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Abstract 
In Linear Programming (LP) applications, unexpected non binding con-
straints are among the “why” questions that can cause a great deal of debate. 
That is, those constraints that are expected to have been active based on price 
signals, market drivers or manager’s experiences. In such situations, users 
have to solve many auxiliary LP problems in order to grasp the underlying 
technical reasons. This practice, however, is cumbersome and time-consuming 
in large scale industrial models. This paper suggests a simple solution-assisted 
methodology, based on known concepts in LP, to detect a sub set of active 
constraints that have the most preventing impact on any non binding con-
straint at the optimal solution. The approach is based on the marginal rate of 
substitutions that are available in the final simplex tableau. A numerical ex-
ample followed by a real-type case study is provided for illustration. 
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1. Introduction 

Linear programming (LP) has found practical applications in all facets of busi-
ness due to the computational efficiency of the simplex method and the availa-
bility of cheap and high-speed digital computers (for instance, see [1]). The oil 
refining industry is an illustrative example of such applications since 1952 [2]. 

The rapid evolution of the easy-to-use software made model building and LP 
solving accessible to everyone. For instance, engineers are capable to construct 
refinery models by drawing graphically the process models, connecting them 
into sophisticated external simulators (for non linear computations), designing 
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intermediate tanks, blending final products and monitoring the storage capaci-
ties. User interfaces are also configured to easily adapt the problem at hand into 
a multi-objective, multi-period or multi-location model. The commercial soft-
ware imports the required input data from external sources, generates thousand 
of material and quality balance equations, points out data inconsistencies, de-
bugs mathematical formulations, removes redundancies, linearizes the problem 
during the recursion passes (if necessary) and solves the problem in a fraction of 
time. Modern visualization technologies are also provided to report the solution 
in comprehensive manners. 

Consequently, the seize and complexity of production planning models have 
increased to represent more accurately real operations. Today, we can optimize 
far more complex problems that we can understand. Powerful report generators 
provide numerical results without explaining “why the solution is what it is”. 
However, in strategic decision making and production planning, managers are 
interested in whys not numbers [3]. Managers need to interrogate the model’s 
output in terms of arbitrage and orientations before becoming confident in its 
utilization for decision making. The answer to these questions, which emerge 
from a deep understanding of the solution, is seldom evident from the output 
reports. Depending on users’ experience, ability and patience, analyzing the so-
lution and preparing support for decision making can take up to several days. 
Surprisingly, this practical need continues to be neglected by the commercial op-
timization software whose evolutions, driven primarily by computing speed and 
algorithms enhancement, have resulted in a new generation of LP users with a 
much less OR background. 

The need to support the meaning of an optimal solution for non expert users 
is not new. During 1980 and 1990, Greenberg promoted and developed the 
project of Intelligent Mathematical Programming Systems (IMPS), initially mo-
tivated by the US Department of Energy and sponsored by a consortium of in-
dustries [4] [5] [6] [7] [8]. The analysis module of IMPS, called ANALYZE, in-
cludes a collection of algorithms and rule-based heuristics to find causal sub-
structures supporting analysis such as infeasibility diagnosis, suggestive reason-
ing about redundancy and dual values interpretation associated with binding 
constraints. 

In industrial practice, analyzing the unexpected non binding constraints needs 
also great support. That is, the constraints that are expected to have been active 
based on price signals, market drivers or manager’s know-how. For instance, 
within a profitable environment, when a key production unit is not operating at 
its full hydraulic capacity, the associated optimal solution is usually regarded 
suspicious. In this situation, if the LP result is not supplemented by comprehen-
sive explanations, decision makers would most likely revert to intuitions or other 
mode of simple analysis. Admitting the model is validated for what it intends to 
represent, a plausible answer to this technical question could be formulated as 
follows. Production units operate under hydraulic capacity and operational 
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condition constraints such as the catalytic limitation which reacts inversely with 
the poly-aromatics content of the feed. Due to reliability issues related to up-
stream logistics, the poly-aromatics content of the feed has been substantially 
increased. In this specific circumstance, the key production unit has reached its 
catalytic limitation before its hydraulic capacity constrain. This path-tracing 
analysis, that reveals the root cause of the non binding hydraulic constraint, re-
quires advanced knowledge of the industrial process, the LP model scheme and 
its sensitivity to various input parameters. To the best of our knowledge, this 
kind of “why” questions related to non binding constraints have not been 
tackled in the literature. 

