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Abstract

A novel type of application for the exploration of enclosed or otherwise diffi-
cult to access environments requires large quantities of miniaturized sensor
nodes to perform measurements while they traverse the environment in a “go
with the flow” approach. Examples of these are the exploration of under-
ground cavities and the inspection of industrial pipelines or mixing tanks, all
of which have in common that the environments are difficult to access and do
not allow position determination using e.g. GPS or similar techniques. The
sensor nodes need to be scaled down towards the millimetre range in order to
physically fit through the narrowest of parts in the environments and should
measure distances between each other in order to enable the reconstruction of
their positions relative to each other in offline analysis. Reaching those levels
of miniaturization and enabling reconstruction functionality requires: 1) nov-
el reconstruction algorithms that can deal with the specific measurement li-
mitations and imperfections of millimetre-sized nodes, and 2) improved un-
derstanding of the relation between the highly constraint hardware design
space of the sensor nodes and the reconstruction algorithms. To this end, this
work provides a novel and highly robust sensor swarm reconstruction algo-
rithm and studies the effect of hardware design trade-offs on its performance.
Our findings based on extensive simulations, which push the reconstruction
algorithm to its breaking point, provide important guidelines for the future
development of millimetre-sized sensor nodes.

Keywords

Sensor Swarm, Offline Reconstruction, Guided-RANSAC, Non-Unique
Identifiers

1. Introduction

Automatic and detailed reconstruction of environments and objects from sensory
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data is one of the success stories of modern signal processing. Still there are en-
vironments for which detailed reconstruction is not possible with current re-
mote or in situ sensing technologies. In this work, we focus on such environ-
ments and examples are: the interior of deep underground formations like (oil-)
reservoirs, mines and geothermal sources, and industrial infrastructure like
pipelines, mixing tanks and reactors. These environments are filled with a
(semi-) liquid medium and typically are globally large but locally small (e.g. in
diameter). Furthermore, they are difficult-to-access for in sifu measurements
and unsuitable for remote sensing methods. In this paper we consider a go with
the flow approach that follows a sensor swarm paradigm, in which large quanti-
ties (e.g. hundreds or thousands) of highly miniaturized and redundant sensor
nodes are gradually inserted into the environment [1] [2]. Carried by the flow of
the medium, the swarm fills the environment and by reconstructing the node
positions, and therewith the shape of the sensor swarm, the geometric structure
and size of the environment can be inferred. Reconstruction of the sensor swarm
is performed after nodes are extracted from the environment and their data
read-out. This process is illustrated in Figure 1.

The individual sensor node positions relative to each other can be
reconstructed from sparse inter-node distance measurements [3] [4]. These
distance measurements can be obtained using a ranging protocol as in e.g. [5].
As illustrated in Figure 2, reconstructing the positions of the nodes can be seen
as a specific kind of graph problem, G :(V,€ ) , where the vertices V' are the
sensor node positions and the edges & are the distances between them.
Typically such a problem can be solved using non-linear optimization algorithms
[28], however, after obtaining the measured distances (i.e. the edges £ in graph
G ), the challenge is to obtain a robust initial estimate of the node positions in
order for non-linear graph optimization algorithms to succeed. In order to
robustly obtain such an initial estimate, our offline' reconstruction algorithm
uses a Random Sampling Consensus (RANSAC) method applied to general
lateration techniques [6] [7]. To the best of our knowledge, the novel
reconstruction algorithm presented in this work, is one of the most robust
algorithms that is able to perform 3-D reconstruction of large sensor swarms.
Our applications require such a robust reconstruction algorithm since the
distance measurements are performed under very adverse sensing conditions, as
explained in Section 2. The details of our novel method are provided in Section 3
and Section 4.

We use this reconstruction algorithm to study trade-offs in the hardware
design space, as many hardware challenges still need to be addressed before large
swarms of millimetre-sized functional sensor nodes can be developed and
deployed effectively. Trade-offs must be made in the hardware design with
respect to sensing capabilities and size. Improved capabilities, e.g. larger

'In this paper we use the term online to indicate the period where nodes are in the process of per-
forming measurements and while going through the environment, and the term offline for after the
nodes are retrieved and data is extracted from the nodes.
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Figure 1. A swarm of sensor nodes is inserted into the environment of interest; the

sensor nodes traverse the environment using the flow of the medium. Once the

sensor nodes are distributed in the environment, distance measurements between

neighbouring sensor nodes are performed and stored locally within the nodes.

Finally, the sensor nodes and their data are retrieved. All data is analysed offline to

obtain the 3-D reconstruction of the sensor swarm from the inter-node distance
measurements.

communication radius or better signal-to-noise ratios, will improve reconstruction
performance, but make cost-effective miniaturization of nodes more challenging.
Therefore, in Section 5, we use extensive simulations with increasingly more
limitations on the hardware capabilities to study their effect on the
reconstruction performance. These limitations include increased noise in the
measurements and not being able to uniquely identify other nodes. The
assessment of the performance of the reconstruction depends on which

information is favoured from the swarm and different performance metrics are
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Figure 2. Reconstructing nodes within a swarm can be seen as a graph problem,
g =(V,€) , with the node positions as vertices V (circles) and the distances

between nodes the edges & (lines). The initial four node positions
{s,,8,,5;,5,} are chosen to define the coordinate system to solve the global

reflection and rotation ambiguity. Using general lateration techniques, additional
nodes, like the candidate node in the figure, can be added when distances to at
least four already reconstructed nodes are known. For clarity of the figure, not all
(required) edges are drawn.

introduced.

The simulations in this work do not guarantee that robust reconstruction will
work in reality, but as also discussed in Section 6, they do show that advances in
offline reconstruction algorithms, can, to a large extent, compensate for severely
limited hardware capabilities. Understanding the trade-offs between hardware
design and the reconstruction performance can guide the hardware design of
yet-to-be-developed highly miniaturized sensor nodes of future applications [2].

Several applications and research studies already exist that use a sensor swarm
approaches where sensor nodes move with a flow through specific environments.
In [8], 13 cm-sized sensor nodes were developed and deployed in the ocean to
flow with the ocean currents and allows to study e.g. plankton behaviour. These
nodes can actively change their density to adjust their depth while collecting a
variety of sensor data. The nodes receive ultrasound ping signals from nearby
buoys (at kilometre distance) such that afterwards their positions can be
reconstructed using general lateration. The researchers in [9] developed
millimetre-sized sensor nodes that can be injected into living fish to study how
e.g. dams and ocean energy devices affect their behaviour. These sensor nodes
measure temperature and emit a unique identifier using ultrasound such that
they can be remotely tracked by an array of external hydrophones on the
shoreline (within hundreds of metres distance). Both of the mentioned studies
are characterized by the fact that external localization hardware (buoys or
hydrophones with a known location) are used to reconstruct the node positions.

In our earlier work, targeting enclosed and difficult to access environments,
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we developed 4 cm-sized sensor nodes that measure the node’s inertial data (i.e.
linear acceleration and rotation) and measure the local magnetic field. These
nodes with variable density have been used e.g. to explore and inspect an
underground pipeline of 15 centimetre in diameter and 260 metre in length [10]
and to study the dynamics of multi-phase fluids in a mixing tank of several cubic
metres [11]. Another of our attempts to work towards the mentioned future
applications is described in [1]. It describes a field test that uses dummy
(non-functional) sensor nodes to explore a deep underground sandstone
oil-reservoir. This field test revealed that in order for the sensor nodes to pass
through the 300 metre sandstone oil-reservoir, the size of sensor nodes cannot
exceed 9 mm as the local dimensions are not larger than that.

The mentioned studies show that a go with the flow sensor approach can yield
valuable insights into yet undiscovered environments and dynamics. They also
show that some applications have clear constraints on e.g. the allowed maximum
size of the used sensor nodes in order to pass through the environment. The
objective of this paper is to see how far we can limit the capabilities of sensor
nodes and how far they can be scaled down while still getting good
reconstruction performance. In the following section (Section 2) we discuss the
implications of scaling down sensor nodes to the millimetre size and operating
them in enclosed and difficult to access environments.

