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Abstract 
Geophysics has played a significant and efficient role in studying geological 
structures over the past decades as the goal of geophysical data acquisition is 
to investigate underground phenomena with the highest possible level of ac-
curacy. The ground penetrating radar (GPR) method is used as a nondestruc-
tive method to reveal shallow structures by beaming electromagnetic waves 
through the Earth and recording the received reflections, albeit inevitably, 
along with random noise. Various types of noise affect GPR data, among the 
most important of which are random noise resulting from arbitrary motions 
of particles during data acquisition. Random noise which exists always and at 
all frequencies, along with coherent noise, reduces the quality of GPR data 
and must be reduced as much as possible. Over the recent years, discrete 
wavelet transform has proved to be an efficient tool in signal processing, espe-
cially in image and signal compressing and noise suppression. It also allows 
for obtaining an accurate understanding of the signal properties. In this study, 
we have used the autoregression in both wavelet and f-x domains to suppress 
random noise in synthetic and real GPR data. Finally, we compare noise sup-
pression in the two domains. Our results reveal that noise suppression is 
conducted more efficiently in the wavelet domain due to decomposing the 
signal into separate subbands and exclusively applying the method parameters 
in autoregression modeling for each subband.  
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1. Introduction 

Geophysical methods are conducted to study characteristics of geological struc-
tures, distinguish their layers, find the elastic coefficients of each layer, evaluate 
dynamic parameters of surface layers, investigate the behavior of surface layers 
during earthquakes in order to design construction, and locate reservoirs such as 
hydrocarbons, metal mines, and underground water. 

Ground penetrating radar is geophysical tool with an active source which uses 
high-frequency electromagnetic waves to study near surface layers. It was first 
used in 1956 and has been increasingly used ever since 1970. GPR instruments 
have been commercially available since the 80 s and have become popular over 
the past decade. GPR method beams very high frequency (12.5 - 2300 MHz) 
electromagnetic waves into the Earth which are reflected upon contact with var-
ious underground materials and relatively distinct boundaries therein. Such ra-
dar reflections are created as a result of the differences between electrical con-
ductivity (dielectric constant) among the material through which the electro-
magnetic waves are passing. The electromagnetic waves from the GPR pass 
through the material with low electrical conductivity, but are strongly absorbed 
by conductive components such as clay, organic acidic soils and the material sa-
turated with salt water [1]. 

The GPR resolution varies by depth from centimeters at a few meters below 
the surface to meters at hundred meters of depth. It also depends on the amount 
of variation in the electric properties between the target and its surrounding en-
vironment, geometry of the target and the applied bandwidth, etc. and can be 
high enough to distinguish subtle layering in shallow structures or buried objects 
[2]. 

Wavelet transform is widely used in signal processing and is especially applied 
in image and signal compression and noise suppression. It also allows for ob-
taining an accurate understanding of the signal properties. Contrary to Fourier 
transform, where each coefficient is a component dealing with all times and 
therefore a phase is necessary to isolate temporary events through canceling or 
amplifying over large periods, wavelet coefficients deal with already local and 
easy-to-interpret components. Wavelet transform allows for separating overlap-
ping signal components in space and time through adjustable and adaptive 
wavelets. A multitude of discrete wavelets is ideal for adaptive systems—such as 
digital computers—which are flexible based on the signals [3]. 

Autoregression is based on regressing a suitable model to data which results in 
more information than the original dataset. It is important to correctly estima-
tion the autoregressive model parameters (AR), as using appropriate parameters 
is essential in iterative parametric methods used in estimating the spectra of 
random signals. In general, since such autoregressive models are easy to use, 
useful techniques have been introduced to estimate appropriate model parame-
ters. This method can also be used in studying the effects of parameters on each 
other or sets of variables [4]. 
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2. Method 

The GPR signal (commonly including noise) in the receiver, X(t), can be 
represented as (1): 

( ) ( ) ( ) ( )X t s t w t n t= ∗ +                     (1) 

where the reflected series, s(t), is convolved with the source wavelet, w(t), to 
which the noise, n(t), is added which has to be removed. Since it is impossible to 
remove all the noises, noise suppression is conducted to obtain an X(t) which 
similar to s(t) as much as possible [5]. 