The dual variables, which identify the bottlenecks of the model from the ob-
jective function viewpoint, are not a proper tool for non binding constraint 
analysis. In Sections 4 and 5, we illustrate some cases where dual variables pro-
vide counter intuitive indications. Moreover, the traditional sensitivity analysis 
on the right hand side parameters cannot neither explain why a given constraint 
is non binding. In the absence of any theoretical framework, users usually force 
the suspicious non binding constraints to operate at full capacity. Then, they in-
vestigate by comparing the output results. Most often, much more auxiliary LP 
runs are required before grasping meaning and consistency of the solution beha-
vior. This practice, however, is cumbersome and time-consuming when the 
problem is of anything else than trivial size and complexity and the expert re-
sources are not available. 

This practical-oriented paper is aimed to answer to the clear statement of the 
insights we wish to obtain from the model about why a given constraint is not 
active at the optimal solution. We suggest a solution-assisted procedure that can 
be considered as a kind of local sensitivity analysis carried out in a deterministic 
framework. The procedure tracks the marginal rate of technical substitutions 
(partial derivatives) between the slack variable of the given non binding con-
straint and all the binding constraints in the final simplex tableau. Under the 
assumption of proportional perturbation, these marginal coefficients are trans-
formed into elasticity measures capable to shed lights on directions which pre-
vent a given non binding constraint from further saturation. These elasticities 
are comparable to the sensitivity measures of Samuelson’s comparative statics 
which play an important role to support decision makers [9]. Under the non de-
generacy assumption, these elasticities are uniquely defined. The procedure can 
be easily automated through a post processor to interact with the user. Surpri-
singly, few LP practitioner is aware of an easy access to the final simplex tableau 
in commercial solvers such as LAMPS, Cplex or Xpress. The reminder of this 
paper is organized as follows. In Section 2, we review some basic definitions and 
introduce our notations. Section 3 delineates our suggested methodology. Section 
4 extrapolates the results to the non linear models solved using sequential linea-
rization techniques. In Section 5, a numerical example is provided to illustrate the 
procedure. In Section 6, we present a real-type case study from the oil refining 
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industry. Finally, Section 7 concludes. 

2. Definitions and Notations 

Let us suppose the following profit maximization LP problem, 

{ }Tmax | , 0c x Ax b x≤ ≥                      (1) 

where, A is a given m n×  linear technology matrix with full row rank. The 
m-vector b represents the resource availabilities, called the right-hand-side (RHS) 
terms, and the n-vector c represents the constant output market prices, called 
the objective function coefficients. The n-vector x represents the non negative 
decision variables. The dual problem associated with model (1) can be formu-
lated as follows, 

{ }T Tmin | , 0, 0b y A y d c y d− = ≥ ≥                 (2) 

where, the m-vector y corresponds to the shadow input prices and the n-vector d 
represents the opportunity (or reduced) cost associated with the primal variables. 
The dual constraint indicates that an equilibrium solution is achieved only when 
the difference between marginal revenue c and marginal cost TA y  is nonnega-
tive for all the decision variables characterizing the production plan. If x is prim-
al feasible, ( ),y d  is dual feasible and T 0x d = , then they are primal-dual op-
timal solutions. Throughout this paper, we assume that the primal and dual 
problems are not degenerate so that the optimal variables are unique. 