Even though the used constraints in this paper represent a very challenging
application scenario and might seem excessive in light of current applications,
we believe they are valid constraints for future miniaturized nodes [2]. We think
that providing a solution to the swarm reconstruction problem under these
adverse sensing conditions can also be beneficial for current applications and
problems. To summarize our contributions: 1) a novel and robust reconstruction
algorithms is developed that deals with severe sensing conditions and
imperfections, even including non-unique identification of distance measurements;
2) sensor node system design principles are derived from extensive simulations
by sweeping input parameters until the reconstruction algorithm fails to
reconstruct the sensor swarm; 3) different methods on how to assess the
performance of the swarm reconstruction are provided, depending on which

information is favoured from the swarm.

2. The Implications of Application Constraints

This section discusses existing work and shows that the applications which we
target pose specific challenges that have not been addressed earlier in a holistic
manner. Reconstructing the position of nodes in (wireless) sensor and robot
networks has been subject of study for an extensive period of time [3] [4].
Obtaining simultaneously the location of nodes as well as obtaining the map of
the yet-unknown environment, is often referred to as Simultaneous Localization
and Mapping (SLAM) [12]. Our research also falls under this denominator but

has to deal with several distinctive constraints relative to other work. These
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constraints will be discussed in this section and can be summarized as:

1) no data is communicated between nodes (other than needed for distance
measurements), measurements are stored in memory for offline analysis;

2) sparse connectivity in a large swarm;

3) not depending on external communication to e.g. fixed beacons;

4) using solely distance measurements, Ze. no direction information or
additional sensor information, like bearing, odometry or inertia;

5) nodes are not identified uniquely.

Constraints 1, 3, and 4 are hard constraints and depending on the choice of
applications, these either exist or not and make the reconstruction problem
harder. Constraint 2 and 5 are soff constraints and can vary in severity, depending
on e.g. parameter choices that can be tweaked. For example, considering
constraint 2: the connectivity between nodes depends on the transmission
power, the distance between nodes and signal-to-noise ratio at the receiving side.
Considering constraint 5: the identifiability of nodes depends on the number of
identifiers chosen relative to the number of nodes used. Increasing the severity
of these soft constraints makes the reconstruction problem gradually harder.
Therefore, in our study, the parameters influencing connectivity and identifiability
are swept over a large enough range in order to study the consequences of this
on the reconstruction performance and therewith also to find the limits of
current reconstruction algorithms.

Although each separate constraint has been considered earlier; this work is, to
the best of our knowledge, the first to research reconstruction of sensor swarms
when considering all mentioned constraints together and under realistic

conditions.

2.1. Power Consumption

Probably the most significant and overarching constraint of highly miniaturized
sensor nodes is their power limitation. Due to volume and weight constraints in
the small sensor nodes, battery capacity will be extremely limited and this
influences all other design choices related to sensing, computation, and
communication. In fact, we envision levels of miniaturization in which nodes
have just enough energy to perform only a single inter-node distance
measurement.

Furthermore, communication requires relatively large amounts of energy and
is therefore only used to realize the inter-node distance measurements, but for
example not for online distributed processing of the measurements (hence
constraint 1). Instead of distributing the measured data or sending it to a central
sink node, we use an approach in which the measured data is stored locally in
the sensor nodes, and afterwards retrieved and processed centrally when power
consumption is no longer a limitation.

Communication transmission power and the signal to noise ratio of receiving

electronics are limited, reducing the communication range between nodes.
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Therefore, the inter-node connectivity between sensor nodes, by means of
inter-node distance measurements, will be sparse (hence constraint 2) and
dependent on the energy budget.

To the best of our knowledge, there is no other research that aims to perform

swarm reconstruction under such extreme low-power conditions.

2.2. Beacons and Landmarks

A distinction that can be made in SLAM related research is whether or not
beacons are being used, that is, fixed points in space that serve as reference
points where individual nodes can relate to. In our applications, we can not rely
on the presence of beacons, as opposed to e.g. [13] [14] and the earlier
mentioned work in [8] [9]. In our applications the environments are generally
difficult-to-access and block long-range communication signals (hence
constraint 3).

In applications with a static environment, the environment could potentially
be used as a continuum of beacons, or in this case better described as Jandmarks.
Opposed to the research mentioned in e.g. [15] where high-end cameras and/or
laser range-finders are used, measuring clear fixed landmarks is infeasible as
such detection devices have a high power consumption and need continuous
measuring; it is something that doesn’t scale well to miniaturized nodes.
Furthermore, detection of the environment using such sensors as e.g. in [15]
[16] would require clear line-of-sight in a transparent medium, which cannot be
guaranteed in our applications.

Efforts to map node positions and the environments based on acoustic
reflections can be found e.g. in [17] [18]. This, however, requires constraints on
e.g. the node positions or the environment shape (e.g. straight walls), both of
which cannot be guaranteed in our applications.

Given the aforementioned, the nodes are forced to cooperate with each other
in order to obtain information on their positions, this also called cooperative

localization [3].

2.3. Distance Measurements

A common method for cooperative localization is to reconstruct node positions
based on distance measurements between the nodes. Often such methods are
amended with e.g. inertial, bearing, or odometric information from the nodes,
like in e.g. [19] [20]. In our research however, we explicitly rely only on
inter-node distance measurements, as adding such devices or sensors would add
significantly to the size and energy budget (hence constraint 4). For example, an
inertial sensor would need to be active continuously to track the absolute
position and orientation. Furthermore, current miniaturized inertial sensors are
not accurate enough for absolute position determination for longer than e.g. one
second. Alternatively, the absolute orientation of the node could be estimated

using e.g. small and low-budget sensors that measure the Earth magnetic field
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and the Earth gravitational field. But unfortunately, in our applications, no
guarantees can be given on the external fields as the unknown environment can
block or distort these.

Although one can argue that, in the future, advances in sensors will lift some
of the mentioned limitations, we show that with only inter-node distance

measurements, the reconstruction of the sensor swarm is possible.

2.4. Communication and Identification

Nodes with (sub-)centimetre dimensions only fit antennas that effectively
produce EM radiation at frequencies that have a large absorption in the liquid
media. The (liquid) media can have a high salinity and are also not guaranteed
to be clear enough for the use of (visible) light communication. This effectively
prevents EM communication for distances larger than e.g. a centimetre.

Ultrasound transducers at these scales do provide larger communication
ranges within the boundaries of the environments, but yield other challenges for
stable and fast communication between dynamic nodes in enclosed
environments [21]. The information that can be communicated in a unit of time
is therefore very limited, typically in the order of kilobytes per second or less.

Furthermore, the relatively slow speed of sound, in combination with the
relatively small bandwidth, reflective environments and the fact that nodes are
non-static, leads to highly time-varying communication channels [5] [22].
Distance measurements based on round-trip time of flight need to be completed
within just a tiny fraction of a second as otherwise the nodes may have moved
significantly relative to each other, invalidating the measured distance.

The low data rate and the need to perform distance measurements in a short
period of time creates the incentive to reduce the content of the messages used
for distance measurements (Z.e. reducing the number of bits in the message). For
example, in the ranging protocol as studied in [5] [22], at a data rate of 40
kbit/sec, the transmission of every additional bit for the identifiers to indicate
the sender and receiver of the message adds 3 percent to the measurement noise
caused by the movement of the nodes. This effect becomes larger when
considering lower data rates. Furthermore, increasing the message length
increases the probability of overlapping messages due to (time-varying)
multi-path, thereby making it harder to correctly decode the messages.

In applications where many sensor nodes are used, ideally each node has a
unique identifier by which it can unambiguously communicate with other
nodes. However, for the envisioned application cases mentioned in this paper, it
is worthwhile to explore the possibility of reducing the number of identifying
bits as they make up the majority of the ultrasound messages (hence constraint
5). Reducing the number of identifying bits, and thus only having non-unique
identification makes communication ambiguous. The inter-node distance
measurements then also become ambiguous, but can be resolved using the

robust reconstruction algorithm presented in this paper. Non-unique identification
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of distance measurements makes most existing reconstruction efforts not
applicable as they depend on well-defined, non-ambiguous identifications [23]
[24] [25]. Earlier efforts to first resolve these ambiguities before the reconstruction
of node positions can be found in [26], but does not include actual
reconstruction results.

Our reconstruction algorithm is, to the best our knowledge, the first that can
successfully cope with identification ambiguities and with all the other

mentioned hardware constraints.

3. Problem Description

In this section we discuss the specific problem formulation and introduce our
notation. All symbols used in this paper are summarized in Table 1. In this

paper, whenever we use the bar-indicator, e.g. d , it is to stress the true value of

the parameter, to differentiate it from an estimated or measured value, e.g. d .

Table 1. Legend of symbols used throughout the paper.