In this study, we use the new automated noise suppression technique in wave-
let and f-x domains to remove the random noise in the GPR data. First, we dis-
cuss autoregression and then introduce the f-x and wavelet domains and the ne-
cessary concepts in noise suppression. Finally, we will apply these methods to 
synthetic and real GPR data and compare the results. 

3. Wavelet Transform 

Wavelets are wave-shape mathematical functions with zero mean, and confined 
periods as opposed to sine functions which theoretically extend to infinity. 
Wavelet transform and series have proved to be efficient in the analysis of a wide 
range of signals and phenomena. (2) formulates the wavelet expansion 

( ) ( ), ,  j k j k
k j

f t a t= Ψ∑∑                      (2) 

where j and k are integer indices, ( ),j k tΨ  are the wavelet expansion orthogon-
al functions [3]. The size of ,j ka  indices in (2) decreases for a wide range of 
signals. This property, called the non-conditionality principle, explains why 
wavelets are useful in compressing images and signals, and noise suppression. 

3.1. Discrete Wavelet Transform 

Similar to the Fourier transform, wavelet transform also has continuous and 
discrete forms. A number of issues, namely redundancy, infinite number of 
wavelets, and lack of analytical solutions, make direct use of wavelet transform 
difficult. Discrete wavelet transform was introduced to overcome these issues, as 
it has orthogonal wavelets (no redundancy) through expansion and dilatation of 
an appropriate mother wavelet. 

Linearly decomposing signals or functions in the following form allows for 
better analysis 

 
( ) ( )l l

l
f t a tψ=∑                        (3) 

In the wavelet domain, ( )l tψ  is called a mother wavelet which is defined in 
(4), after compression and transformation. 

( ) ( )2
, 2 2

j
j

j k t t kψ ψ= −                      (4) 

An exact method of studying the wavelet transform is multiresolution analysis 
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which is defined as a continuation of finite subspaces of L2(R) in the Hilbert 
domain. In order to use multiresolution analysis, we define a scale function sim-
ilar to the mother wavelet, as [3] 

( ) ( )2
, 2 2

j
j

j k t t kφ φ= −                       (5) 

We then define any f (t) as [3] 

( ) ( ) ( ) ( ) ( )
0 0

0

, ,j j k j j k
k k j j

f t c k t d k tφ ψ
∞

=

= +∑ ∑∑             (6) 

where ( )
0j

c k  and ( )jd k  are discrete wavelet transform of ( )f t . 0j  
Represents the larger scale whose space is created by the ( )

0 ,j k tφ  elements. For 
a high enough resolution, signal samples are very similar to scale coefficients. 
Discrete wavelet transform is similar to the Fourier series with more flexibility 
and efficiency, and just like the Fourier transform, it is useful in representing pe-
riodic signals. However, in contrast with Fourier, it can be also used in dealing 
with non-periodic signals with excellent results. 

3.2. Undecimated Discrete Wavelet Transform 

Undecimated discrete wavelet transform is not as popular as its regular coun-
terpart. Figure 1 shows the simplest filter bank of the undecimated discrete 
wavelet transform. While the left hand side of the diagram in Figure 1 is called 
the analysis section, the right hand side is called returning section. 

In Figure 1, the signal, S, is first filtered by a high-pass decomposition filter, 
H, in order to create cD1 coefficients. It is then filtered by a high-pass returning 
filter, H’, to generate the details (D1). S is also decomposed by a low-pass filter 
to make the cA1 coefficients. Finally, these coefficients are filtered by a high-pass 
returning filter, L’, to create the general features (A1). 

3.3. Random Noise Suppression by Using the Autoregressive  
Vector Operator in the Wavelet Domain 

In order to increase the signal to noise ratio (S/N) of a multi-component signal, 
we first consider a vector operator, ˆ

jA , for autoregression of noisy data, and 
then a forward noise suppression estimation follows as (Naghizadeh & Sacchi, 
2012). 

 

 
Figure 1. Filter bank of the first order undecimated discrete wavelet transform [6]. 
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1
, 1ˆ , ,ˆ  

m
f

k j k j
j

g A g k M N−
=

= = +∑ 

                 (7) 

Similarly, the backward noise suppression estimate is given by 

*

1
, 1ˆ   ,ˆ ,

M
b
k j k j

j
g A g k N M+

=

= = −∑ 

                  (8) 

where *ˆ
jA  represents the complex conjugate of the autoregressive operator. The 

final value for the denoised data through averaging the forward and backward 
values is 

ˆ
2

ˆ ˆf b
t k k
k

g gg +
=                          (9) 

First, the noisy signal is transformed into the wavelet domain, by converting 
the AR coefficients, where it is filtered. After filtering, the inverse wavelet trans-
form is applied which will generate the denoised version of the original signal. 