We partition the A technology matrix into a basic B and non basic component 

NA . The other vectors are also partitioned accordingly, [ ],B Nc c c=  and 
[ ],B Nx x x= , where the basic variables 0Bx >  and the non basic variables 

0Nx = . We denote BI  and NI  the sets of basic and non basic index respec-
tively. Rewriting the constraint equation of model (1), and pre-multiplying both 
sides by the inverse of the (non singular) basis matrix, 

( )1 1 .B N Nx B b B A x− −= −                   (3) 

Relation (3) provides a simultaneous system of equations showing how all of 
the basic variables Bx  are affected by marginal changes in the value of nonbasic 
variables Nx . In relation (3), the expression ( )1

NB A−  corresponds to the ma-
trix of marginal rate of technical substitution ( ),B Nx xMRTS  between the non ba-
sic variables and all the basic variables involved in the production plan [10]. 
More precisely, the MRTS matrix shows the rate at which basic variables should 
be efficiently adjusted whenever the RHS of the binding constraints are in-
creased individually within their validity ranges. The non degeneracy assump-
tion of the primal and dual problems guarantees the uniqueness of the MRTS 
matrix. Commercially available software for large scale models includes some 
specific commands to extract these marginal coefficients from the optimal 
Simplex tableau. For instance, the available command in LAMPS (Linear and 
Mathematical Programming System) is TRANSFORMCOLUMNS. Equivalent 
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instructions exist for Cplex and Xpress solvers. For other practical applications 
of the MRTS, please see Tehrani Nejad, 2007; Tehrani Nejad and Michelot, 2009; 
Tehrani Nejad and Saint Antonin, 2014 [11] [12] [13]. 

3. Method 

At the optimal solution, let us suppose that the i-th constraint is non binding. 
Following relation (3), its positive slack variable six  can be stated as below, 

( )* , ,
N

si si i si sk sk
k I

x x M x x x
∈

= − ∑                    (4) 

where *
six  is the optimal level of the basic slack variable and ,sk Nx k I∈  refer to 

non basic slack variables. In relation (4), the MRTS row-vector ( ),i si skM x x , 
corresponds to the optimal adjustment of the basic slack variable six  in re-
sponse to marginal impulse in the RHS of the k-th binding constraint, kb . In 
other words, ( ),i si skM x x  is the rate at which six  varies per unit increase in kb  
at the optimal solution. These marginal rates reveal some sort of importance 
measure that can be used to rank the influence of the active constraints on the 
saturation level of the ith non binding constraint. For notational convenience, let 

( ),ik i si skM M x x= . Since the marginal coefficients ikM  belong to the basis in-
verse 1B− , they are free of sign. Depending on the optimal solution, negative or 
positive ikM  refer respectively to those active constraints whose relaxation 
would increase or decrease the utilization rate of the i-th non binding constraint. 
For the purpose of this paper, active constraints with negative ikM  are of inter-
est. 

That is evident that the ikM  extracted from the final simplex tableau are not 
directly comparable for two reasons. First, the LP constraints are usually ex-
pressed in different units of measurement (ton, %, ˚C,...). Second, depending on 
the constraint structure, some ikM  might need adjustment. To circumvent this 
limitation, we propose the following procedure that can be readily automated 
through post processors. 

1) Extract the row-vector ikM  associated with the i-th non binding 
constraint from the final simplex tableau. 

2) If the k-th active constraint is originally of type j j iq x x α≤∑ ∑ , then the 
associated ikM  must be multiplied by ix∑  (see [14]). 

3) The sign of the ikM  associated with an active greater-than-or-equal con-
straint must be reversed in order to be in line with a relaxation perturbation. 

4) To render homogeneous the units of measurement and to scale the varia-
tions according to the size of the input constraints, each ikM  must be converted 
into a cross elasticity indicator ikE  at the point of measure: 

, ,k
ik ik N

si

bE M k I
x

= ⋅ ∈                        (5) 

where kb  corresponds to the RHS of the k-th binding constraint. The cross 
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elasticity ikE  measures the responsiveness of the slack variable of the i-th non 
binding constraint with respect to the marginal relaxation of the active con-
straints individually. This local and individual sensitivity measurement, called 
critically importance measure in reliability analysis [9], can efficiently assist the 
user in a more in depth analysis of the LP solution. 