Symbol Description
N Number of nodes in swarm
Neo Number of communication identifiers in use
N Number of nodes within communication radius
I Communication radius of nodes
g(v.€) Graph with reconstructed nodes indicating positions as vertex V' and distance between nodes as edges &
Unique (hardware) identification number (UID) of nodes 7and j, other letters are also
(] used to indicate other nodes. An additional bar in the indication
stresses these are the true values (opposed to measured or hypothesised)
CID(i) Communication identification number (CID) used by node 7
d Distance between node 7and node . Additional bars in the indication
" stress that these are true values (opposed to measured of hypothesised).
S, Position of node 7
C Consistency function used for associating measured distances from two nodes into a mutual connection
€ Threshold value for maximum allowed distance deviation in consistency condition C
L Set of hypothesised distances between node 7and j
A, Number of additional identity ambiguities
A

D

aeAbeB,ceC
2,0(b)
X,Y,Z

]E Eglab ’

]Erel

E

abs ! loc

14

Number of additional distance ambiguities

Individual nodes (small letter) in a set of nodes (capital) selected
based on some criteria in reconstruction algorithm

Cliques in already reconstructed graph

Recall percentages of nodes that have been reconstructed; Y'and 2
have an additional condition on the accuracy of the reconstruction

Error metrics of a reconstruction indicating the mean absolute squared error of the reconstructed positions
Error metric of a reconstruction indicating the relative error of the reconstructed distances

Different noise parameters of distance measurements, expressed in percentages. Index indicates type of noise.
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As mentioned in the introduction, the reconstruction of the node positions
can be seen as a graph-optimization problem where § :(V,E ), in which the
vertices V are the sensor node positions and the edges £ are the distances
between them. This is also visualized in Figure 2. However, the edges of this
graph can only be based on the measured distances that are noisy representations
of the actual distances. In order to estimate an accurate graph of the nodes’

positions we attempt to reduce the least squares error:
. 2
arg mlny€R3§(||vi_vj"_£i,j) (1)

Solving these kind of problems is often performed using non-linear
optimization methods like e.g. a Levenberg-Marquardt algorithm or a
Gauss-Newton algorithm. As with most non-linear optimization problems the
key is to provide a proper initial estimate, in this case an initial estimate of the
node positions. This initial estimate is then further refined using non-linear
optimization. Obtaining the initial estimate for the node positions is performed
by our novel robust reconstruction algorithm that is discussed in Section 4.

This section will first discuss the method on how to measure distances
between the nodes (e the edges &) and the difficulties herein. In Section 3.1
we discuss how the distance measurements are performed. Section 3.2 discusses
the different types of measurement noise to be expected in these measurements
and the issues related to identification are discussed in Section 3.3. The
consequences of these on the reconstruction algorithm are discussed in Section
3.4.

3.1. Distance Measurement Protocol

Following the operational procedure as depicted in Figure 1, once the nodes are
well distributed within the environment of interest, the nodes perform a single
distance measurement to neighbouring nodes. This distribution can be achieved
by e.g. gradually inserting new nodes into the environment until a steady
outflow of nodes is reached. How the actual measurements are performed is
defined by the ranging protocol that is used. Many of these protocols already
exist and the one that is designed specifically for our applications is described in
(5] [22].

Omnidirectional emission and reception is considered (as opposed to
directional), because there is no a priori or online knowledge of the positions of
neighbouring nodes. Whether or not messages are received by neighbouring
nodes is dependent on the transmitted power and, among other factors, the
received signal-to-noise ratio.

For convenience, but without loss of generality, in this paper we assume that
distances can and are measured between all neighbouring nodes that are in
line-of-sight and are within a fixed and known communication radius, r ., .
Details of these protocols, as e.g. discussed in [22], are outside the scope of

this paper, however, it is important to know that the messages that are
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transmitted and received between the nodes for measuring the distance between
them need to contain identifiers. The identifiers are used to identify the sender
of the message, and depending on the protocol also to verify whether the
message is actually addressed to the receiving nodes. These identifiers make up
the largest part (in bits) of the message.

The result of the ranging protocol is a set of measurements where every node 7
measures the distance d;; to every neighbouring node j and node ; having
measured the distance d;; to node i This is visualized in Figure 3(a). The

measurements are individually stored in the nodes’ memory.

3.2. Distance Uncertainty

The measured distance between nodes will be affected by different imperfections
in the system. As the dynamics of the nodes and the environment they are in are
unknown, a range of possible imperfections should be accounted for as we do
not know the effect on the reconstruction result. To simulate the measured
distances, in this paper we consider a single snapshot of the actual distances and
introduce all types of measurement noise to account for the existing imperfections.
The types of noise in the distance measurements that we are modelling can be
divided in inlier-type noise and outlier-type noise. The inlier-type measurement
noise being:
e additive Gaussian noise N, ; to account for e.g. offset in ranging timer or
variable delay in electronics, and also to account for the errors due to
movement of the nodes while performing the ranging measurements,

e multiplicative Gaussian noise N ; to account for e.g. different clock

I j (i)
(a) (b)

Figure 3. Mutual connections from distance measurements
(indicated with arrows) with unique and non-unique
identification. Distance measurements d,; as measured

by node 7and distance measurement d,;; as measured by

node ;j using unique identification can unambiguously be

associated with each other. Distance measurements d, cin(i)

as measured by node 7 and distance measurement d, ..,

as measured by node j using non-unique identification can
not be unambiguously associated with each other as more
nodes use the same CID.
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frequencies or inhomogeneous medium,
And the outlier-type measurement noise being:
¢ identification noise; to account for erroneous detection of identifiers,
e outlier noise; to account for burst-like/spiky/intermittent measurement
noise.
The environment also gives rise to additional outlier-types of noise that can
influence the reconstruction:
e obstruction of signal paths,
o reflection of signals,
e loss of nodes or inability to retrieve them.

How exactly these are simulated is described later, in Section 5.2.

3.3. Identification Uncertainty

Due to the constraints described in Section 2, the identifiers used in the ranging
messages are reduced to non-unique identifiers, similar to the research in [5].
Each of the N nodes has a unique (hardware) identification number, UID, and is
assigned a non-unique communication identifier, cid, that is used in the ranging
message to identify the sender and addressee of the message. The number of
available cids is indicated with n., and can be set as desired, n;, <N . The
available cids are distributed uniformly among the nodes.

Now, instead of every node 7 measuring distance di, j to node ;j and vice
versa, node 7is measuring distance Ay toa node that has a communication
identifier CID(j). And vice versa, node ;j measures distance d; i) - This is
illustrated in Figure 3(b). The mapping from UID to CID is known and well
defined, however, the mapping from CID to UID is ambiguous as more nodes

share the same cid.

3.4. Mutual Connections

When the nodes are retrieved after the experiment and their data read out,
offline analysis can be performed. Normally, with unique identification, mutual
connections can be established by associating measurements d,; and d;; with
each other (Figure 3(a)). These mutual connections can be used as consistency
check of the individual measurements and quantify the uncertainty of the
measured distance. When the two individual measurements differ less than a
specific threshold, the measurements can be considered in/iers and a mutual
agreed-upon distance can be established, otherwise they are considered outliers
and cannot be used to establish a mutual connection.

However, in the case of non-unique identification, measurement di cio(i)
(Figure 3(b)) can only be used correctly when the measured non-unique
identifier CID(j) is associated with node j. Obtaining the mutual connection
where di o)) and d; cio)
respectively (similar to Figure 3(a)), is not trivial as the mapping from CID to

are associated with the correct nodes ; and j

UID is ambiguous.
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Mutual connections, where di,CID(j) is associated with dijID(i)

by applying a consistency check on each of the possible node pairs that have cids

, are obtained

consistent with the measurements. A mutual connection is hypothesised when
two distance measurements agree on two grounds: 1) the measured cids agree
with the CID of the other, and; 2) the corresponding measured distance is
approximately similar to the other (ie inlier measurement). The exact
implementation is described in Section 4.1.