4. The f-x Domain 
4.1. General Basics of the Predictive Filter in the f-x Domain 

Prediction in the f-x domain is a successful method to remove random noise 
from seismic data [7], as linear events can be fully predicted using a Wiener pre-
diction filter [7]. A good prediction filter may be used to interpolate lost data in 
the absence of wide gaps. An average of filters to should be used for large spaces. 
The main problem is to obtain an autocorrelation function for sparse data. [7] 
Used the Burg technique that handles the missing data in the same well known 
way as it handles the missing end points. 

In general, a signal in the time domain is treated as a complex signal in the 
frequency domain. We can extract information such as phase, amplitude and 
energy spectra in the frequency domain. (10) gives the energy distribution as a 
function of frequency [8]. 

( ) 21 d
2π

E x f f
+∞

−∞

= ∫
                     (10) 

Since in the f-x domain, linear events in the input signal are represented as sine 
functions in position, we discuss the prediction filter in this domain. This method 
assumes that the traces are composed of delayed impulses as shown in Figure 2. 

The f-x prediction filter can be widely applied to noise reduction. In this me-
thod, we assume that the existing trends in the data to be linear. If not com-
pletely linear, we can divide the seismic section to shorter windows to satisfy the 
linearity condition. Let’s assume that a seismic trace, ( ),U x t , to be a train of 
impulses with various amplitudes [7]. 

( ) ( )( )
1

,
N

j j
j

U x t A t g xδ
=

= −∑                   (11) 

where t and x are lateral positions, and Ai is the amplitude of the jth impulse, and 
gj(x) is the delay function containing the shapes of the events. By applying a 
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Figure 2. Schematics of the delayed traces [7]. 

 
Fourier transform with respect to time from (11), we have 

( ) ( )

1
, e j

N
i g x

j
j

U x A ωω −

=

= ∑                     (12) 

where ω is angular frequency. Since exponential functions can be rewritten as 
sine’s and cosines, the seismic traces in (12) are in fact a set of sine’s and cosines 
as functions of ω and x. Because f-x filters only predict linear data, the events in 
question have to be linear with respect to x, and therefore gj(x) functions must 
be linear (Canales, 1984). 

By assuming a linear U(x, ω), gj(x) can be written as (13) in the frequency 
domain. 

( )
1

, e j
N

i b x
j

j
U x C ωω −

=

= ∑                      (13) 

where Cj is a complex constant and is determined by source power and reflection 
coefficients and bj is the slope of the linear event. (13) shows that linearity results 
in a U(x,t) which is a perfect sine function of x which means it is a periodic and 
predictable function. Therefore, the signal is a predictable exponential function 
of x in the frequency-time domain [9].  

4.2. Wiener Filter 

Wiener filter is an efficient, stable, linear filter which is applied to noisy images. 
It requires the assumption that both the signal and the noise are stable second 
order functions. For this purpose, noise is assumed to be frames of zero mean. 
This method is based on minimizing the sum of the squares of differences be-
tween arbitrary and real output signals. Wiener filter cannot reconstruct the 
frequency components which are contaminated with noise and simply suppress 
them. It also cannot neutralize images and is slow. To improve the filter’s speed, 
we can apply an inverse FFT to obtain the impulse response [10]. 

5. Autoregressive Vector 
5.1. Definition 

Classic models of time series are divided into stationary and nonstationary. Au-
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toregression (AR) is a class of classic stationary time series models which we 
discuss in this study. 

A limitation of our models, so far, is that they impose a one way relationship 
so that predictive variables are affected by predicted ones and not vice versa. 
However, in many cases, the reverse is needed when the variables affect each 
other. Such relationships are allowed in the framework of autoregressive vectors 
where all variables are symmetric [11]. 

