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Abstract 
The conventional judgement-based method for fixing the risk tolerance level 
in the Value-at-Risk (VaR) model might be a suboptimal method, because the 
procedure induces the possibility of bias in risk measurement. Conversely, a 
superior risk management practice might be one, where input parameters are 
determined by a quantitative process which is “non-subjective to the risk 
modeller’s preferences”. Based on this insight, we have improved on the VaR 
model. Our model allows time variation of the risk tolerance level and so is 
suitable for scenario-wise risk analysis. 
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1. Introduction 

A class of risk measures, which are commonly referred to as “tail-related risk 
measures” in the economic literature, is based on basics of fixing ex-ante a risk 
tolerance level. Value-at-Risk is a common example of this class. Risk tolerance 
is the level of risk that an investor is willing to take. But, gauging risk appetite 
accurately can be a tricky task. In practice, the risk tolerance level is generally 
decided by judgement/or perception by a risk manager or a risk management 
committee or, in certain cases, an external regulatory body. For this purpose, it 
has been a common practice to follow recommendations by the BASEL commit-
tee of banking supervision. At present, BASEL guidelines are 99% and 99.9% 
confidence level for Value-at-Risk (VaR) and 97.5% confidence level for Ex-
pected Shortfall (ES) [1]. Most probably, those recommendations are drawn on 
the basis of country-wise experiences of analysing large set of historical data. Al-
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ternatively, in certain cases, the risk modeller adopts commonly used percent-
ages viz. 99%, 95% and 90% for this purpose. Majumder [1], however, docu-
mented evidence from various developed and emerging equity markets of those 
incidents where a minor change in the risk tolerance level translated into a large 
difference in VaR. Nevertheless, such instances are not uncommon in financial 
markets. Similar observations were documented by Degennaro [2] who formed 
examples to establish that non-cooperative choices of the risk tolerance level by 
two investors were resulting in a substantial variation in their VaR estimates. 
Therefore, in many occasions, the risk modeller’s preferences on the risk toler-
ance level could have large impacts on the tail measure. When those preferences 
are biased, being over concerned to the high volatile period/or stress or due to 
any other reason, the bias would be transfused into the tail measure. In this ap-
proach, the risk tolerance level, which was decided ex-ante during turbulence, 
maybe appropriate for the turbulent period. However, the same could be subop-
timal for quiet periods. Logically, it is extremely difficult to get a risk tolerance 
level which is suited uniformly across scenarios and this is perhaps a reason for 
model risk in the conventional approach. 

In an alternative approach, the present paper proposes that the risk tolerance 
level ought not to be pre-assigned, but may be determined by the model itself. In 
this framework, this parameter may vary with the shape of the loss distribution. 
One way to determine the same might be using the Pickands-Balkema-de Haan 
theorem which essentially says that, for a wide class of distributions, losses 
which exceed the high enough threshold follow the generalized Pareto distribu-
tion (GPD) [3] [4]. Using this theorem, it is easy to establish that the extreme 
right tail part of a distribution asymptotically converges to the tail of a general-
ised Pareto distribution (GPD). This hypothesis reveals that we can always find a 
region in the extreme right tail of the loss distribution, for which the equivalent 
region from a suitable GPD is available. Therefore, there exists a threshold, data 
above which shows generalized Pareto behavior. The threshold would essentially 
be reasonably large to cover all events which are “extreme” in nature. Naturally, 
events belonging to the rest of the distribution are “normal” or “non-extreme” in 
nature. The procedure gives us the opportunity to estimate simultaneously the 
tail size and the starting point of the tail. In other words, it allows simultaneous 
estimation of VaR and the risk tolerance level. The rest of the paper is organized 
as follows: Section 2 describes the model. Section 3 provides empirical findings 
and Section 4 concludes. 