This consistency check is affected by the different types of measurement noise
in the individual measurements, specifically the outlier-type of noise that

prevent finding the correct mutual connections. Figure 4 illustrates how the

original

(@) 5 nodes
20 measurements
10 mutual connections

10% outliers 20% obstruction

(c)
20 measurements 16 measurements
8 mutual connections 8 mutual connections
20% loss 20% less neighbours

(d) ©) 5 nodes
16 measurements 16 measurements
6 mutual connections 8 mutual connections

Figure 4. An example of (a) fully connected graph with five nodes; (b)
outlier noise for two measurements; (c) obstruction between two nodes; (d)
loss of one nodes; and (e) reduction of communication radius.
Identification noise can be seen as outlier noise but on identification instead
of distance. Explanation: Nodes are indicated as dark circles; a line indicates
a distance measurement between two nodes. A too long/short line indicates
a measurement with outlier noise. A dashed line indicates the distance
measurement has never existed (obstruction) or this data is not retrieved
(loss).
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different types of outlier-type noise affect finding correct mutual connections.
Figure 4(a) shows a fully connected reference graph in which all mutual
connections are present and correct. Outlier noise in the distance measurements,
i,CID(j) and dj,CID(i)
that cannot be associated with each other as the difference in measured distance

as shown in Figure 4(b), leads to a set of d measurements
is larger than the inlier threshold. Identification noise can be seen in a similar
way with the difference being that instead of erroneously measured distances the
identifier CID is decoded erroneously. Obstruction of signal paths (Figure 4(c))
and the inability to retrieve nodes (Figure 4(d)) also prevents establishing
mutual connections. From a reconstruction perspective, not being able to
establish mutual connections due to the presence of noise can to some extend be
compared to reducing the number of neighbouring nodes (reducing the

communication radius), which is visualized in Figure 4(e).

4. Swarm Reconstruction Algorithm

In this section we will describe the novel reconstruction algorithm. It reconstructs
node positions based on inter-node distances with significant measurement
imperfections and the ambiguities introduced by using non-unique identifiers.

The reconstruction algorithm can be summarized as follows:

1) Hypothesise mutual connections based on the consistency (distance and
identity) between all distance measurements, obtained from all retrieved nodes
(Section 4.1);

2) Find initial four nodes to fix coordinate reference system (Section 4.2);

3) Robustly add additional nodes to the graph using a guided-RANSAC
algorithm and general lateration, exploiting the geometric consistency between
true neighbouring nodes (Section 4.3);

4) Perform non-linear optimization to reduce build-up of errors from
previous step; go back to step 3 (Section 4.4);

5) Loop closing, if needed (Section 4.5).

An overview of the algorithmic steps of the reconstruction method is provided

in Appendix A.

4.1. Identity and Consistency Check

Before the reconstruction process, mutual connections should be established
between nodes. The decoded non-unique communication identifier, cid, from
every received ranging message should be associated with a unique (hardware)
identification number, UID. Initially, this can be approached using a combinatoric
method in which all possible nodes are considered that use the respective cid.
The range of options can be narrowed down, as the distance measurement
d

be similar to the reverse distance measurement dj

ooy of node 7to node j, when performed correctly and without noise, should
i i)

cigi of node jto node Z This

means that searching the measured data for the consistency where d, . is

similar to d, should give most of the times an unambiguous mutual

.CID(i)
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correct connection, since it is unlikely that another set of nodes with similar CID
pair have the same matching distance.

However, the distance measurements are imperfect and noisy. Consequently,
the distance measurements and the “reverse” distance measurement will not be
equal. Therefore, potential mutual connections are hypothesised when the
measured distances lie within a specific threshold value ¢ of each other and
the measured identifiers are consistent with each others cid. This condition,

denoted with d,, =d_,, then becomes:

da,b_dc,d Ser
d,, =d., when {CID(a)=CID(d) (2)
CID(b)zClD(C)

For all pairs that are considered consistent with each other, ie. d,, =d_,, a
mutual connection is hypothesised and the average distance is taken as mutually
agreed upon distance between them. All other pairs are not considered a mutual

connection. The final consistency function C is expressed as:

da,b + dc,d

C(dayb,dcvd ) _ When da,h = dc,d

(3)
%] otherwise

where & indicates that no mutual connection is considered, ie. an empty
entry.

Threshold value ¢ is the maximum allowed difference in distance
measurement for which two measurements are considered inliers. This
threshold should be related to the noise. It can e.g. be obtained using trial and
error if the error model is unknown. Note that due to the measurement noise,
the threshold, and the non-unique identification not all pairs that are considered
consistent are correct, they are only hypothesised as being correct connections.

The obtained mutual connections between node i and node j and their
hypothesised distance is not unambiguous. As illustrated in Figure 5, the
hypothesised mutual connections h;; for measurement d; ., can consist of
three types of contributions:

c(drydir) @
h;=1C(dr;.d,q)  (b) (4)
C(dry.dj,)  (€)
1) the measurement between the real nodes 1 and J;

2) identity ambiguity: a mutual connection to a node p which is believed to be
at similar distance as node 7 but not necessarily within communication radius
of 1 (see Figure 5);

3) distance ambiguity: a mutual connection with the correct node j but
with a distance belonging to the measured distance to another node 4 within its

communication radius (see Figure 5).
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node with CID 1
node with CID 2 q

(measured) distances
---- false connection

| OO

Figure 5. Nodes with UID ={i, j,k,m, p,q} using only two distinct cids

(indicated by O and [J) cause ambiguities in the consistency check.
Identity ambiguity arises due to similar distance between pairs with similar
CID in the swarm (Equation (2)). Distance ambiguities arise due to a
plurality of nodes with similar cids within communication radius.

The identity ambiguities are based on the statistical likelihood that somewhere
in the swarm, a node pair with similar cids and distance is present such that the
measurement pair obeys Equation (2). Assuming a uniform spatial distribution
of the nodes, the average number of identity ambiguities in h;; scales with
A, ceng N / né, - Equally, the distance ambiguities are based on the
statistical likelihood that neighbouring nodes give rise to confusion. The average
number of distance ambiguities per dr cin(j) then scales with
Ap OCErnczomm'\l/nélD .

Both type of ambiguities, A, and A, increase with an increasing number

of neighbouring nodes n and a lower N, leading to a more challenging

comm
task deciding which are correct mutual connections and which are false
connections. These ambiguities are resolved in our RANSAC graph-growing

algorithm as detailed in Section 4.3.

4.2. Initial Seed Selection

In this work we solve the reconstruction problem by incrementally growing the
graph using a robust RANSAC-based method based on general lateration
principles. Given an initial graph G, new nodes can be added as illustrated in
Figure 2 and detailed in [6]. In an ideal case (without noise), every candidate
node, ¢, of which the distances to four non-coplanar nodes with known positions
S,,S,,5;,S, are known, can be added to the graph with as position the
intersection of the spheres with radii d,.d,;,d,;,d,, and centers at
$,,5,,55,5,- Here d_ . denotes the true distance from node n={1,2,34} to
node c

Since the graph growing is performed in R® and the distance measurements

are performed in R and without external beacons acting as fixed reference
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points in space, first a coordinate reference system has to be defined. The initial
four node positions are chosen such that they define the coordinate system,
therewith resolving the general reflection and rotation ambiguity. Their
positions, §,,S,,S;,S, , define the coordinate system as follows, and also
illustrated in Figure 2: 516{0,0,0} , SZE{R+,O,0} , Sse{R,R+,O} and
S, € {R,R,R+} . These nodes are selected based on their connectivity and the
stability of their geometric configuration which is obtained by general lateration
techniques.

Since h;; contains ambiguities, the initial seed selection is conditional until
the graph growing has successfully added several nodes to the graph G . If this is

not possible, a new initial seed is selected and the process is repeated.

4.3. RANSAC Graph Growing

After the initial seed is chosen, additional nodes can be added to the graph when
the nodes have at least four connections to already reconstructed nodes. The set
of candidate nodes that have at least four connections to already reconstructed
nodes is denoted as C . Ideally, C only consists of nodes that are true
neighbouring nodes, but due to the ambiguities in the hypothesised connections
h ;
candidate node ceC has connections to its true neighbouring nodes in V),

this is not the case. Figure 6 illustrates a simplified 2-D situation in which a

but also false connections to nodes somewhere else in the graph due to identity
ambiguities. Whether the connections are true or false is not known at this

point.