5) Rank the ikE  from the most negative values. 
The most negative cross elasticity points out the active constraint that has the 

most preventive impact on the saturation level of the i-th non binding constraint. 
Then, the user has to evaluate the precision and the justification of the identified 
constraint. In practice, some of these active constraints can be relaxed after 
technical discussion with production engineers. Some others, however, remain 
truly the bottlenecks of the plant and have to be communicated to the managers 
for investment projects. 

4. Non Linear Models 

Industrial optimization models also include non linear constraints. These mod-
els can be summarized as follows, 

( ) ( ){ }Tmax | , 0, 0c x g x b h x x≤ = ≥                  (6) 

In relation (6), the constraints are segregated into linear ( )g x  and non 
linear ( )h x  functions. The industrial practice consists in linearizing the non 
linear functions using the first order Taylor expansion around a base point 0x . 
That is, 

( ) ( ) ( )( ){ }T 0 0 0max | , 0, 0c x g x b h x g x x x x≤ +∇ − = ≥          (7) 

This approximation is valid only in the neighborhood of the original point. 
The base point 0x  and the derivatives ( )0g x∇  must be reevaluated through 
recursion steps until the convergence criteria are reached. The LP problem (7) 
can be solved using the Simplex method where the relation (4) applies to its the 
non binding constraints. 

5. Numerical Illustration 

Let us suppose a stylized problem of producing gasoline Gx , diesel Dx  and 
fuel oil Fx  whose market prices are respectively $100, $150 and $55 per ton. 
The producer can purchase five different grades of crude oil 1 2 3 4 5, , , ,x x x x x  
whose market prices are respectively $90, $70, $80, $96, $75. We assume that the 
availability of crude oils 2 3,x x  and 5x  is limited to 75 tons and the produc-
tion capacity of diesel is limited to 150 tons. Due to corrosion issues, the sum of 
crude 1x  and 4x  should remain lower than 30% of the total crude mix. 
Processing each ton of crude generates respectively 0.3, 0.5, 0.3, 0.2 and 0.4 tons 
of CO2. The regional authorities require that the total CO2 emissions should not 
exceed 11.5 tons. Finally, all the activity levels must be nonnegative. The profit 
maximization LP model can be then stated as follows, 
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( )
( )

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

max 100 150 55 90 70 80 96 75
. .

0.40 0.40 0.45 0.16 0.35 0 Gasoline production
0.40 0.25 0.25 0.55 0.30 0 Diesel production
0.20 0.35 0.30 0.29 0.35

G D F

G

D

F

x x x x x x x x
s t

x x x x x x
x x x x x x
x x x x x x

+ + − − − − −

+ + + + − =
+ + + + − =
+ + + + − = ( )

( )
( )
( )

1 2 3 4 5 2

1 2 3 4 5

2 3 5

0 Fuel oil production
0.03 0.05 0.03 0.02 0.04 11.5 CO emissions
0.70 0.30 0.30 0.70 0.30 0 Corrosion limitation

75, 75, 75, 150 Crude availabilityD

x x x x x
x x x x x

x x x x









 + + + + ≤


− − + − ≤
 ≤ ≤ ≤ ≤

 

At the optimum, the total profit amounts to $7174.8. This level of perfor-
mance is obtained by processing the five crude oils at 57.1, 75, 75, 39.3 and 75 
tons respectively. The output products are consequently equal to 119.1, 104.5 
and 97.8 tones for gasoline, diesel and fuel oil respectively. The crude oils 2, 3 
and 5 are processed at their maximum availability leading to a positive opportu-
nity cost of $19.7, $17.1 and $19.8 respectively. Finally, the CO2 emissions and 
corrosion blending constraints are both binding at optimum. The information 
are summarized in Table 1 which contains a part of the final Simplex tableau. 

The column to the immediate left indicates the basic activities as they appear 
in the column of the basic index BI . Their optimal values are read in the most 
right column. The first row corresponds to the slack variables associated with the 
binding constraints. The coefficients inside the tableau represent the MRTS be-
tween the basic variables and non basic slack variables. The last row represents 
the dual optimal variables and the optimal value of the objective function. 