2. The Model 
2.1. Behaviour of Losses Exceeding a High Threshold 

Suppose 1 2, , , nx x x�  are n independent realizations from a random variable 
(X) representing the loss with distribution function ( )XF x  with a finite or in-
finite right endpoint (x0). We are interested in investigating the behavior of this 
distribution exceeding a high threshold (u). In the line of Hogg and Klugman 
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[5], the distribution function ( )
1
uY

F  of the truncated loss ( 1
uY ) (truncated at the 

point u) can be defined as: 
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Based on 
1
uY

F , we can define the distribution function of the excess over a 
high threshold u: 
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          (1) 

for 00 .x x u≤ < −  
Balkema and de Haan [3] and Pickands [4] showed that, for a large class of 

distributions, the generalised Pareto distribution (GPD) is the limiting distribu-
tion for the distribution of the excess, as the threshold (u) tends to the right 
endpoint. According to this theorem, we can find a positive measurable function
( )uσ  such that 

( ) ( ) ( )
0 0

,
0

  0u uYu x x x u
Lim Sup F x G xξ σ→ ≤ < −

− =                  (2) 

where the distribution function of a two parameter generalised Pareto distribu-
tion with the shape parameter (ξ ), and scale parameter ( ( )uσ ) has the follow-
ing representation: 
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where 0σ > , 0x ≥  when 0ξ ≥  and 0 x σ
ξ

≤ ≤ −  when 0ξ < . (2) holds if  

and only if F belongs to the maximum domain of attraction of the generalised 
extreme value (GEV) distribution (H) [6]. The equivalent representation of (2) 
could be in terms three parameter GPD: for 0x u− ≥ , the distribution function 
of the three parameter GPD ( )( ), ,  uG xξ σ  can be expressed as the limiting dis-
tribution function of the excess. ( ), ,  uG xξ σ  with shape parameter (ξ ), location 
parameter (u) and scale parameter (σ ) has the following representation. 

( ) ( )( )
( )( )
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x u
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x u
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where 0σ > , ( ) 0x u− ≥  when 0ξ ≥  and ( )0 -x u σ
ξ

≤ ≤ −  when 0ξ < . 

This representation would provide us a theoretical ground to claim that there 
exists a threshold, the data above which would have generalized Pareto be ha-
viour. 

2.2. Identifying the Tail Region 

Equations (1) and (2) suggest that for a sufficiently high threshold, it can be 
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written: 

( ) ( ) ( ) ( )( ), , 1X X u XF x u F u G x F uξ σ+ ≈ + −  

Setting y = x + u 

( ) ( ) ( ) ( )( ), , 1X X u XF y F u G y u F uξ σ≈ + − −              (3) 

The right hand side of the Equation (3) can be simplified in the form of a dis-
tribution function of a GPD: 

( ) ( ),XF y G yξ σ µ≈ −� �                        (4) 

where ( )( )1 XF u
ξ

σ σ= −�  and ( )( )( )1 1Xu F u
ξ

µ σ ξ
−

= − − −� � . 
Hence, if we can fit the GPD to the conditional distribution of the excess 

above a high threshold, it can also be fitted to the tail of the original distribution 
above a certain threshold [7]. 

When u is fixed at û , ŷ  would be the minimum value of y for which the 
Equation (4) will hold. The deviation of ( )XF y  from ( ),G yξ σ µ−� �  would, 
therefore, be non-zero for ˆy y< , which is expected to be zero for all ˆy y≥ . 
We may consider an indicator, viz. the cumulative square deviation for 0y y< , 

( ) ( ) ( )
0

2
0 ,X

y y
D y F y G yξ σ µ

<

 = − − ∑ � � , which might be useful for identifying 

ŷ . By its nature, ( )0D y  would be an increasing function of 0y  for 0 ˆy y<
and would be nearly flat for 0 ˆy y≥ . Therefore, the slope of the ( )0D y  would 
be positive for 0 ˆy y< , which would be almost zero for 0 ˆy y≥ . We can iden-
tify the cut-off point, ŷ , after which the slope of the ( )0D y  would be statisti-
cally insignificant [1]. To test this hypothesis, we have plotted D(y) versus for 
normal and t distributions (Figure 1). D(y) is almost flat after a certain cut-off 
in both of these cases which validates our postulate. 