—_——

\ N .
\\communlcatlon radius /
\ /
\\ /
@ reconstructed node > 2wvertexclique
Q reconstructed, connected to candidate > 5-vertexclique
’\:‘: candidate node © 6-vertex clique

— correct connection
- - - false connection

Figure 6. RANSAC graph growing algorithm uses an inlier-outlier voting system to filter
out outlier distance measurements and proposes a position for candidate nodes to add to
the graph. Using cliques of nodes in the graph that are within twice the communication
radius helps in reducing the probability that nodes are positioned based on false
connections.
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A Random Sampling Consensus (RANSAC) method is used to attempt to
correctly position the candidate nodes. RANSAC is a general robust estimation
technique, for more details we refer to [27]. RANSAC attempts to fit a model on
data points that contain both inliers (points that satisfy the model) and outliers
(points that do not satisfy the model). It does this by randomly selecting a small
set of data points, estimating a model based on this small set, and counting the
number of other data points that agree with this model. This process is repeated
until a model is found that has maximum or sufficient support in the whole set
of data points. We developed a specific RANSAC algorithm to solve the task of
graph-growing under severe outlier noise and identification ambiguity. An
overview of the RANSAC algorithm is provided in Appendix B.

When a candidate node c¢ is considered, all nodes that are already
reconstructed in the graph and that are connected with this ¢ are selected. This
set of nodes is denoted with A= {a raeV,h, # @} . A subset of three of these
nodes is selected, A, = {ap € A} , to propose—using general lateration—a
position for ¢ up to a reflection ambiguity (three nodes are always coplanar).
However, no guarantees can be given whether the entries in h, . are correct
connections and the proposed positions do not need to be viable or close to the
true position. Therefore, each of the other connected nodes
A = {av (AV U Ap) = A,(av ﬂap) = @} are used to vote for the proposed
position. Consensus is reached when the majority of the voting nodes, including
the three proposing nodes, have at least a 50% majority. The reflection
ambiguity is resolved by choosing which of the two positions received more
supporting votes. When consensus is reached, the number of supporting votes is
called the RANSAC-score for the specific proposal.

This step in the RANSAC algorithm is repeated with each time a different set
of three proposers a,, until all possibilities are exhausted or until a proposal
received a specific threshold in RANSAC-score. In the latter case it is then
considered sufficiently supported and is added to the graph. When no
“sufficiently supported” condition is reached, the RANSAC procedure is
repeated for a next candidate node until all candidates are considered or a
sufficiently supported condition is found for a specific candidate. The candidate
with the highest RANSAC-score is added to the graph in V with edges (&)
only to the supporting nodes and corresponding h, . entry.

The “sufficiently supported” condition for the RANSAC can be based on the
expected percentage of outlier measurements or can be chosen heuristically by

trial-and-error, as is done in this work.

Guiding RANSAC

The number of false connections from the candidate nodes to the already
reconstructed nodes, grows on average linearly with the number of nodes
already in the graph, due to A, as explained in Section 4.1. Consequently,
when a candidate node is considered that does not have enough true

neighbouring nodes in the graph yet but does have a large number of false
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connections to nodes already in the graph, this candidate node might receive a
large RANSAC-score but based on only false connections. The true neighbouring
nodes have in that case not enough voting power over the number of false
neighbouring nodes.

To reduce the probability of this to happen, the sampling procedure of the
candidate nodes is guided using a sorting order of candidate nodes before the
RANSAC algorithm is performed on them. The sorting is based on the
likelihood that candidate nodes have enough true neighbouring nodes already in
the graph. As such, candidate nodes that are more prone to be reconstructed
based on false connections, are considered later. This gives the probability that
more of its true neighbouring nodes will be added to the graph first. The
algorithm is provided in Appendix C and described next.

For each candidate node {b:beC}, a list is made of connected nodes that
have already been reconstructed in the graph {a raeV,h,, # @} . A new graph
g =(V(a),€ ) is made with nodes a as vertices. These vertices are connected
with edges & when their positions are less than twice the communication
radius, 2r,. ., apart. In this new graph, maximal cliques are listed as Q(b),
and indicate the groups of nodes that are potentially within the communication
radius of a proposed candidate node position. This means that on geometrical
reasons, all of these nodes can potentially agree on candidate node position. In
other words, nodes from outside this clique could never agree with all nodes
within the clique on a candidate node position. The example in Figure 6 shows
these cliques in coloured oval areas. The number of nodes in these cliques are
registered and are used as sorting order in which RANSAC is performed. Nodes
with larger sized cliques in Q(b) are more likely to have more connections
with true neighbouring nodes in the graph.

This sorting has two effects on the reconstruction, it guides the RANSAC
procedure and has as a result that: 1) it increases the probability that a
“sufficiently supported” candidate is found quickly, and 2) it increases the
probabilitys that from all “sufficiently supported” candidates, the best one is
chosen for addition to the graph.

Guiding the RANSAC procedure with this sorting requires additional
computational power (calculating the cliques), relative to unguided RANSAC.
This increase in required computational power is compensated for by the
quicker finding of a “sufficiently supported” candidate. The reconstruction can
roughly take between 0.1 - 10 seconds per node, depending mainly on the

connectivity and ambiguities.

4.4. Robust Non-Linear Refinement

The stepwise addition of new nodes to the graph introduces build-up of errors.
These errors in positions can prevent other nodes from being added. In order to
reduce this error build-up, a global non-linear optimizer algorithm is executed

as described in [6] to minimize the cost function Equation (1).
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For this we use the efficient general graph optimization software package g’o
[28]. It uses sparse methods to solve the normal equations at the core of the
non-linear optimization techniques like Levenberg-Marquardt or a Gauss-Newton.
It can easily solve graph problems consisting of thousands of nodes and edges.

In our algorithm, after every m newly added nodes, or failure to add a new
node this non-linear optimization is performed. There is a clear trade-off
between m and the processing time required for the reconstruction algorithm. In
our work, m is chosen arbitrarily to 10. In future work, this can e.g. be adjusted

dynamically based on uncertainty of previously added nodes.

4.5. Loop Closing

The algorithm described above only considers edges between nodes in G when
the specific connections supported the winning proposal in the RANSAC voting.
As can later be seen in the results section, Section 5, this is effective against any
type of outlier noise. But when considering loops in the environment, these
loops might not be closed due to the previously mentioned error build-up, as
schematically illustrated in Figure 7.

Nodes that are supposed to connect both ends of the loop, will only be placed

at one of both ends, depending on which has the largest number of supporters.

reconstruction reconstruction
ground truth without loop closing with loop closing
P - i 3 P -
. o ..':.' _ ".. . .:.." ....'
0 & o
i
o i ®
)1
o) [
o

¢
g
/
/
#
s
/
/ .
/
/
K 2

."/ '/"‘ motes i, j1, jz
placed here

’j , consistent connections
2 and relative positions

Figure 7. A 2-D example of an environment with a loop (ground truth). Due to error
build-up in the RANSAC graph growing, loops are not closed (reconstruction withouth
loop closing). Loop closing candidates can be detected by comparing local geometric
consistency of excluded connections with reconstructed positions. After detection, the
loop can be closed (reconstruction with loop closing).
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Placement on the other end of the loop could also have yielded successful
reconstruction, however, the node will not automatically be added to both ends
to close the loop. An additional step should be performed in order to detect such
loops and optimize the whole graph such that the loop is closed. This section
describes the method how these loops are detected and closed.

Conceptually, the detection of loops is performed by searching for a set of
nodes that could have been reconstructed in two different, distant, positions in
the graph. This starts by looking at all hypothesised connections between nodes
that are not used in the reconstruction: ie. all connections h, ; that did not
support a winning RANSAC proposal, we call these excluded connections. The
connections that did get included are called included connections.

Let node 7have excluded connections to nodes k! and included connections
to reconstructed neighbouring nodes j; , as illustrated in Figure 7. In order to
successfully detect and close a loop, sufficient connectivity should exist between
nodes ji and k! .

After the reconstruction has stopped or halted, for every node 7it is checked
how many connections are excluded from the reconstruction, and how many of
the neighbouring nodes ji also have excluded connections to nodes k., .
When several neighbouring nodes agree that nodes are excluded, the node is
said to be commonly excluded. Nodes k. that are commonly excluded by
nodes j, are likely to be on an other end of a loop than nodes j; .

Final determination of the loop closing can be performed by redoing the
RANSAC graph-growing on this set of connections by forcing the nodes to be
added to the graph on the other side of the loop. When this yields a successful
reconstruction, and the local relative positions of the considered nodes is
equivalent to the local relative positions on the original side of the loop; then the
loop can be closed. The loop closing itself can be performed by including the
specific loop-closing edges that were initially excluded to the original graph and

running the non-linear graph optimizer on the newly obtained graph.

