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Abstract

This paper is concerned with the oscillatory properties of the third-order non-
linear delay dynamic equations of the form

(rz (t)[(ﬁ(t)XA (t))ATjA +q(t) f(x[z(t)])=0, teT

on time scales T, where a>1 is a quotient of odd positive integers. Ap-
plying the inequality technique we present two new sufficient conditions
which ensure that every solution of equations is oscillatory or converges to
zero. The results obtained improve and complement some known results in
the literature.
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1. Introduction

Beginning with the landmark contribution work of Hilger [1], the time scales
theory, which in order to unify the continuous and discrete analysis, has
received significant attention. In the recent years, there has been increasing
interest in obtaining sufficient conditions for the oscillation and nonoscillation
of solutions of various equations on time scales; we refer the reader to the papers
[2]-[18]. Following this trend, we shall consider oscillation for the third-order

nonlinear delay dynamic equation
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0[O0 )] | e ()0 ten L

where o >1 isa quotient of odd positive integers.

Throughout this paper, assume that

(H,) T isatime scale (ie.,, a nonempty closed subset of the real numbers R)
which is unbounded above, and t, €T with t,>0. We define the time scale
R by ['{O,oo)T :[to,oo)ﬂ']l' .

(Hy) n (t), r, (t),q (t) are positive, real-valued rd-continuous functions
defined on T,and r(t),r,(t) satisfy

(H;) 7:T—>T isastrictly increasing and differentiable function such that

interval of the form [t,,)

T(t)St, !Lrgr(t):oo and T(T):T.

(H) f:R—>R isa continuous function, and there exists a positive number

f(x)
Ksuch that ——=2>K >0 for x#0.
X

By a solution of (1) , we mean a nontrivial function X(t) satisfying (1) which
has the properties X(t)e Ch, ([Tx , oo)T ,R) for T, >t,,and

r, (t)[(rl(t)xA (t))AT eCl, ([TX,OO)T ,R). Our attention is restricted to those

solutions of (1) which satisfy sup{|x(t)| 't ZT} >0 forall T>T,. A solution x
of Equation (1) is said to be oscillatory on [TX,OO)T if it is neither eventually
positive nor eventually negative. Otherwise it is called nonoscillatory. The
equation itself is called oscillatory if all its solutions are oscillatory.

If a':l,r(t):t, then (1) simplifies to the third-order nonlinear dynamic

equation

(Lo ] a0 en ey @

If, furthermore, 1 (t)=r,(t)=1, f(x)=x7(t)=t, then (1) reduces to the

third-order linear dynamic equation
X4 (t)+q(t)x(t)=0, teT, t>t, 3)

If, in addition, o =1, then (1) reduces to the nonlinear delay dynamic

equation

(a0 )] a1 ()0 tem 6 @

In [11], Erbe et al. established some sufficient conditions which ensure that
every solution of Equation (2) is oscillatory or converges to zero. In [12], Erbe et
al. studied the third-order linear dynamic Equation (3), and they obtained Hille
and Nehari type oscillation criteria for the Equation (3). In [16], Han et al
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extended and improved the results of [11] [12], meanwhile obtained some
oscillatory criteria for the Equation (4). In [18], Gao et al considered the
third-order nonlinear dynamic Equation (1). By employing the generalized
Riccati transformation and the integral averaging technique, they established
three sufficient conditions which ensure that every solution of Equation (1) is
oscillatory or converges to zero. On this basis, we continue to study Equation (1).
If (4.11) in ([18], Theorem 4.3) is not hold, then we obtain two new sufficient
conditions which guarantee that every solution of Equation (1) is oscillatory or
converges to zero. Our results will improve some previous results. The usual
notation and concepts of the time scales calculus, which will be used throughout

the paper, can be found in [19] [20].

2. Several Lemmas

Lemma 1 Assume that X(t) is an eventually positive solution of (1). Then
there exists T e [tO,OO)T such that either

(M x(t)>0,x*(t)>0,(5(t)x* (1)) >0, te[T, ) ;
() x(t)>0,x* (1) <0, (r (t)x* (1)) >0, te[T,»),.

The proof is similar to that of ([11], Lemma 1).
Lemma 2 (see [19], Theorem 1.90]) If xis differentiable, then

(x7)" =pxt [ +(2-h)x] " dh. (5)

Lemma 3 (see [21], Theorem 41]) Assume that X and Y are nonnegative real

numbers. Then

AXY A XA g(g_l)Yﬂ forall 4 >1, (6)

where the equality holds if and only if X =Y .
Throughout this paper, for sufficiently large 7, we denote

R(LT)=] [ﬁ} As.

