0 1, , , mT T T  and any ran-

dom variable T , the sum of squares random variable ( )2

0

m
ii=
−∑ T T  is always non-negative. Its expected value 

( )2

0

m
ii=

 −  ∑ T T  is therefore always non-negative. Choosing the random variable ( )def

0
1m

ii
m

=
= +∑T T  i.e. the 

“mean” of 0 1, , , mT T T  proves the inequality as follows: 

( )

( )

( ) ( ) ( )

2

0

2 2

0

2 2

0 0 0

2 2

0 0 0

2 2

0

0

2

2

2 1

2 1 1 from defn. of

m

i
i

m

i i
i

m m m

i i
i i i

m m m

i i
i i i

m

i
i

T

m m

=

=

= = =

= = =

=

 
≤ − 

 
 

= − + 
 
     

= − +     
     

    = − +        

    = − × + + × +    

∑

∑

∑ ∑ ∑

∑ ∑ ∑

∑

T T

T TT T

TT T

T T T T

T T T T T





  

  

  
 

( ) ( )

( )

( ) ( )

( )
( )

( )

2 2 2

0

2 2

0

2

2 0

0

22
0 12

0

2 1 1

1

1 from defn. of
1

1

1

m

i
i
m

i
i

m
m

ii
i

i

m

i m
i

m m

m

m
m

m

m

=

=

=

=

=

     = − + + +     

   = − +   

  
   = − +    +   

+   = − + + +   +

∑

∑

∑∑

∑

T T T

T T

T
T T

T T T T

  

 

 

 
 

Multiplying both sides of the above inequality by ( )1m +  and rearranging yields the required result. 
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Appendix 2 
Table A1. Example showing how the finite difference regression method works. 

x y Noise y + Noise Diff 1 Diff 2 Diff 3 Diff 4 Diff 5 

1 6 −3.46 2.54 
     

2 13 11.08 24.08 21.53 
    

3 24 −10.78 13.22 −10.86 −32.39 
   

4 39 −12.23 26.77 13.55 24.41 56.81 
  

5 58 −15.22 42.78 16.01 2.46 −21.95 −78.76 
 

6 81 −20.56 60.44 17.65 1.64 −0.82 21.13 99.89 

7 108 −18.25 89.75 29.31 11.66 10.02 10.84 −10.29 

8 139 0.81 139.81 50.06 20.75 9.09 −0.94 −11.78 

9 174 2.70 176.70 36.88 −13.18 −33.92 −43.01 −42.07 

10 213 65.28 278.28 101.58 64.70 77.87 111.80 154.81 

11 256 14.08 270.08 −8.20 −109.78 −174.47 −252.34 −364.14 

12 303 −21.65 281.35 11.27 19.47 129.25 303.72 556.06 

13 354 2.26 356.26 74.91 63.64 44.17 −85.07 −388.79 

14 409 31.42 440.42 84.16 9.25 −54.39 −98.57 −13.49 

15 468 −4.20 463.80 23.37 −60.79 −70.04 −15.65 82.92 

16 531 −11.58 519.42 55.62 32.25 93.04 163.08 178.72 

17 598 −4.56 593.44 74.03 18.41 −13.84 −106.88 −269.95 

18 669 −52.78 616.22 22.77 −51.26 −69.66 −55.82 51.06 

19 744 40.58 784.58 168.37 145.59 196.85 266.51 322.33 

20 823 40.27 863.27 78.69 −89.68 −235.27 −432.12 −698.63 

21 906 −1.21 904.79 41.52 −37.17 52.51 287.78 719.90 

22 993 41.62 1034.62 129.83 88.32 125.49 72.98 −214.80 

23 1084 −4.49 1079.51 44.89 −84.94 −173.26 −298.75 −371.73 

24 1179 −8.48 1170.52 91.01 46.12 131.07 304.32 603.07 

25 1278 −11.62 1266.38 95.86 4.84 −41.28 −172.35 −476.67 

26 1381 −55.64 1325.36 58.99 −36.87 −41.71 −0.43 171.92 

27 1488 −13.86 1474.14 148.78 89.79 126.66 168.37 168.80 

28 1599 72.21 1671.21 197.07 48.30 −41.49 −168.15 −336.52 

29 1714 35.99 1749.99 78.78 −118.29 −166.59 −125.10 43.05 

30 1833 −46.35 1786.65 36.66 −42.12 76.18 242.77 367.87 

31 1956 4.35 1960.35 173.70 137.04 179.15 102.97 −139.80 

32 2083 −6.83 2076.17 115.82 −57.87 −194.91 −374.07 −477.04 

33 2214 −5.17 2208.83 132.66 16.84 74.71 269.62 643.69 

34 2349 10.94 2359.94 151.10 18.44 1.61 −73.10 −342.73 

35 2488 32.31 2520.31 160.38 9.27 −9.17 −10.77 62.33 
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Continued 