5. Numerical Simulations

In this section we will use numerical simulations to study the performance of the
reconstruction algorithm, as well as how the different soft constraints
(connectivity and identification ambiguity) influence this performance. The
simulations are performed using two vastly different environment geometries,
nodes are given a position in a pipeline environment and in a spherical
environment (Section 5.1). The distance measurements are generated based on
the distances between these positions and a variety of noise types is added to
account for different measurement imperfections (Section 5.2). These different
noise types can influence the distance measurements such that the number of
neighbouring nodes to which inlier measurements are available is reduced
(Section 5.3). Assessing the performance of the reconstruction algorithm can be

performed in different ways, depending on which qualities are favoured of the
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reconstruction. Therefore, several performance metrics are introduced to
address these different qualities (Section 5.4). All parameters related to the soft
constraints are swept over a broad range until the reconstruction algorithm will
fail to reconstruct the node positions (Section 5.5). Knowing the failure point of
our reconstruction algorithm and understanding the trade-offs between the
underlying constraints helps in guiding the hardware design for the
development of future miniaturized nodes. The findings are summed up by
plotting the performance against the calculated effective number of neighbouring
nodes to see the most important trade-off (Section 5.6). In the last part,
examples are given to show the loop closing detection and actual closing in

environments that require this (Section 5.7).

5.1. Environment Model

The envisioned node swarms can be deployed in a variety of environments. In
this paper we will work with two types of environments as schematically
illustrated in Figure 8. One resembles in abstract terms a mixing tank as the
environmental dimensions are approximately the same in all directions. For
convenience, the tank-like environment is chosen to be a bounded spherical
environment. The second environment is a long pipeline, where the diameter of
the pipeline is still large enough such that nodes can be positioned all around
one another (as opposed to in one line along the pipe axis). The smooth pipeline
has a fixed diameter of 8 cm and 400 nodes are placed in a section of 4 m
pipe-length. The pipeline environment will be considered in both a loop and a
loop-less fashion.

In the spherical environment, 400 nodes are given a random position within
the boundary based on a uniform probability density function. The positions in
the pipeline environment are chosen such that the nodes are spread out
uniformly over the axis of the pipeline and the off-axis positions are chosen
randomly based on a uniform probability density function over the cross-section.
A total of 50 different spherical and 50 different pipeline environments are

generated for the simulations. Examples can be seen in Figure 9.

Figure 8. A 2-D interpretation of the 3-D spherical environment and 3-D pipeline
environment. The lines between the nodes indicate connectivity for two different nodes.
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Figure 9. The ground truth positions of 400 nodes in several different experiments of randomly generated environments that are

used for the simulations. Five pipeline environments, and one tank-like (spherical) environment.

In both environments, the communication radius r, . of the nodes is

chosen such that each node has on average n neighbouring nodes. This

comm

parameter n is one of the parameters that will be swept. The nodes

comm
communication radius r, ., in which ranging measurements are possible, is
for all nodes within the swarm the same and ranges throughout the experiments

from 10cm<r <15cm (corresponding to 16<n <28).

comm — comm —

5.2. Distance Measurement Generation

Distance measurements are generated based on the generated node positions.
The distances between all nodes 7and jas measured by nodes 7 are indicated by
dr
indicating true values).

and are modelled by the true distances between the nodes Jm (the bar

Additive and multiplicative Gaussian are added to Jm according to:

+dp N+ N, (5)

where N, and N, being perturbations from the zero-mean Gaussian
distributions N (0,0';) and NV (0,0‘: ) respectively.

Furthermore, a variety of operations are executed on the measurements to
account for different outlier noise types, each with their own statistical

likelihood, v, for this type of noise to happen to the measurement.

dr,j = Fidentification (-7:out|ier (}—obstruction (.7:,055 (dT,T )))) (6)

with
Frentication (Gap ) = A When identification noise (probability vigiaion )
Fotier (dap ) =4 when outlier noise ( probability v, )
Frpstruction (da,b) = when obstruction (probability v ucion )
Foss (dap ) =@ when node ais lost (probability v;,,, )

and all operations return F (da,b ) =d,, when the specific types of noise do not
occur. Identification and outlier noise occur randomly to each measurement,
independently of each other. Obstruction and loss results in non-existing

measurements, indicated with . Obstruction happens to both d;; and dj;
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simultaneously; and loss happens to individual nodes, independently of each
other.

Identification noise results in an erroneously decoded identifier, 7.e. node ;is
measured as being node & Outlier noise I/ is chosen to be randomly drawn
from a uniform distribution in the range (0,1 ].

Additionally, signal multipath can result in additional measurements of
specific node pairs: besides the distance based on the direct signal path, also
distances based on reflected, longer, signal paths. In order to account for this we

add an additional distance measurement d;; to the measurement dataset:
d7 =di+W 7)

with W a perturbation drawn from a uniform distribution in the range
(0, Fomm ) - The probability of this reflection happening is defined as V,geion -
For this reflection to be measured by node j this distance should fall within the
communication radius r,,, . A similar entry dj; is added to account for the
inverse measurement. Any reflection d;; will also be subject to other discussed
noise types.

This elaborate process generates realistic distance measurements and is

significantly more extensive than that of previous research [6] [26] [29].

5.3. Effective Connectivity

The discussed noise not only affects the accuracy of the distance measurements
but also determines whether correct mutual connections can be estimated
(Section 3.4). Due to noise, the effective number of neighbouring nodes to which
correct distance measurements are made is therefore lower than the number of
neighbouring nodes n, . thatare within communication radius.

The effective connectivity;, EC, between nodes is defined by the number of
neighbouring nodes to which inlier measurements (and thus correct mutual
connections) are available for the reconstruction algorithm. An estimation of the
effective number of neighbouring nodes can be made based on the theoretical
likelihood that inlier measurements can be established in the presence of the

mentioned outlier noise types:
EC= r]comm (1_ Voutlier )2 (l_ Vid )2 (1 “Vioss )(l_ Vobstruction ) (8)

with v indicating the probability that the specific outlier-type of noise are
present in the individual measurements as defined in Section 5.2. The terms for
outlier and identification noise are squared as these are effects happening to d, ;
and d;; independently from each other but both influence the ability to
establish a correct bidirectional measurement.

The reconstruction algorithm is developed to be able to robustly filter out
different noise types by relying on the geometric consistency between true
neighbouring nodes and their measured distances to each other. The more inlier
measurements that are available, the more robust the algorithm is. The effective

connectivity EC is a predictor of the number of inlier measurements and
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therefore can be used as predictor of reconstruction performance. The usage of

EC as such a predictor is verified in Section 5.6.

5.4. Reconstruction Performance Analysis

In our applications, or more in general for swarm operations like these, it is not
established what is the best method to assess the performance of the reconstruction
algorithm, Ze to assess the quality of the reconstructed swarm. It is highly
dependent on what information is favoured from such a swarm. Conventional
metrics might not be suitable as the goal of the applications might be different.
When exploring a yet unknown and difficult-to-access environment, initially
one might want to know the overall structure of the environment: e.g. a rough
estimation of the local geometry and the overall shape of the total environment.
Later, e.g. when also adding additional sensor information, one might be more
interested in fine-grained local geometry where the absolute error over the entire
swarm is less relevant. We therefore present different performance metrics that
serve different goals.

5.4.1. Absolute Error

The absolute error is the mean squared absolute error of all reconstructed node
positions relative to their ground truth positions. It is calculated as
By = 0 [§ —§i||2 / N, the sum over all Nnodes where § is the reconstructed
position of the node and § its ground truth position. In order to compare the
ground truth positions with the reconstructed positions, a linear fit between the
3-D positions of the initial four seed nodes and their ground truth positions is
performed to resolve the general rotation and reflection ambiguity.

The mean squared absolute error is a commonly used performance metric in
reconstruction studies. A disadvantage of this metric is that when a
reconstructed swarm exhibits error build-up, the absolute error between one
side of the swarm and the other can be large, while the local errors can actually
be small. In swarm reconstruction studies like this, this metric should therefore

not be used as the only metric to assess reconstruction performance.

5.4.2. Relative Error
The relative error is the mean squared relative error of the reconstructed
distances between nodes, relative to the ground truth distances. It is calculated as
E. =Z.M,Han i —Jiy j“z / M , the sum over all M reconstructed distances, where
d is the reconstructed distance and d the ground truth distance.