5.2. Mathematical Framework 
Autoregression 
In autoregressive models, variables can be predicted using a linear combination 
of their previous values. The term “autoregression” is due to regressing a varia-
ble against itself [12]. An autoregressive model is defined as 

1 1      t t p t p ty c a y a y ε− −= + + + +                  (14) 

where c is constant, εt is white noise (with zero mean and a variance, 2
εσ ) and 

ai’s are model parameters. In this fashion, yt is called a p-order autoregressive 
model, or AR(p). The structure of a first order autoregressive models, AR(1), 
shown in (15), is simple, useful and is applicable to a wide range of problems [6]. 

1 1   t t ty a y ε−= +                         (15) 

where we assume: 
1) residuals are zero: 

, 0 with 1,2i tE iε  = =                      (16) 

2) error are not autocorrelated: 

, , 0 withi t jE tτε ε τ  = ≠                     (17) 

Autoregressive models are significantly flexible in controlling a wide range of 
time series. Figure 3 shows the main steps of vector autoregressive analysis. 

5.3. Interpreting Vector Autoregressive Models 

Autoregressive models do not allow us to comment on causality relationships. 
This is especially true when they are generally designed to process unknown 
time series. Causal interpretations require essential economic models. However, 
autoregression allows for active interpretations between the variables [4]. 

In summary, the advantages of autoregressive vector are: 
1) Predicting a set of related variables where an implied interpretation is 

needed. 
2) Testing of whether or not a variable is useful in predicting another variable. 
3) Analysis of impulse response where the response of a variable to an abrupt 

but temporary change in another variable is analyzed. 
4) Error prediction of variance decomposition where a part of variance pre-

diction for a variable is attributed to other variables [4]. 
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Figure 3. Flowchart for the main steps in the autoregressive vector analysis [11]. 

5.4. Random Noise Reduction Using Autoregressive Vector Operator 

In order to increase the signal to noise ratio (S/N) in multicomponent signal, 
first we calculate the autoregressive vector operator for noisy data, ˆ

jA . Then, 
the forward estimate of the denoised data is given as [13] 

1
, 1ˆ   ,ˆ ,

m
f

k j k j
j

g A g k M N−
=

= = +∑ 

                (18) 

Similarly, the backward estimate of the denoised data is 

 *

1
, 1ˆ ,ˆ ,

M

j k j
j

b
kg A g k N M+

=

= = −∑ 

                (19) 

*ˆ
jA  is the complex conjugate of the autoregressive vector operator. The final 

estimate of the denoised date will be the average of between forward and back-
ward estimates: 

ˆ
2

ˆ ˆf b
t k k
k

g gg +
=                         (20) 

 

6. Applying Autoregressive Filters to GPR Data in the f-x and 
Wavelet Domains 

6.1. Applying the Method on Synthetic GPR Data 

As we know, GPR is an instrument that used electromagnetic waves through 
transmitter and receiver antennas to determine the depth and trend of anomalies. 
The emitted waves from the transmitter antenna arrive at the target and are re-
ceived by the receiver. These steps can be simulated into synthetic data. Since we 
aim to study random noise, it has to be added to the resulted section. In order to 
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generate synthetic data, we first assume an Earth model with arbitrary coefficient. 
Due to the similarity of electromagnetic and seismic waves, modeling synthetic 
GPR and seismic data are similar. We have used Ricker wavelets which is for-
mulated as [14] 

( ) ( ) ( )2 2 2 2 2 21 π exp πt f t f tω = − −                 (21) 

where ω(t) is the Ricker wavelet with t and f as time and central frequency of the 
wavelet, respectively. The Ricker wavelet is symmetric in time and has a zero  

mean ( ( )d 0r τ τ
+∞

−∞

=∫ ) 

The synthetic signal can be formulated as 

( ) ( ) ( ) ( )X t S t t n tω= ∗ +                    (22) 

where the received signal, S(t), is convolved with the Ricker wavelet, ω(t). n(t) is 
the random noise added to the input signal. Figure 4 compares application of 
autoregressive and wavelet autoregressive filters to a noisy section, which was 
created in the MATLAB environment. 

Here, we created a synthetic GPR section, as shown in Figure 4(b), to study 
the efficiency of the autoregressive filter in the wavelet domain, with a sampling 
rate of 40 ns and a Gaussian white noise. As shown in Figure 4(b), the layers, 
especially narrower ones are to some extent removed and the presence of noise 
has caused the boundaries to become completely so vague that the bulges and 
trends of the layers are damaged and noisy throughout the section. 