Despite the higher relative price of diesel, its production capacity constraint is 
not fully utilized. This unexpected result, however, needs to be explained before 
recommending the production plan to refinery’s operators. The MRTS coeffi-
cients that link the basic slack variable sDx  to the binding constraints, i.e., the 
bold row in Table 1, can provide valuable insights to this question. Following  
 
Table 1. Part of the final simplex tableau. 

↓ 
Basic 

variables 
Slack 

2x  
Slack 
CO2 

slack 

3x  
Slack 

Dx  
Slack 

5x  
Slack 

blending 
Optimal 

value 

 Gx  −0.937 24 −0.407 0.000 −0.747 −0.457 119.1 

 Dx  1.364 −15 1.064 0.000 1.264 1.214 104.5 

 Fx  1.001 −9 0.771 0.000 0.911 0.671 97.8 

 2x  1.000 0.000 0.000 0.000 0.000 0.000 75.0 

 3x  0.000 0.000 1.000 0.000 0.000 0.000 75.0 

 4x  6.285 −100 4.285 0.000 5.285 4.285 39.3 

 sDx  −1.364 15 −1.064 1.000 −1.264 −1.214 44.5 

 5x  0.000 0.000 0.000 0.000 1.000 0.000 75.0 

 1x  −5.871 100 −3.857 0.000 −4.857 −2.857 57.1 

 ( )j jz c−  19.7 255 17.1 0.0 19.8 19.1 7174.8 
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the suggested procedure in Section 3, we convert the extracted MRTS into an 
elasticity measure at the optimal solution. The blending constraint needs some 
extra adjustment, ( )( )( )5

11.214 0.3 45.5 2.57iE x= − = −∑ . In words, at the op-
timal solution, 1% increase in the crude blending limitation would increase the 
saturation level of the diesel production by 2.57%. Table 2 ranks the computed 
elasticities from the most negative values. 

Several interesting remarks are in order. First, the corrosion issue is the most 
preventive constraint for diesel production. Without this insight, the user should 
have relaxed all the binding constraints one by one in order to identify the most 
responsive one. Second, contrary to its largest marginal value, the CO2 con-
straint has a negative impact on diesel production: increasing the CO2 pollution 
rights would alter the optimal crude processing by replacing crude 4 with crude 
1 which has a higher CO2 content and a lower diesel yield. This optimal substitu-
tion, which is a consequence of the Rybczynski theorem in economics [10], leads 
to increase the gasoline product (+24 tons) to the detriment of diesel (−15 tons). 
This counter intuitive example confirms the limitation of marginal values for 
non binding constraint analysis. Third, according to diesel production equation, 
crude oils 2 and 3 have the same average yield in terms of diesel output (%25). 
However, the computed elasticities reveal that crude oil 2 has a higher marginal 
yield and is, therefore, a more suitable candidate to increase the diesel output. 

6. Case Study 

In the previous section, we provided a very simple numerical example to detail 
the procedure. In this section, we apply the suggested methodology to a real-type 
refinery LP model which contains near to 5000 linear constraints and more than 
7000 continuous variables. In this LP model, the constraints are categorized into 
material and quality balance constraints, product specification constraints, crude 
availability constraints and process units capacity constraints. The linear objec-
tive function consists in maximizing the net profit of the oil refining operations 
(for more details, see Tehrani Nejad and Saint Antonin [15]). Cplex is the used 
solver. 

6.1. Model Overview 

The general scheme of the model is given in Figure 1. In non technical words, 
the crude distillation unit (CDU) separates crude oils into various fractions ac-
cording to their boiling points. Light fractions are used to make gasoline and 
naphtha whilst middle fractions are used to produce kerosene and diesel. The 
heaviest fractions are sent to vacuum distillation unit (VDU) to produce vacuum 
distillate and vacuum residue. The major part of vacuum residue is fed to a 
 
Table 2. Sensitivity importance measures. 