Unlike E

the reconstruction performance only on a local and relative scale.

as» the metric [ is not affected by build-up of errors. It assesses

5.4.3. Global Error
The global error E

of a rigid transform (transformation and rotation) of the entire reconstructed

gop 1S defined similar as [, , but includes the performing

swarm such that E, . is minimized.

This metric illustrates the reconstruction performance of the swarm better
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than B, as it is not based on a specific chosen seed from which everything is

built on. However, it is still sensitive to error build-up.

5.4.4. Local Error

The local error E,, is defined as mean squared absolute error, but only after

loc
performing a rigid transform of all subsections of 20 connected nodes with their
ground truth positions.

This heuristically chosen performance metric considers only the local errors,
but other than E,, it does focus on the (absolute) reconstructed positions of

the nodes rather than the (relative) distances between them.

5.4.5. Recall

The recall, X, is the percentage of nodes reconstructed by the reconstruction
algorithm. As this does not take into account whether or not these nodes are
reconstructed correctly, we introduce the adjusted recall Y and Z . These are
the percentages of nodes that are reconstructed within a specified error
condition that is heuristically chosen. For Y, this condition is when at least
80% of the node’s reconstructed distances (or edges in G ) have a relative error
<10%; or when more than 50% of the nodes reconstructed distances have a
relative error of <1%. The adjusted recall Z is similar to Y, but includes the
condition that the neighbouring nodes to which the relative error suffices this
condition, should also fall in the category of Y . Note that this categorization of
recall into X, Y and Z is based on a heuristic, subjective interpretation of
the reconstruction result.

Examples of reconstructions are shown in Figure 10 and the corresponding
performance metrics are listed in Table 2. The distribution of the relative errors
of the reconstructed distances is indicated with a boxplot on the right of each
reconstruction. Only Figure 10(d) and Figure 10(a) show reconstructions with
avery low E, <1l.4e-4m* and visually seem like a perfect reconstruction. All
others seem to exhibit their own erroneous characteristics, but non of them are
=4.7e—4m?

with the same order of magnitude as E,, in Figure 10(d). The reconstruction

completely wrong. Figure 10(e) has a fairly high E, but B,
only seems to suffer slight error build-up that leads to large absolute errors at the
pipe end but for the rest has an accurate reconstruction. For the majority of the
swarm in Figure 10(f), the positions are accurately reconstructed. Only at the
ends of the pipe the reconstruction algorithm seems to have created large errors.
In Figure 10(h) and Figure 10(g) the reconstructions also seems correct on the

local scale (e.g. seen in the relative low [, ) but exhibits some local errors that

loc
cause the reconstructed graph to deviate from the original axis of the pipeline.
These differences illustrate the importance of having different error metrics as
the assessment should happen based on which information is favoured from the
swarm. As an extreme, even in Figure 10(i) the diameter of the pipe can still be
estimated from the reconstruction while the shape of the swarm is very

inaccurate.
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Figure 10. Reconstructions of node swarms in a spherical environment (a)-(c) and in a pipeline environment (d)-(i) with different
parameter sets. Blue circles are the ground truth positions of the nodes and red crosses the reconstructed positions. The recall
E. By E

s Brats By By, are assess the performance of the reconstruction are listed in Table 2.

metrics X,Y,Z and the error metrics E

Deciding whether a reconstruction gives satisfactory results or not is therefore
not trivial and depends on the application goals. The adjusted recall parameters
are an attempt to quantify these goals. In this paper, on the basis of subjectively
interpreting how well the shape of the swarms in Figure 10 are reconstructed,
recall parameter Y can be seen as a reasonable metric to assess the
performance of the reconstructions. We can define a satisfactory reconstruction
to be one with e.g. Y >80%.
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Table 2. Performance metrics of reconstructions shown in Figure 10.

X(%) Y(%) Z(%) Bu(m) B, Eu(m) B (m)
Figure 10(a) 97 97 97 5x10°  3x10° 3x10° 5x107°
Figure 10(b) 95 93 93 1x107? 2x107° 1x107? 2x107
Figure 10(c) 88 64 0 9x10*  6x107° 5x10™ 7x107
Figure 10(d) 100 100 100 1x10™ 2x10° 5x10° 4x107
Figure 10(e) 99 99 99 2x107  1x10* 5x10™* 4x107
Figure 10(f) 99 94 94 6x10° 5x10° 4x10° 2x10™
Figure 10(g) 99 59 0 2x10?  1x107? 2x107? 6x10™
Figure 10(h) 100 20 0 3x10"  5x10° 2x10* 1x10°°
Figure 10(i) 99 0 0 1x10°° 3x10™ 2x10™* 5x10°

5.5. Parameter Sweeps and Breaking Points

In this section we study the performance of the reconstruction algorithm while
sweeping the parameters related to the soft constraints. These parameters are the
ones involved with measurement noise as described in Section 3.2, the number
Ngp ©of non-unique identifiers cid, and the number of neighbouring nodes
within communication radius n,, . In order to change the number of

neighbouring nodes we actually change the sensing radius r, such that on

average, nodes have n neighbouring nodes.

comm
For each set of parameters, 50 different experiments are performed, each with
randomly generated node positions (but following the environment geometry
constraints as defined in Section 5.1). All experiments are performed with a total
number of N =400 nodes. For similar work with a smaller and larger number
of nodes, the reader is referred to our earlier work [6] and [7].
The Gaussian noise componentsin d;; are together summarized as v, a0 >

as standard deviation of (di—']f - Jm). This value is expressed as percentage of a

fixed communication radius*

(9)

Vgaussian -

=20]

comm [ ncomm

Figure 11(a) shows for a spherical environment the recall (X,Y,Z ) and the
E
parameters. The median values of these metrics of all 50 experiments is

different error metrics E__,E_,E

as+ et Bgiop while sweeping the input

loc
visualized. It can clearly be seen that when increasing the measurement noise
(Gaussian, outlier, identification, obstruction and loss), the recall drops and the
error metrics increase.

Figure 11(b) shows the performance metrics using similar input parameters,
but in a pipeline environment. It can be seen that the recall metrics in this case

are much higher than in the spherical environment. This is due to a different

*The average communication radius when n_=20.
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distribution of connectivity among the nodes, as explained next in Section 5.6.

Furthermore, the error metrics in the pipeline environment show significantly
more differences among them than in the spherical case. The local error is
orders of magnitude lower than for example the absolute and global error. The
environment stretches across larger distances and has smaller local dimensions
compared to the spherical case; errors build up easier and cause a larger absolute
error, even in cases where the local geometry is reconstructed correctly. This can
clearly be seen in e.g. Figure 10(e) and Figure 10(h).

The observed dip in recall in the spherical environment in Figure 11(a) when
reducing the number of identifiers to n., =10 is mainly due to a self-imposed
time constraint in the reconstruction algorithm (when average time per
reconstructed node exceeds 10 seconds). The ambiguities in this dataset are

around A, =200% . Reducing the number of identifiers further can still yield

total
successful reconstruction but drastically increases the number of ambiguities
and therewith the time required to calculate cliques as described in Section 4.

The lines in Figure 11(a) and Figure 11(b) only show the trend of the
parameter sweep and due to the nature of the reconstruction process show
statistical quirks. The standard deviation between all 50 experiments of the same
input parameter sets are large and not shown to preserve readability of graphs.
For example, in cases where the majority of experiments yield high recall
(e.g. >90%), it is not uncommon that in one or more experiments of the same
parameter set the recall does not surpass 10%.

The general trend of these lines clearly show there is a dependency of the
input parameters on the reconstruction performance. The reconstruction
exhibits graceful degradation when the soft constraints increase in severity up to

the point where the recall drops and error increases.

5.6. Effective Number of Neighbours

The recall result Y of our experiments is plotted against the meta-parameter
EC in Figure 12. For both environments, a clear trend is visible that the recall is
dependent on the effective number of neighbouring nodes. A minimum number
of inlier measurements is required that can be used for the RANSAC voting to
guarantee satisfactory reconstruction of the nodes’ positions. A minimum
(effective) connectivity of around EC = 20 - 22 is required in order to
reconstruct the swarm with an adjusted recall Y >80%.