6.2. Applying the Autoregressive Filter on GPR Data in the f-x Domain 

We apply the autoregressive filter in the f-x space to denoise the section as  
 

 
Figure 4. (a) Synthetic GPR section; (b) noisy section; (c) filtered by autoregression; (d) filtered by autoregression in the 
wavelet domain. 
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shown in Figure 4(c). As we can see in Figure 4(c), after applying the filter, 
noise is removed and the layers are more visible, however, the many of the 
boundaries have become murky. Structures with low amplitude are most af-
fected by denoising, as opposed to the high-amplitude structures which are more 
visible, and therefore, reconstruction of the layers has not been done efficiently. 

6.3. Applying the AR Filter in the Wavelet Domain 

Here we have used the undecimated discrete wavelet transform in applying the 
autoregressive filter to the noise section in the wavelet domain. We note that 
here, the applied filter is linear which is a great advantage in noise reduction due 
to the linearity of the wavelet space. 

The denoised section by using this method is shown in Figure 4(d) which 
looks promising, since the layer boundaries are distinguishable and there is log-
ical smooth trend throughout the section. Both the low and high amplitude 
structures are more well-defined compared to the autoregressive filter in the f-x 
domain. We also note that the layer trends are efficiently reconstructed. 

6.4. Applying the Method on Real Data 

Here, we apply the linear regressive model to real data first in the f-x and then in 
the wavelet domain in order to remove random noise and eventually compare 
the results. We show traces #450 onward for better comparison in Figure 6. 

We first, suppress the noise in the f-x domain using the autoregressive filter 
on the noisy real data shown in Figure 5(a) where the boundaries and traces 
(especially after trace #450) are difficult to distinguish and the bulges are faded 
in the noise. As shown in Figure 6(c), the autoregressive filter in the f-x domain 
has properly reduced the noise and the layer trends are visible. 

As mentioned before, the noise is random and does not have a specific source. 
As we can see in Figure 5(a), the right (and specially lower right) portion of the 
section is very noisy as noise has covered all the trends and layers. Figure 5(c) 
shows the denoised section after applying the autoregressed filter in the wavelet 
domain. As we can see in Figure 5(c), the trends are well-defined, especially in 
the lower right corner of the section and the previously vague parts can now be 
distinguished to a much greater extent. Therefore the method has successfully 
reduced the noise. 

6.5. Comparing the Application of AR in the Wavelet and f-x Domains 

Considering the previous sections on wavelet and f-x domains, as well as the 
better performance of the filter in the wavelet domain, here we compare denois-
ing on synthetic and real data in both domains. By comparing Figure 5(b) and 
Figure 5(c), we notice the better performance of the filter in denoising the syn-
thetic data in the wavelet domain. Especially, in the later arrival times which cor-
respond to greater depths, noise reduction is more evident. We note that the boun-
daries are better represented and are more distinguishable. Also, by comparing  
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Figure 5. The GPR data section; (a) raw data; (b) after applying autoregression in the f-x domain; (c) after applying auto-
regression in the wavelet domain. 

 

 
Figure 6. The GPR data section from trace 450 to the end; (a) raw data; (b) after applying autoregression in the f-x domain; 
(c) after applying autoregression in the wavelet domain. 

 
Figure 6(b) and Figure 6(c), we can see that again the wavelet domain has had a 
much better performance in reducing the noise and retrieving the real signal 
(the layer trends are more visible). Overall, the autoregressive filter in the wave-
let domain had done a better job in retrieving the signal due to the linearity of 
the wavelet domain. 

7. Conclusions 

As discussed above, various factors such as phone networks, power posts, utility 
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poles, etc. cause contamination in the GPR data. Since the goal of this study was 
to increase the signal to noise ratio, a method was chosen to damage the signal as 
least as possible while reducing the noise. In this study, the noise suppression 
procedure was applied to both synthetic and real GPR data in f-x and wavelet 
domains through using autoregressive filter. As we see, noise reduction im-
proves interpretation of data and Autoregressive filter bears good results in both 
f-x and wavelet domains. Which means that Linear regression in the wavelet 
domain leads to better results, compared to those of the f-x domain, due to the 
local nature of the wavelet transform and the imposed linearity on the events on 
different scales. 

We should also note that in contrast with the f-x domain, the autoregressive 
filter is linear just as the wavelet domain which is why the filter does not work as 
well in the f-x domain. 
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