Lemma 4 Assume that X(t) is an eventually positive solution of (1) which
satisfies case (I) in Lemma 1. Then there exists T e [tO , 00)T , such that

1

XA (t)zmg (t)(rl(t)xA (t))A, te[T,oo)T. (7)

The proof is similar to that of (18], Lemma 3.4).
Lemma 5 Assume that X(t) is an eventually positive solution of (1) which

satisfies case (I) in Lemma 1. Furthermore, assume that rlA (t) <0 and

.[:q(s)r“ (s)As=co. (8)
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x(t)

Then there exists T € [tO,OO) such that X(t) > x4 (t), and T is strictly

T
decreasing on [T, 00)T .
The proof is similar to that of ([16], Lemma 2.3).

Lemma 6 Assume that X(t) is an eventually positive solution of (1) which

satisfies case (II) in Lemma 1. Furthermore,

* o ‘ = o0,
J'tom'fI Lz(s)jsq(u)Au} AsAt = 9)

Then limx(t)=0.

t—o0

Proof Assume that X(t) is an eventually positive solution of (1) which satisfies
the case (II) in Lemma 1. Then X(t) is decreasing and !Lrg X(t) =1>0. We
assert that | =0.If not, then X[7(t)]2x(t)21>0 for te[t),») . Integrating
(1) from t to oo, we get

O] (s0x )|
< —Kj':cq(s) x“[z(s)]as < —Klajtwq(s)As, tefty, ), .
Hence, we have

a

—(r1 (t)x* (t))A < l:%fqu(s)As} .

Integrating the above inequality from t to oo, we obtain

L”q(u)AuT As.

1

r,(s)

Integrating the last inequality again from 7'to ¢, we have

r(t)x" (t)s-IKiJ'lw{

K(t)~x(T) <-IK ﬁﬁ f{ﬁ .[:Oq(v)Av}a Auds.

Since condition (9) holds, we obtain lim X(t) =-o0, which contradicts
x(t)>0.Hence |=0.This completes the pllrgoco)f.
Lemma 7 (see [22], Theorem 3]) Let a,beT and a<b, for positive
rd-continuous functions f,g:[a,b] >R, we have
1 1
p q

LIt )aas<(L]1 () as) (1ot as)'

where p>1 and l+£:1.
P Q

(10)

3. Main Results

Theorem 1 Assume that (8) and (9) hold, I‘lA (t) <0. Furthermore, assume that

DOI: 10.4236/jamp.2018.61023

235 Journal of Applied Mathematics and Physics


https://doi.org/10.4236/jamp.2018.61023

L. Gao et al.

there exist functions H,heC (D, R), where ]D)E{(t,s):IZSZT} such that
H(t,t)=0,t>T; H(ts)>0, t>s>T, (11)

and H has a nonpositive continuous A-partial derivative H* (t, S) with respect

to the second variable and satisfies

HAs(a(t),s)+%H(a(t),s)=_h;z§)Hfﬂ(a(t),s), (12)

and, for all sufficiently large 7; that there exists T, >T,

[ H(e(t)s) ]
O<ZQ{{I|ﬂLnfm}_oo, (13)

limsup a2 (L) 0" () (s) ]|

]
o (o)1) [s26(o(s))R(sT)]"

AS < o0, (14)

and a real rd-continuous function ¥': [tO,OO) — R such that

st5( ()) (57) g
“(s)o (s)n(s)

(s)As =, (15)

(16)
h* (t, s)[ s)r, s)

(a+) s (o (s)R(s.T)]

where o0 (t) is a positive A-differentiable function,

Q(t)=Kq<t)5(a<t>)[f((?]

)
h_(t,s)=max{0,~h(t,s)},h, (
)

Iimsup ITZ {
(
R

]As>‘P(TO),

)=max{0,h(t,s)}, ¥, (t)=max {0, ¥ (t)}.

Then every solution X(t) of Equation (1) is either oscillatory or converges to
zZero.

Proof Assume that (1) has a nonoscillatory solution X(t) on ['[0,00)1T .
Without loss generality we may assume that there exists sufficiently large T >t
such that Xx(t)>0 and X[r(t)] >0 forall telT, °°)1r' By Lemma 1, we see
that x(t) satisfies either case (I) or case (II).