Blending Crude 2 Crude 5 Crude 3 CO2 emissions 

−2.57 −2.25 −2.08 −1.75 3.79 
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Figure 1. Oil refinery scheme. 

 
visbreaker, to reduce the viscosity of the fuel oil products. The vacuum distillate 
is converted by a fluid catalytic cracker unit (FCCU) to a gasoline blending 
component and light cycle oil for blending into the diesel pool. Here, the FCCU 
is combined with an Alkylation unit to produce high value gasoline components 
called alkylate. The sulfur specifications for gasoline, middle and heavy oil 
products require the use of a hydro-desulfurization unit (HDS). On the other 
side, a reforming unit converts low-octane naphthas into high-octane gasoline 
blending components. Most often, reformer’s output is separated into light and 
heavy components by a fractionation unit called FDP. The oil product categories 
considered are propane, butane, naphtha, gasoline, jet fuel, diesel, heating oils, 
heavy fuel oils and different bitumen grades. 

6.2. Results and Discussion 

Based on market indicators, the manager expects the crude distillation unit 
(CDU) to be fully utilized. However, the optimal solution recommends an aver-
age utilization rate of 91.5%. Table 3 summaries the main active constraints at 
the optimal solution. These active constraints are illustrated by bold arrows in 
Figure 1. Non bold arrows correspond to part of the non active constraints. To 
identify what prevents the CDU from further processing, we compute the cross  
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Table 3. Marginal values, MRTS and elasticities measures. 

Non ratio Constraints 
RHS 

(ton/day) 
Marginal value 

($/t) 
MRTS 

1 ,C kM  
Elasticity 

1 ,C kE  

HDS feed rate (H1) 1720 65 −0.790 −0.105 

HCCS production (F4) 720 60 −0.094 −0.005 

LCO production (F5) 600 64 −0.051 −0.002 

VACRES & VR tank (B1) 324 79 −1.400 −0.002 

Alkylation feed rate (A1) 504 134 0.000 0.000 

VGO production (G1) 1080 16.9 0.005 0.063 

Ratio Constraints RHS 
Marginal value 
($/˚C or ppm/t) 

MRTS 

1 ,C kM  
Elasticity

 
1 ,C kE  

CDU HGO initial cut point (P2) 305˚C 0.04 −11.49 −0.091 

FCC preheat (P3) 210˚C 0.02 −0.001 −0.044 

VGO HDS sulfur target (P4) 0.4 %wt 2.14 −0.016 −0.001 

 
elastisities ikE  between the mentioned active constraints and the slack variable 
of the CDU capacity constraint. The results are reported in the two last columns 
of Table 3. 

Several remarks are in order. First, the HDS feed rate constraint is directly 
identified to be the most preventing constraint with respect to the CDU 
throughput. We verified this result by increasing individually the RHS of the ac-
tive constraints reported in Table 3. By relaxing only the HDS capacity up to 
60%, the utilization rate of the crude unit increases steeply from 91.5% to 96.6%, 
and then flattens. Second, given the high marginal values of the gasoline-related 
units, i.e., Alkylation and the FCC effluents (HCCS and LCO), the LP practioner 
would have been most plausibly disoriented by first inspecting those constraints. 
Third, although the Alkylation unit has the highest marginal value, its cross elas-
ticity with respect to crude distillation unit is zero. That simply implies having 
more Alkylation would significantly increase the overall net margin of the refi-
nery without impacting the crude intake amount. Forth, the relative high mar-
ginal value of the HDS capacity constraint confirms that the low utilization rate 
of the crude unit, suggested by the optimal solution, is not simply due to low 
price effects. 

7. Conclusion 

Result communication is the most crucial step in any modeling-based study. 
Due to the complexity of the industrial LP models, providing managers with an 
enriched set of technical explanations has become a formidable task for non OR 
experts. Explaining the unexpected non binding constraints is such an example. 
The objective of this paper was to propose a simple method, based on known 
concepts in LP, to detect and rank a sub set of active constraints that have the 
most preventing impact on any non binding constraint at the optimal solution. 
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The distinguished feature of this approach is that it requires no more informa-
tion than what is provided by the final simplex tableau. A numerical example as 
well as a real-type oil refining case study was provided to illustrate the procedure. 
The simplicity of this method, we believe, constitutes its elegance. 
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