36 2631 15.10 2646.10 125.79 −34.59 −43.86 −34.70 −23.92 

37 2778 10.35 2788.35 142.24 16.45 51.04 94.91 129.60 

38 2929 −14.74 2914.26 125.91 −16.33 −32.79 −83.83 −178.74 

39 3084 39.17 3123.17 208.91 83.00 99.33 132.12 215.95 

40 3243 36.96 3279.96 156.80 −52.12 −135.12 −234.45 −366.57 

41 3406 −4.73 3401.27 121.31 −35.49 16.63 151.74 386.19 

42 3573 −6.60 3566.40 165.13 43.82 79.31 62.68 −89.06 

43 3744 65.08 3809.08 242.68 77.55 33.74 −45.57 −108.25 

44 3919 −22.02 3896.98 87.90 −154.77 −232.33 −266.06 −220.49 

45 4098 13.68 4111.68 214.70 126.80 281.57 513.90 779.96 

46 4281 −6.64 4274.36 162.67 −52.03 −178.82 −460.39 −974.29 

47 4468 −5.14 4462.86 188.50 25.83 77.86 256.68 717.07 

48 4659 −37.01 4621.99 159.13 −29.37 −55.20 −133.06 −389.74 

49 4854 6.42 4860.42 238.43 79.30 108.67 163.88 296.94 

50 5053 −46.83 5006.17 145.75 −92.68 −171.98 −280.66 −444.53 

51 5256 7.28 5263.28 257.11 111.36 204.04 376.03 656.68 

52 5463 −8.25 5454.75 191.47 −65.64 −177.00 −381.04 −757.07 

53 5674 18.11 5692.11 237.36 45.89 111.53 288.53 669.57 

54 5889 −20.01 5868.99 176.89 −60.48 −106.37 −217.90 −506.42 

55 6108 5.34 6113.34 244.35 67.46 127.94 234.30 452.20 

56 6331 1.67 6332.67 219.33 −25.02 −92.48 −220.42 −454.72 

57 6558 8.07 6566.07 233.40 14.07 39.09 131.58 351.99 

58 6789 7.01 6796.01 229.94 −3.46 −17.54 −56.63 −188.21 

59 7024 −6.75 7017.25 221.24 −8.69 −5.23 12.31 68.94 

60 7263 14.76 7277.76 260.51 39.27 47.96 53.19 40.88 

61 7506 −18.95 7487.05 209.29 −51.22 −90.48 −138.44 −191.63 

62 7753 −2.33 7750.67 263.61 54.32 105.54 196.03 334.47 

63 8004 24.70 8028.70 278.03 14.42 −39.91 −145.45 −341.47 

64 8259 57.11 8316.11 287.41 9.38 −5.04 34.87 180.32 

n 
  

64 63 62 61 60 59 

x    
2833.75 131.96 4.29 0.68 −1.03 1.93 

s 
  

2517.12 83.47 63.10 113.72 211.20 399.59 

t 
  

9.01 12.55 0.54 0.05 −0.04 0.04 

df 
  

63 31 15 7 3 1 

P-value 
  

1.0000 1.0000 0.3996 0.0362 0.0278 0.0236 
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Table A2. The noisy data compared to the best fit polynomial estimate 2ˆ 2.145 7.464 78.69y x x= − +  determined from the 
successive finite differences method. 

x y + Noise ŷ  Residual  x y + Noise ŷ  Residual 

1 2.54 73.371 −70.831  33 2208.83 2168.283 40.547 

2 24.08 72.342 −48.262  34 2359.94 2304.534 55.406 

3 13.22 75.603 −62.383  35 2520.31 2445.075 75.235 

4 26.77 83.154 −56.384  36 2646.10 2589.906 56.194 

5 42.78 94.995 −52.215  37 2788.35 2739.027 49.323 

6 60.44 111.126 −50.686  38 2914.26 2892.438 21.822 

7 89.75 131.547 −41.797  39 3123.17 3050.139 73.031 

8 139.81 156.258 −16.448  40 3279.96 3212.130 67.830 

9 176.70 185.259 −8.559  41 3401.27 3378.411 22.859 

10 278.28 218.550 59.730  42 3566.40 3548.982 17.418 

11 270.08 256.131 13.949  43 3809.08 3723.843 85.237 

12 281.35 298.002 −16.652  44 3896.98 3902.994 −6.014 

13 356.26 344.163 12.097  45 4111.68 4086.435 25.245 

14 440.42 394.614 45.806  46 4274.36 4274.166 0.194 

15 463.80 449.355 14.445  47 4462.86 4466.187 −3.327 

16 519.42 508.386 11.034  48 4621.99 4662.498 −40.508 

17 593.44 571.707 21.733  49 4860.42 4863.099 −2.679 

18 616.22 639.318 −23.098  50 5006.17 5067.990 −61.820 

19 784.58 711.219 73.361  51 5263.28 5277.171 −13.891 

20 863.27 787.410 75.860  52 5454.75 5490.642 −35.892 

21 904.79 867.891 36.899  53 5692.11 5708.403 −16.293 

22 1034.62 952.662 81.958  54 5868.99 5930.454 −61.464 

23 1079.51 1041.723 37.787  55 6113.34 6156.795 −43.455 

24 1170.52 1135.074 35.446  56 6332.67 6387.426 −54.756 

25 1266.38 1232.715 33.665  57 6566.07 6622.347 −56.277 

26 1325.36 1334.646 −9.286  58 6796.01 6861.558 −65.548 

27 1474.14 1440.867 33.273  59 7017.25 7105.059 −87.809 

28 1671.21 1551.378 119.832  60 7277.76 7352.850 −75.090 

29 1749.99 1666.179 83.811  61 7487.05 7604.931 −117.881 

30 1786.65 1785.270 1.380  62 7750.67 7861.302 −110.632 

31 1960.35 1908.651 51.699  63 8028.70 8121.963 −93.263 

32 2076.17 2036.322 39.848  64 8316.11 8386.914 −70.804 
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