If case (I) holds, then x*(t)>0,te([T, o), . Define the function @(t) by

Obviously (t)>0. Using the product and quotient rule of A-differential, we

obtain
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By Lemma 2, we get

o (t) S&a)(t) —5(0(1;))%

From Lemma 5, we obtain

so we obtain

o )=-Kolo(t)a(c] 2

Hence, by the definition of @(t),Q(t), we obtain
('), @le@RET) ¢ Y
w0 5 (0 (U(t)J -

Multiplying both sides of (17), with ¢ replaced by s, by H(O'(t),s) ,
integrating with respect to sfrom Ty to o(t), t>T =T, we get

J'H Q(s)As

o (t)<-Q(t)+

_j H(o(t),s)o" As+j v 1o 5(5) L w(s)As
[ yas®H (o (t),s)s(o( )R(sT)wHé

S “(s)a“(s)rl(s)

Integrating by parts and using (11), we obtain
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and so

G(t){h(t,s)H ra (o(t),S)w(s) (18)
)

Now set

g e (t,s)[ o (s)n(s) ] |
(a+1)"[s"5(o(s))R(s,T)]"
Combining (18) and (19), we get

T e (5) o (5)5(5)]
WLO() H(o(t).s)Q(s)- As

<a(Ty).
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From (16), we obtain

limsup

1
e H(o(1),T,)

By (18), we get

;, ["H (o (t),5)Q(s) s

[7H (o (t).5)Q(s)as 2 ¥ (T,). 20)

w(s)As (21)

meanwhile noting that (16), we obtain

liminf [v(t)-u(t)]<e(T,)-¥(T,) <o,

Now we assert that

J.w s°5(o(s))R(s.T) a)l%(s)Asmo 2)

T 1+i

5 “(s)a"(s)r(s)
holds. Suppose to the contrary that
»8°6(o(s))R(s,T) 1t
T 1+1( ) @ °
5 “(s)o” (s)n(s)

by (13), there exists a constant & >0 such that

inf{liminfm:l>g>0, (24)

(s)As=oo, (23)

$To|  toe H(o-(t),TO)

from (23), there exists T, [Ty, ), for arbitrary real number M >0 such
that

[ EAERET) 2 g
5 “(s)o"(s)5(s)

ae
Using the integration by parts formula of A-differential, we obtain

T
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As

“ 1-¢-l
- 1 _[Tc(l) —aH% (o-(t),s)J‘:(s) ! f(a(u))R(u,T) @ “(u)AupAs
H(O‘('[),TO) 0 0 51+;(U)O'a (u)rl(u)
s L0 (o(0,0) [ LT IRET) )
e (%) 5 0)o (4)5 ()
1 o) ia, M, _MH(e(t)T)
; H(a(t),TO)'[Tl R o (t).5) pae=7 H(o(t).T,)
From (24), there exists T,e[T,0) , we get %25 for
o)l
te[T,,0)_, so that v(t)>M . Since Mis arbitrary, we obtain
limv(t)=oo. (25)

t—o0

Selecting a sequence {tn}:ll: t, € [TO,OO)1I with limt, = satisfying

n—o

lim[v(t,)-u(t,)]=liminf [v(t)-u(t)] <o,
then there exists a constant M, >0 such that

v(t,)-u(t,) <M, (26)

for sufficiently large positive integer n. From (22), we can easily see

limv(t,)=o, (27)
(26) implies that
limu(t,)=c. (28)

From (26) and (27), we obtain

u(tﬂ)_lz_ MO MO 1

vt) V()

Le.,

for sufficiently large positive integer 1, which together with (28) implies

im—[u(t”)]a+l =lim ult,) au =
 r v 6 )

On the other hand, by Lemma 7, we obtain
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a

_ J‘J(tn) h (tn's) H e (O-(tn)’s)

H(o(t,).Ty)d(s)

_ qoltn) |:asaH<O-(tn)’

H(o(t,).T

w(s)As

(
)5(0(5))R(5,T)r o(s)

o
~—
]
—_
w
SN—
=
—_~
w
N—

o 1 . haﬂ(tn,s)aaz(s)rf(s)As}“_

()] { ! '[T" [s“&(o-(s))R(s,T)T

The above inequality show that
[ut)]™ _ ( 1 ) ja(tn)hf*l(tn,s)o”’z(s)rl“(s)A
[v(t,)]" @ H(o(t).T)™™

Hence, (29) implies

lim ! et N (t,5) 0 ()5 ()

= g H (G(tn)’TO) To [5“5(0-(5)) R(S,T)T
This contradicts (14). Therefore (22) holds. Noting ‘{’(TO) < a)(TO) for
To € [T,OO)T , by using (22), we obtain

fr ST ENRET) g ) pos r STODROT) 75 ) ps o
5 “(s)o"(s)r(s) 5 “(s)o"(s)r(s)

This contradicts (15).

If case (II) holds, from (9), by Lemma 6 !LT X(t) =0. The proof is complete.

Theorem 2 Assume that (8), (9), (12), (13), (15) and r*(t)<0 hold, where
H,h and & are defined in Theorem 1. Furthermore, assume that there is a
real rd-continuous function W¥': ['[0,00)T — R such that

. 1 ot
IlrgLnfmeo( H (o(t).5)Q(s)As <o, (30)
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.. 1 oft
Ilrtranmeo() H(o(t),s)Q(s)

B hf“(t,s)[a“()rl(s)]a
(a+1)"[s*5(o(s))R(s,T)]"

for T, e[T,OO)T, where Q(t),‘l‘(t) are defined in Theorem 1. Then every
solution X(t) of Equation (1) is either oscillatory or converges to zero.

