
Wireless Sensor Network, 2008, 1, 1-69
Published Online June 2008 in SciRes (http://www.srpublishing.org/journal/wsn/).

Copyright © 2008 SciRes. Wireless Sensor Network, 2008, 1, 1-69

 An Energy-Efficient MAC Protocol for
Wireless Sensor Networks

Wei YE1, John HEIDEMANN1, Deborah ESTRIN2
1Information Science Institute, University of Southern California, Los Angeles, USA

2Computer Science Department, University of California, Los Angeles, USA

Abstract

This paper proposes S-MAC, a medium-access control (MAC) protocol designed for wireless sensor
networks. Wireless sensor networks use battery-operated computing and sensing devices. A network of these
devices will collaborate for a common application such as environmental monitoring. We expect sensor
networks to be deployed in an ad hoc fashion, with individual nodes remaining largely inactive for long
periods of time, but then becoming suddenly active when something is detected. These characteristics of
sensor networks and applications motivate a MAC that is different from traditional wireless MACs such as
IEEE 802.11 in almost every way: energy conservation and self-configuration are primary goals, while per-
node fairness and latency are less important. S-MAC uses three novel techniques to reduce energy
consumption and support self-configuration. To reduce energy consumption in listening to an idle channel,
nodes periodically sleep. Neighboring nodes form virtual clusters to auto-synchronize on sleep schedules.
Inspired by PAMAS, S-MAC also sets the radio to sleep during transmissions of other nodes. Unlike
PAMAS, it only uses in-channel signaling. Finally, S-MAC applies message passing to reduce contention
latency for sensor-network applications that require store-and-forward processing as data move through the
network. We evaluate our implementation of S-MAC over a sample sensor node, the Mote, developed at
University of California, Berkeley. The experiment results show that, on a source node, an 802.11-like MAC
consumes 2–6 times more energy than S-MAC for traffic load with messages sent every 1–10s.

Keywords: Medium-access Control (MAC), Wireless Sensor Networks

1. Introduction

Wireless sensor networking is an emerging technology
that has a wide range of potential applications including
environment monitoring, smart spaces, medical systems
and robotic exploration. Such a network normally
consists of a large number of distributed nodes that
organize themselves into a multi-hop wireless network.
Each node has one or more sensors, embedded
processors and low-power radios, and is normally
battery operated. Typically, these nodes coordinate to
perform a common task.

Like in all shared-medium networks, medium access
control (MAC) is an important technique that enables the
successful operation of the network. One fundamental
task of the MAC protocol is to avoid collisions so that
two interfering nodes do not transmit at the same time.

There are many MAC protocols that have been
developed for wireless voice and data communication
networks. Typical examples include the time division
multiple access (TDMA), code division multiple access
(CDMA), and contention-based protocols like IEEE
802.11 [1].

To design a good MAC protocol for the wireless
sensor networks, we have considered the following
attributes. The first is the energy efficiency. As stated
above, sensor nodes are likely to be battery powered,
and it is often very difficult to change or recharge
batteries for these nodes. In fact, someday we expect
some nodes to be cheap enough that they are discarded
rather than recharged. Prolonging network lifetime for
these nodes is a critical issue. Another important
attribute is the scalability to the change in network size,
node density and topology. Some nodes may die over
time; some new nodes may join later; some nodes may

60 W. YE ET AL.

Copyright © 2008 SciRes. Wireless Sensor Network, 2008, 1, 1-69

move to different locations. The network topology
changes over time as well due to many reasons. A good
MAC protocol should easily accommodate such network
changes. Other important attributes include fairness,
latency, and throughput and bandwidth utilization. These
attributes are generally the primary concerns in
traditional wireless voice and data networks, but in
sensor networks they are secondary.

This paper presents sensor-MAC (S-MAC), a new
MAC protocol explicitly designed for wireless sensor
networks. While reducing energy consumption is the
primary goal in our design, our protocol also has good
scalability and collision avoidance capability. It achieves
good scalability and collision avoidance by utilizing a
combined scheduling and contention scheme. To achieve
the primary goal of energy efficiency, we need to
identify what are the main sources that cause inefficient
use of energy as well as what trade-offs we can make to
reduce energy consumption.