Therefore, we can bifurcate the underlying distribution into two parts: ˆX y≥  
is the risky region of the distribution in the sense that this region could be ap-
proximated by the tail of an equivalent GPD. All large unforeseen losses would 
belong to this part. Conversely, ˆX y<  is the region of the distribution which 
does not cause severe tail risk. 

2.3. Measuring the Tail Risk 

For a small quantile of order p, ( )ˆ ˆ1 XP F y y= − < , we can write 

( )( ) ( ) ( )( )0,ˆ ˆ ˆ1 1X uP F u G y uς σ≈ − − −                    (5) 

VaR represents in probabilistic terms a quantile of the loss distribution func-
tion FX [8]. Therefore, 

ˆpVaR y= ˆpVaR y=                            (6) 

Equations (5) and (6) lead to interesting inferences: when the distributional 
form of the underlying distribution (FX(.)) is known, p and VaRp can be esti-
mated simultaneously. Majumder [1] has named the new risk measure as 
non-subjective Value-at-Risk ( N SVaR − ). 

https://doi.org/10.4236/tel.2018.81007


D. Majumder 
 

 

DOI: 10.4236/tel.2018.81007 115 Theoretical Economics Letters 
 

 
(a) 

 
(b) 

Figure 1. Plot of D(y) versus y for normal and t distribution. (a) Plot of D(y) based on 
Normal Distribution (mean: 0, standard deviation: 1.76); (b) Plot of D(y) based on t dis-
tribution (Degrees of freedom: 2.18). 

2.4. Simulation Study for Threshold Choice 

When the form of the underlying loss distribution FX(.) is known, we can de-
velop a procedure for estimating the threshold, u� , by a simulation study. We 
may recall our result in the preceding section that we can get a sufficiently high 
threshold u, above which the distribution function of the excesses ( )uY

F x  can 
be approximated by the distribution function of a generalised Pareto distribu-
tion, ( ) ( ), uG xξ σ . Initially, we fix u to some u/ and generate 100 samples each of 
size 4000 from the underlying distribution FX. If u/ is the true threshold, then the  
deviation of ( ) ( )/, u

G x
ξ σ

 from ( ) ( )/, u
G x

ξ σ
 is expected to be zero for all /x u≥   

for the j th sample, 1,2, ,100.j = �  We may consider an indicator, viz. the cu-
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mulative square deviation for /x u≥ , ( ) ( ) ( ) ( )/ /

2

,
2

u uYx u
D u F x G x

ξ σ
′≥

 ′ = −  
∑ ,  

which might be useful for identifying the threshold. If /u  is the true threshold, 
( )2D u′  would be zero for each sample. Based on this indicator, we can form a 

Mean Squared Error (MSE): 

( ) ( ){ }/
100

/

1

21
100 i i

D u
MSE u

n=

= ∑  

where ni is the number of observation in the ith sample exceeding /u . 
( )MSE u  can be computed for various values of u starting from 0. The best es-

timate of u (say u� ) would be one, for which ( )MSE u  is minimum. 

3. Empirical Findings 

VaR and VaRN-S based on daily returns on S & P 500 Composite Index for the 
period of 30 years, from 18th February, 1985 to 17th February, 2015, computed 
using five risk models separately for the full sample and the simulated stress 
scenario are reported in Table 1. The stress scenario is simulated in the line of 
Studer [10] and Breuer and Krenn [11], who employed the Mahalanobis distance 
as a mathematical tool to choose stress scenarios [1]. Additionally, the condi-
tional EVT framework proposed by McNeil and Frey [6] was adopted to com-
pute VaRN-S for GARCH. For each risk model, in the normal as well as the tur-
bulent period, the equilibrium probability level1 in VaRN-S lies in-between 0.05 
and 0.1 and the estimate of VaRN-S in-between VaR0.1 and VaR0.05. Furthermore, 
similar to the conventional model, the estimate of VaRN-S in the stress scenario is 
greater than the estimate of the same for the full sample indicating that the new 
risk measure correctly captures riskiness of markets. Hence, estimates of VaRN-S 
are not too arbitrary numbers to be accepted the same as a risk measure. Inter-
estingly, the standard error of the probability level is low (highest value: 0.024 
(Normal (unconditional)). This indicates that additional volatility in VaR due to 
introduction of time variation in the probability level would be limited. 