(31)

As> ¥ (Ty),

S
S

Proof Assume that (1) has a nonoscillatory solution X(t) on ['[0,00)1T .
Without loss generality we may assume that there exists sufficiently large T >t
such that X(t)>0 and X[T(t)] >0 for all te[T,OO)T. By Lemma 1, we see
that x(t) satisfies either case (I) or case (II).

If case (I) holds, proceeding as in the proof of Theorem 1, we get

1 e
H (O'(t),TO)J.TO( ){H (e(t):5)Q(s)

B hf*l(t,s)[a“(s)rl(s)]a
(a +1)“+l[s“5(o-(s)) R(s,T)]a

From (31), we obtain

H(o(t),s)Q(s)As 2 ¥ (T,); (32)

and

o W (ts)[o"(s)n(s)]
a+1)"[s*5(c(s))R(sT)]'

(
2Iiminf;r(t){H(a(t),S)Q(S) (33)

oe H (O_(t)’To)

As

o

el ],
(1) [s°5(o ()R(sT)]

>¥(T,).

Using (30) and (33), we get

liminf — [ h* (ts)[ " () (s) |
S H (@ (D)) (@+1)[s%5(o(s))R(s.T)]

Thus, there exists a sequence {tn}o:zl: t, e [TO,OO)1T with lim___t = such
that

AS < 00,
a
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ha+l t, a a
R S () DTG | M
" H (o (6)T) ™ (a+1)[s%5(o(s))R(s.T)]
We define u (t) and V(t) also, as in the proof of Theorem 1. From (18) and
(32), we obtain

Iirgswup[v(t) —u (t)] <o(T,)- Iirtrliwnf H (o(t),s)Q(s)As < 0.

|
H(o(t),T,)®
For the above sequence {t,}" ,we get

lim[v(t,)-u(t,)]< Iirp_}sﬁoup[v(t) —u(t)]<oe.

n—o0

Similar to the proof of Theorem 1, we get (22). The rest of the proof is similar
to that of Theorem 1, and hence is omitted. The proof is complete.
Remark 1 From Theorems 1 and 2, we can obtain different sufficient
conditions for the oscillation of Equation (1) with different choices of the functions
t+1)"
0 and H .For example, H (t,s) = (t—s)m or H (t,S) :(In Ll] .
S+
Remark 2 The theorems in this paper are new even for the cases of T=R
and T=7.

Example 1 Consider the third-order nonlinear delay dynamic equation
A

t[(tizxA (t)]AJz +i8(x(%nz [1+In[l+ X2 (%Dj:o, ted?, t>t, =2 (34)

t3

|~

Here azg, nt)==, nt)=t, q(t)=%, f(x):x§(1+ln(1+x2))

w| oo

t
and r(t):§<t.
The conditions (H,)-(H,) are clearly satisfied, (H,) holds with K=1.

f(x) 3
X—a:1+|n(1+XZ)ZK >0. rlA(t):—F<0,and

Loq(s)r (s)as=], 5 S| As= [stas =,
S3
1

01 e . .
Lomﬁ {mj‘sq(aumu} AsAt
= f:tzr’{gfiawr AsAt
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so (8), (9) hold. For larger enough t>T , we have

R(t,T)z_[t[iJaAs='[ls_zAs=t52_T5 >1.
rz(s) ! 25 _1
Let 5(t):t,since O'(t):2t,wehave
ow=rata(et0) 2| <
Let H (t S)z(t—s)z, that there exists a function h(t,s):—4(t_s): such
(2t—s)s
that
H (o (1).5)+ (5;8)+ H (o-(t),s)z—hé(;’s S‘)) Hat (o (1), 5)
It follows that
inf | limin M =inf|limin (2t—s)2 =1l<o
o< i S e
sl 1 oft) hf*l(t,s)[o“(s)rl(s)]a s<2%'T04<2_6 ;
'prH(a(t)%)Lo [s“5(c(s))R(s.T)]" EErT

s0 (12), (13) and (14) hold. Let (1) :%,we have

ERCECHC R C
and
imsu 1 a(t) o(t),s)Q(s)- hi”l(t’s)[da (S)H(S)T S
! peup (a(t),TO)ITO H{e(t).s)Q (a+1)a+1[s“5(0'(5))R(S,T)T}A
N 2 2* ST RY

28 27 a7
T3 8)3 -\r4 2T8 0
j 0 (3) (1— 2 )T0 0
Then, by Theorem 1, every solution X(t) of Equation (34) is either oscillatory

or converges to zero. But the results in [18] cannot be applied in (34).
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