We have identified the following major sources of
energy waste. The first one is collision. When a
transmitted packet is corrupted it has to be discarded,
and the follow-on retransmissions increase energy
consumption. Collision increases latency as well. The
second source is overhearing, meaning that a node picks
up packets that are destined to other nodes. The third
source is control packet overhead. Sending and receiving
control packets consumes energy too, and less useful
data packets can be transmitted. The last major source of
inefficiency is idle listening, i.e., listening to receive
possible traffic that is not sent. This is especially true in
many sensor network applications. If nothing is sensed,
nodes are in idle mode for most of the time. However, in
many MAC protocols such as IEEE 802.11 or CDMA
nodes must listen to the channel to receive possible
traffic. Many measurements have shown that idle
listening consumes 50–100% of the energy required for
receiving. For example, Stemm and Katz measure that
the idle:receive:send ratios are 1:1.05:1.4 [2], while the
Digitan 2 Mbps Wireless LAN module (IEEE
802.11/2Mbps) specification shows idle:receive:send
ratios is 1:2:2.5 [3].

S-MAC tries to reduce the waste of energy from all
the above sources. In exchange we accept some
reduction in both per-hop fairness and latency. Although
per-hop fairness and latency are reduced, we will argue
that the reduction does not necessarily result in lower
end-to-end fairness and latency.

In traditional wireless voice or data networks, each
user desires equal opportunity and time to access the
medium, i.e., sending or receiving packets for their own
applications. Perhop MAC level fairness is thus an
important issue. However, in sensor networks, all nodes
cooperate for a single common task. Normally there is
only one application. At certain time, a node may have
dramatically more data to send than some other nodes. In
this case fairness is not important as long as application-

level performance is not degraded. In our protocol, we
re-introduce the concept of message passing to
efficiently transmit a very long message. The basic idea
is to divide the long message into small fragments and
transmit them in a burst. The result is that a node that
has more data to send gets more time to access the
medium. This is unfair from a per-hop, MAC level
perspective, for those nodes that only have some short
packets to send, since their short packets have to wait a
long time for very long packets. However, as we will
show later, message passing can achieve energy savings
by reducing control overhead and avoiding overhearing.

Latency can be important or unimportant depending
on what application is running and the node state.
During a period that there is no sensing event, there is
normally very little data flowing in the network. Most of
the time nodes are in idle state. Sub-second latency is
not important, and we can trade it off for energy savings.
S-MAC therefore lets nodes periodically sleep if
otherwise they are in the idle listening mode. In the sleep
mode, a node will turn off its radio. The design reduces
the energy consumption due to idle listening. However,
the latency is increased, since a sender must wait for the
receiver to wake up before it can send out data.

An important feature of wireless sensor networks is
the innetwork data processing. It can greatly reduce
energy consumption compared to transmitting all the
raw data to the end node [4,5,6]. In-network processing
requires store-andforward processing of messages. A
message is a meaningful unit of data that a node can
process (average or filter, etc.). It may be long and
consists of many small fragments. In this case, MAC
protocols that promote fragment-level fairness actually
increase message-level latency for the application. In
contrast, message passing reduces message-level latency
by trading off the fragment-level fairness.

To demonstrate the effectiveness and measure the
performance of our MAC protocol, we have
implemented it on our testbed wireless sensor nodes,
Motes, developed by University of California, Berkeley
[7]. The mote has a 8-bit Atmel AT90LS8535
microcontroller running at 4 MHz. It has a low power
radio transceiver module TR1000 from RF Monolithics,
Inc [8], which operates at 916.5 MHz frequency and
provides a transmission rate of 19.2 Kbps. The mote
runs on a very small event-driven operating system
called TinyOS [9]. In order to compare the performance
of our protocol with some other protocols, we also
implemented a simplified IEEE 802.11 MAC on this
platform.

The contributions of this work are therefore:
 The scheme of periodic listen and sleep reduces

energy consumption by avoiding idle listening. The
use of synchronization to form virtual clusters of
nodes on the same sleep schedule. These schedules
coordinate nodes to minimize additional latency.