4. Conclusion 

The recurring criticism against the existing framework of market risk manage-
ment has been in two leading directions: 1) it is often not possible to find a risk 
model which accurately predicts the data generating process and 2) input pa-
rameters are judgement-based which makes the risk measure subjective. Preci-
sion in prediction of data generating process, however, depends on skill and ex-
pertise of the risk modeller and so it is more of an art than a science. On the 
other hand, non-subjectivity in selection of input parameters is possible to be 
obtained. This could be achieved if the risk tolerance level and the threshold are 
simultaneously determined by the risk model. Based on this insight, we have 
improved on the VaR model by allowing time variation in the risk tolerance  

 

 

1One minus the probability level is the risk tolerance level [9]. 
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Table 1. A comparison between VaR and VaRN-S based on S & P 500 Composite Index. 

Scenario Risk Model 
Conventional VaR Non-Subjective VaR 

VaR0.01 VaR0.05 VaR0.1 
Threshold 

( u� ) 
Probability 

level (p) 
VaRN-S 

Unconditional 

Historical  
Simulation 

3.05 
(0.145) 

1.68 
(0.053) 

1.12 
(0.040) 

0.1 
0.0643 
(0.014) 

1.51 
(0.203) 

Normal 
2.60 

(0.066) 
1.82 

(0.038) 
1.41 

(0.030) 
0.8 

0.0609 
(0.024) 

1.75 
(0.242) 

Student’s t 
3.21 

(0.215) 
1.55 

(0.056) 
1.04 

(0.034) 
0.4 

0.0724 
(0.018) 

 

1.33 
(0.349) 

 

GARCH-normal 
2.66 

(0.066) 
1.89 

(0.038) 
1.47 

(0.029) 
0.9 

0.0638 
(0.023) 

1.80 
(0.280) 

GARCH-t 
3.28 

(0.211) 
1.61 

(0.056) 
1.10 

(0.032) 
0.8 

0.0727 
(0.017) 

1.37 
(0.251) 

Simulated stress 
scenario 

Historical  
Simulation 

4.68 
(0.240) 

2.59 
(0.060) 

2.02 
(0.046) 

0.8 
0.0727 
(0.005) 

2.30 
(0.085) 

Normal 
4.41 

(0.111) 
3.12 

(0.623) 
2.43 

(0.054) 
1.5 

0.0643 
(0.022) 

2.95 
(0.420) 

Student’s t 
4.53 

(0.144) 
3.01 

(0.069) 
2.28 

(0.052) 
1.8 

0.0626 
(0.021) 

2.86 
(0.480) 

GARCH-normal 
4.48 

(0.111) 
3.19 

(0.064) 
2.50 

(0.050) 
1.5 

0.0634 
(0.022) 

3.02 
(0.409) 

GARCH-t 
4.57 

(0.138) 
3.06 

(0.067) 
2.34 

(0.050) 
1.5 

0.0670 
(0.020) 

2.82 
(0.427) 

Note: VaR and VaRN-S are average based on 50 estimates. The standard error of the estimate is provided in 
the parenthesis. Data Source: Data Stream. 

 
level. Our empirical study based on S & P 500 composite index reveals that the 
tail risk of the loss distribution is well captured by the new risk measure in the 
normal as well as in the stress scenarios. The significance of the research is two-
fold: a) reduction of bias by minimising the scope of human intervention in risk 
measurement which is of practical as well as of social significance and b) gauging 
risk appetite methodically which is of academic significance. The approach may 
widen the applicability of tail-related risk models in institutional and regulatory 
policymaking. At this stage, however, it is not possible to provide the method for 
backtesting the new VaR model. This might be the topic for future research. 
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