Even though the average number of neighbouring nodes are chosen to be
similar in both the spherical and the pipeline by setting r, for all nodes, the
variability in the per-node connectivity in the spherical environment is much
larger than in the pipeline environment. Figure 13 shows the histogram of the
per-node connectivity, averaged over all experiments. The chosen ng, . for
each of the experiments is indicated using a red line, this is the average value of
the histogram. The nodes with a lower connectivity are much less likely to be

reconstructed (correctly) and will influence the recall result of the entire swarm.
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Figure 12. Adjusted recall result Y versus the meta-parameter EC, the effective number

of neighbours. (a) Spherical environment; (b) pipeline environment.
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It should be noted that the results in Figure 11 and Figure 12 show the
median values over 50 experiments, each time with a different swarm topology
and node positions. The findings presented here concern the reconstruction of
the full swarm in a single reconstruction experiment. Smaller sub-swarms can be

reconstructed using lower connectivity.

5.7. Loop Closing

Many environments will contain one or multiple loops; therefore it is important
that the reconstruction algorithm can deal with closing these loops. Our loop
closing method as described in Section 4.5 is evaluated in this section.

Examples of reconstructed swarms that require loop closing, and the iterative
loop closing in the non-linear optimization process are shown in Figure 14.
Build-up of error has caused the two ends of the loop(s) to not end up at the
same position. Figure 15 shows the result of the loop closing detection
algorithm (Section 4.5) of the dataset shown in Figure 14(b). The commonly

Loop closure step 0 Loop closure step 1 Loop closure step 2 Loop closure step 5 Loop closure step 9

(a) single loop environment

Loop closure step 0 Loop closure step 2 Loop closure step 6 Loop closure step 11

(b) single loop environment

Loop closure step 1 Loop closure step 6 Loop closure step 8 Loop closure step 160

2.15 4 "
05 o 05 1 1.5_1_5

X X X X
(c) multiple loop environment

Figure 14. Several steps of the loop closing phase using non-linear optimization. Blue is ground truth positions and red is
reconstructed positions.
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Figure 15. This connection matrix shows reconstructed connections (-) and
excluded connections ( x ). It indicates excluded connections that are
excluded by a plurality of neighbouring nodes (o) as well as those with a

distance > 2r

mm (). Loop closing candidates can easily be observed using

this categorization. The linear ordering of the nodes’ UID along the pipe axis
is solely used for illustrative purposes. It is not used in the reconstruction as
only cids are available from measurements.

excluded connections of which the reconstructed distance is larger than 2r
are depicted with red squares and clearly indicate that the two ends of the
reconstructed swarm are supposed to be connected. The nodes that are
reconstructed at the loop-ends do not receive support from nodes on the other
side of the loop in the RANSAC voting algorithm. To close the loop, these
detected connections that are originally excluded from the graph are now
included in the graph. Performing the non-linear optimization using these new
connections, now closes the loop as seen in the consecutive steps in Figure 14.

As seen in Figure 14(b), loop closing can distort the reconstructed swarm
when the loop-ends are too far from each other. Closing the loop using this
non-linear graph optimization then forces a different swarm geometry in such
cases.

These experiments shows that our method can perform loop closing. Multiple

loops can be dealt with simultaneously or individually, as seen in Figure 14(c).

6. Discussion and Future Work

The results show that the reconstruction algorithm can robustly deal with a large

set of different types of measurement noise. Each measurement imperfection has

DOI: 10.4236/wsn.2018.101001

33 Wireless Sensor Network


https://doi.org/10.4236/wsn.2018.101001

E. H. A. Duisterwinkel et al.

a different influence on the established mutual connections and on the
reconstruction. The inlier-type of measurement noise are present in all
measurements and only affect the accuracy of the reconstructed positions. The
outlier-type of noise prevents establishing correct mutual connections and on
top of that also create false and ambiguous connections due to the non-unique
identification. Using the geometric consistency of the positions of true
neighbouring nodes, the reconstruction algorithm can robustly filter out the false
connections and prevent them from negatively influencing the reconstruction.
Reducing the quantity of available cids significantly increases the ambiguities in
establishing mutual connections. However, it is found that due to the robust
nature of the reconstruction algorithm, these ambiguities could be resolved
when enough inlier measurements are available.

The robustness of our novel algorithm allows us to see that the key parameter
for successful reconstruction is the number of inlier node connections that are
available for reconstruction. Initially, the total number of distance measurements
is determined by the communication range and the density of the nodes in the
swarm. It is due to the outlier-type of measurement noises that not all node
connections will be inlier measurements and hence can not be used for
reconstruction. The effective connectivity can be predicted by our Equation (8)
and is an important predictor for the reconstruction performance. We can
therefore conclude that in the sensor node hardware design for these
applications, resources should be focussed on increasing the communication
radius to increase connectivity and to prevent outlier-types of noise from
reducing the effective connectivity. Achieving this can for example go at the cost
of (unique) identification.

Depending on which information is favoured from the swarm, the error
metrics can be used to study the performance of the reconstruction. There is no
single error metric that can summarize the reconstruction performance for all
application goals. Using different error metrics and the heuristically chosen
adjusted recall metrics Y and 7Z we showed that the subjective interpretation
of the quality of the reconstruction can be partially quantified. When the sensor
nodes need to be designed for specific applications, a performance condition
can be set up, e.g. Y >80%, to assess under which input conditions the

reconstruction is most likely to achieve the requested performance.

7. Conclusions

This work evaluated the feasibility of using sensor swarms, consisting of many
highly miniaturized and severely resource limited sensor nodes, to reconstruct
difficult-to-access environments. For this, a novel Guided Random Sample
Consensus algorithm together with non-linear graph optimization is proposed.
Its main contribution is that the algorithm can handle severe and different
types of measurement errors as well as the use of ambiguous non-unique

communication identifiers.
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Extensive and realistic simulations show that sensor node connectivity is to be
favoured over unique identification of nodes. When the number of used
communication identifiers is only 2.5% of the total number of nodes (ng, =10,
N =400 ), the entire sensor swarm can still be reconstructed successfully.
Thereby allowing less identification information to be used, ie shorter
communication bursts, to trade-off for larger emission power per burst. This, in
turn, allows for improved sensor node connectivity, as more nodes can be
reached with a single burst. On the contrary, simulations show that when swarm
connectivity drops below 20 inter-node connections per node, reliable sensor
swarm reconstruction is hampered for this algorithm. Therefore, favouring
connectivity over identification, is a pivotal finding of our work, as it can and

will guide future developments of highly miniaturized sensor nodes.
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Appendix A. Algorithm: Overview

Data: d; ¢y, CID({1, ..., N})
Result: graph G = (V, €)
Consistency + hypothesise mutual connections h; ; using C (Sec. 4.1);
Create stable seed from 4 nodes (Sec. 4.2);
while unreconstructed nodes left do
select all ¢ € C that observe >4 nodes in V;
sort ¢ according to most likelihood to succeed (Sec. 4.3.1);
perform RANSAC on ¢ (Sec. 4.3 & Algo. 2);
if nodes c with sufficient RANSAC-score then
| add nodes with highest RANSAC-score to G;
else if node added since last non-linear refinement then
| run non-linear refinement (Sec. 4.4);
else
| abort algorithm;
end
if m new nodes have been added to G then
| run non-linear refinement (Sec. 4.4);
end
Loop closing (Sec. 4.5)

end

Algorithm 1. Reconstruction.

Appendix B. Algorithm: RANSAC

Data: sorted ¢/, h; j, Q
Result: RANSAC-score and proposed positions of ¢’ in G
while no good enough RANSAC-score do
select (next) largest clique in Q with connected candidate b;
select all possible sets of 3 nodes {a : a € Q(b)};
for all a do
for all a,, = possible (3-)sets of distances in h, 1, do
hypothesise position for b, based on lateration;
if hypothesised position ¢ R then
| continue;
end
select all voters {ay : (ay Uap) = a, (ay Nap) = J};
voters support hypothesis when connection h,,, 1
is consistent with hypothesised position;
voters oppose otherwise;
if # of supporters > # of opposers then
RANSAC-score hypothesis is # of supporters;
if RANSAC-score is good enough then
| break while-loop;
end
end

end

end
end

Algorithm 2. RANSAC.
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Appendix C. Algorithm: Guiding RANSAC

Data: c, hi,j, %
Result: sorted ¢’ and cliques Q(c)
for every b in c do
select all nodes a € V with existing hq p;
create graph G’ (b) = (V(a), E’) in which all vertices V' (a) are
connected with an edge £’ if their positions are within 27comm
of each other;
find cliques Q(b) in G’ (b);
end
sort ¢ according to clique size of largest cliques in Q(c);

Algorithm 3. Guiding RANSAC by sorting the candidate nodes.
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