 The use of in-channel signaling to put each node to

AN ENERGY-EFFICIENT MAC PROTOCOL FOR WIRELESS SENSOR NETWORKS 61

Copyright © 2008 SciRes. Wireless Sensor Network, 2008, 1, 1-69

sleep when its neighbor is transmitting to another
node. This method avoids the overhearing problem
and is inspired by PAMAS [10], but does not require
an additional channel.

 Applying message passing to reduce application-
perceived latency and control overhead. Per-node
fragment-level fairness is reduced since sensor
network nodes are often collaborating towards a
single application.

 Evaluating an implementation of our new MAC over
sensornet specific hardware.

2. Related Work

The medium access control is a broad research area, and
many researchers have done research work in the new
area of low power and wireless sensor networks
[11,12,13,14].

Current MAC design for wireless sensor networks
can be broadly divided into contention-based and
TDMA protocols. The standardized IEEE 802.11
distributed coordination function (DCF) [1] is an
example of the contention-based protocol, and is mainly
built on the research protocol MACAW [15]. It is widely
used in ad hoc wireless networks because of its
simplicity and robustness to the hidden terminal problem.
However, recent work [2] has shown that the energy
consumption using this MAC is very high when nodes
are in idle mode. This is mainly due to the idle listening.
PAMAS [10] made an improvement by trying to avoid
the overhearings among neighboring nodes. Our paper
also exploits similar method for energy savings. The
main difference of our work with PAMAS is that we do
not use any out-of-channel signaling. Whereas in
PAMAS, it requires two independent radio channels,
which in most cases indicate two independent radio
systems on each node. PAMAS does not address the
issue of reduce idle listening.

The other class of MAC protocols are based on
reservation and scheduling, for example TDMA-based
protocols. TDMA protocols have a natural advantage of
energy conservation compared to contention protocols,
because the duty cycle of the radio is reduced and there
is no contention-introduced overhead and collisions.
However, using TDMA protocol usually requires the
nodes to form real communication clusters, like
Bluetooth [16,17] and LEACH [13]. Managing inter-
cluster communication and interference is not an easy
task. Moreover, when the number of nodes within a
cluster changes, it is not easy for a TDMA protocol to
dynamically change its frame length and time slot
assignment. So its scalability is normally not as good as
that of a contention-based protocol. For example,
Bluetooth may have at most 8 active nodes in a cluster.

 Sohrabi and Pottie [12] proposed a self-organization
protocol for wireless sensor networks. Each node
maintains a TDMA like frame, called super frame, in

which the node schedules different time slots to
communicate with its known neighbors. At each time
slot, it only talks to one neighbor. To avoid interference
between adjacent links, the protocol assigns different
channels, i.e., frequency (FDMA) or spreading code
(CDMA), to potentially interfering links. Although the
super frame structure is similar to a TDMA frame, it
does not prevent two interfering nodes from accessing
the medium at the same time. The actual multiple access
is accomplished by FDMA or CDMA. A drawback of
the scheme is its low bandwidth utilization. For example,
if a node only has packets to be sent to one neighbor, it
cannot reuse the time slots scheduled to other neighbors.

Piconet [11] is an architecture designed for low-
power ad hoc wireless networks. One interesting feature
of piconet is that it also puts nodes into periodic sleep
for energy conservation. The scheme that piconet uses to
synchronize neighboring nodes is to let a node broadcast
its address before it starts listening. If a node wants to
talk to a neighboring node, it must wait until it receives
the neighbor’s broadcast.

Woo and Culler [14] examined different
configurations of carrier sense multiple access (CSMA)
and proposed an adaptive rate control mechanism,
whose main goal is to achieve fair bandwidth allocation
to all nodes in a multi-hop network. They have used the
motes and TinyOS platform to test and measure different
MAC schemes. In comparison, our approach does not
promote per-node fairness, and even trade it off for
further energy savings.

3. Sensor-MAC Protocol Design

The main goal in our MAC protocol design is to reduce
energy consumption, while supporting good scalability
and collision avoidance. Our protocol tries to reduce
energy consumption from all the sources that we have
identified to cause energy waste, i.e., idle listening,
collision, overhearing and control overhead. To achieve
the design goal, we have developed the SMAC that
consists of three major components: periodic listen and
sleep, collision and overhearing avoidance, and message
passing. Before describing them we first discuss our
assumptions about the wireless sensor network and it
applications.

3.1. Network and Application Assumptions

Since sensor networks are somewhat different than
traditional IP networks or ad hoc networks of laptop
computers, we next summarize our assumptions about
sensor networks and applications.

We expect sensor networks to be composed of many
small nodes deployed in an ad hoc fashion. Sensor
networks will be composed of many small nodes to take
advantage of physical proximity to the target to simplify
signal processing. The large number of nodes can also

62 W. YE ET AL.

Copyright © 2008 SciRes. Wireless Sensor Network, 2008, 1, 1-69

take advantage of short-range, multi-hop communication
(instead of long-range communication) to conserve
energy [4]. Most communication will be between nodes
as peers, rather than to a single base-station. Because
there are many nodes, they will be deployed casually in
an ad hoc fashion, rather than carefully positioned.
Nodes must therefore self-configure.

We expect most sensor networks to be dedicated to a
single application or a few collaborative applications,
thus rather than node-level fairness (like in the Internet),
we focus on maximizing system-wide application
performance.

In-network processing is critical to sensor network
lifetime [5,6]. Since sensor networks are committed to
one or a few applications, application-specific code can
be distributed through the network and activated when
necessary or distributed on-demand. Techniques such as
data aggregation can reduce traffic, while collaborative
signal processing can reduce traffic and improve sensing
quality. In-network processing implies that data will be
processed as whole messages at a time in store-and-
forward fashion, so packet or fragment-level interleaving
from multiple sources only increases overall latency.

Finally, we expect that applications will have long
idle periods and can tolerate some latency. In sensor
networks, the application such as surveillance or
monitoring will be vigilant for long periods of time, but
largely inactive until something is detected. For such
applications, network lifetime is critical. These classes
of applications can often also tolerate some additional
latency. For example, the speed of the sensed object
places a bound on how rapidly the network must detect
an object. (One application-level approach to manage
latency is to deploy a slightly larger sensor network and
have edge nodes raised the network to heightened
awareness when something is detected.)

These assumptions about the network and application
strongly influence our MAC design and motivate its
differences from existing protocols such as IEEE 802.11.

3.2. Periodic Listen and Sleep

As stated above, in many sensor network applications,
nodes are in idle for a long time if no sensing event
happens. Given the fact that the data rate during this
period is very low, it is not necessary to keep nodes
listening all the time. Our protocol reduces the listen
time by letting node go into periodic sleep mode. For
example, if in each second a node sleeps for half second
and listens for the other half; its duty cycle is reduced to
50%. So we can achieve close to 50% energy savings.

3.2.1. Basic Scheme

The basic scheme is shown in Figure 1. Each node goes
to sleep for some time, and then wakes up and listens to
see if any other node wants to talk to it. During sleep,

the node turns off its radio, and sets a timer to awake it
later.

The duration of time for listening and sleeping can be
selected according to different application scenarios. For
simplicity these values are the same for all the nodes.

Our scheme requires periodic synchronization among
neighboring nodes to remedy their clock drift. We use
two techniques to make it robust to synchronization
errors. First, all timestamps that are exchanged are
relative rather than absolute. Second, the listen period is
significantly longer than clock error or drift. For
example, the listen duration of 0.5s is more than 105
times longer than typical clock drift rates. Compared
with TDMA schemes with very short time slots, our
scheme requires much looser synchronization among
neighboring nodes. All nodes are free to choose their
own listen/sleep schedules. However, to reduce control
overhead, we prefer neighboring nodes to synchronize
together. That is, they listen at the same time and go to
sleep at the same time. It should be noticed that not all
neighboring nodes can synchronize together in a multi-
hop network. Two neighboring nodes A and B may have
different schedules if they each in turn must synchronize
with different nodes, C and D, respectively, as shown in
Figure 2.

Figure 1. Periodic listen and sleep

Figure 2. Neighboring nodes A and B have different
schedules. Thay synchronize with nodes C and D
respectively.

Nodes exchange their schedules by broadcasting it to
all its immediate neighbors. This ensures that all
neighboring nodes can talk to each other even if they
have different schedules. For example, in Figure 2 if
node A wants to talk to node B, it just waits until B is
listening. If multiple neighbors want to talk to a node,
they need to contend for the medium when the node is
listening. The contention mechanism is the same as that
in IEEE 802.11, i.e., using RTS (Request To Send) and
CTS (Clear To Send) packets. The node who first sends
out the RTS packet wins the medium, and the receiver
will reply with a CTS packet. After they start data
transmission, they do not follow their sleep schedules
until they finish transmission.

Another characteristic of our scheme is that it forms
nodes into a flat topology. Neighboring nodes are free to
talk to each other no matter what listen schedules they
have. Synchronized nodes from a virtual cluster. But
there is no real clustering and thus no problems of inter-

AN ENERGY-EFFICIENT MAC PROTOCOL FOR WIRELESS SENSOR NETWORKS 63

Copyright © 2008 SciRes. Wireless Sensor Network, 2008, 1, 1-69

cluster communications and interference. This scheme is
quite easy to adapt to topology changes. We will talk
about this issue later.

The downside of the scheme is that the latency is
increased due to the periodic sleep of each node.
Moreover, the delay can accumulate on each hop. So the
latency requirement of the application places a
fundamental limit on the sleep time.

3.2.2. Choosing and Maintaining Schedules

Before each node starts its periodic listen and sleep, it
needs to choose a schedule and exchange it with its
neighbors. Each node maintains a schedule table that
stores the schedules of all its known neighbors. It
follows the steps below to choose its schedule and
establish its schedule table.

1) The node first listens for a certain amount of time. If

it does not hear a schedule from another node, it
randomly chooses a time to go to sleep and
immediately broadcasts its schedule in a SYNC
message, indicating that it will go to sleep after t
seconds. We call such a node a synchronizer, since it
chooses its schedule independently and other nodes
will synchronize with it.

2) If the node receives a schedule from a neighbor
before choosing its own schedule, it follows that
schedule by setting its schedule to be the same. We
call such a node a follower. It then waits for a random
delay td and rebroadcasts this schedule, indicating
that it will sleep in t−td seconds. The random delay is
for collision avoidance, so that multiple followers
triggered from the same synchronizer do not
systematically collide when rebroadcasting the
schedule.

3) If a node receives a different schedule after it selects
and broadcasts its own schedule, it adopts both
schedules (i.e., it schedules itself to wake up at the
times of both is neighbor and itself). It broadcasts it
own schedule before going to sleep.

We expect that nodes only rarely adopt multiple

schedules, since every node tries to follow existing
schedules before choosing an independent one. On the
other hand, it is possible that some neighboring nodes
fail to discover each other at beginning due to collisions
when broadcasting schedules. They may still find each
other later in their subsequent periodic listening.

To illustrate this algorithm, consider a network where
all nodes can hear each other. The timer of one node will
fire first and its broadcast will synchronize all of its
peers on its schedule. If instead two nodes independently
assign schedules (either because they cannot hear each
other, or because they happen to transmit at nearly the
same time), those nodes on the border between the two
schedules will adopt both. In this way, a node only needs
to send once for a broadcast packet. The disadvantage is

that these border nodes have less time to sleep and
consume more energy than others.

Another option is to let the nodes on the border adopt
only one schedule, which is the one it receives first.
Since it knows another schedule that some other
neighbors follow, it can still talk to them. However, for
broadcast packets, it needs to send twice to the two
different schedules. The advantage is that the border
nodes have the same simple pattern of period listen and
sleep as other nodes.

3.2.3. Maintaining Synchronization

The listen/sleep scheme requires synchronization among
neighboring nodes. Although the long listen time can
tolerate fairly large clock drift, neighboring nodes still
need to periodically update each other their schedules to
prevent long-time clock drift. The updating period can
be quite long. The measurements on our testbed nodes
show that it can be on the order of tens of seconds.

Updating schedules is accomplished by sending a
SYNC packet. The SYNC packet is very short, and
includes the address of the sender and the time of its
next sleep. The next-sleep time is relative to the moment
that the sender finishes transmitting the SYNC packet,
which is approximately when receivers get the packet
(since propagation delays are short). Receivers will
adjust their timers immediately after they receive the
SYNC packet. A node will go to sleep when the timer
fires.

In order for a node to receive both SYNC packets and
data packets, we divide its listen interval into two parts.
The first part is for receiving SYNC packets, and the
second one is for receiving RTS packets, as shown in
Figure 3. Each part is further divided into many time
slots for senders to perform carrier sense. For example,
if a sender wants to send a SYNC packet, it starts carrier
sense when the receiver begins listening. It randomly
selects a time slot to finish its carrier sense. If it has not
detected any transmission by the end of the time slot, it
wins the medium and starts sending its SYNC packet at
that time. The same procedure is followed when sending
data packets.

Figure 3. Timing relationship between a receiver and
different senders. CS stands for carrier sense.

64 W. YE ET AL.

Copyright © 2008 SciRes. Wireless Sensor Network, 2008, 1, 1-69

Figure 3 also shows the timing relationship of three
possible situations that a sender transmits to a receiver.
CS stands for carrier sense. In the figure, sender 1 only
sends a SYNC packet. Sender 2 only wants to send data.
Sender 3 sends a SYNC packet and a RTS packet.

Each node periodically broadcasts SYNC packets to
its neighbors even if it has no followers. This allows
new nodes to join an existing neighborhood. The new
node follows the same procedure in the above subsection
to choose its schedule. The initial listen period should be
long enough so that it is able to learn and follow an
existing schedule before choosing an independent one.

3.3. Collision and Overhearing Avoidance

Collision avoidance is a basic task of MAC protocols.
SMAC adopts a contention-based scheme. It is common
that any packet transmitted by a node is received by all
its neighbors even though only one of them is the
intended receiver. Overhearing makes contention-based
protocols less efficient in energy than TDMA protocols.
So it needs to be avoided.

3.3.1. Collision Avoidance

Since multiple senders may want to send to a receiver at
the same time, they need to contend for the medium to
avoid collisions. Among contention based protocols, the
802.11 does a very good job of collision avoidance. Our
protocol follows similar procedures, including both
virtual and physical carrier sense and RTS/CTS
exchange. We adopt the RTS/CTS mechanism to address
the hidden terminal problem [15].

There is a duration field in each transmitted packet
that indicates how long the remaining transmission will
be. So if a node receives a packet destined to another
node, it knows how long it has to keep silent. The node
records this value in a variable called the network
allocation vector (NAV) [1] and sets a timer for it. Every
time when the NAV timer fires, the node decrements the
NAV value until it reaches zero. When a node has data
to send, it first looks at the NAV. If its value is not zero,
the node determines that the medium is busy. This is
called virtual carrier sense.

Physical carrier sense is performed at the physical
layer by listening to the channel for possible
transmissions. The procedure was described in section
3.2.3. The randomized carrier sense time is very
important for collision avoidance. The medium is
determined as free if both virtual and physical carrier
sense indicates that it is free.

All senders perform carrier sense before initiating a
transmission. If a node fails to get the medium, it goes to
sleep and wakes up when the receiver is free and
listening again. Broadcast packets are sent without using
RTS/CTS. Unicast packets follow the sequence of
RTS/CTS/DATA/ACK between the sender and the

receiver.

3.3.2. Overhearing Avoidance

In 802.11 each node keeps listening to all transmissions
from its neighbors in order to perform effective virtual
carrier sensing. As a result, each node overhears a lot of
packets that are not directed to it. This is a significant
waste of energy, especially when node density is high
and traffic load is heavy.

Our protocol tries to avoid overhearing by letting
interfering nodes go to sleep after they hear an RTS or
CTS packet. Since DATA packets are normally much
longer than control packets, the approach prevents
neighboring nodes from overhearing long DATA
packets and the following ACKs. In next subsection we
describe how to efficiently transmit a long packet
combining with the overhearing avoidance. Now we
look at which nodes should go to sleep when there is an
active transmission going on.

As shown in Figure 4, node A, B, C, D, E, and F
forms a multi-hop network where each node can only
hear the transmissions from its immediate neighbors.
Suppose node A is currently transmitting a data packet
to B. The question is which of the remaining nodes
should go to sleep now.

Remember that collision happens at the receiver. It is
clear that node D should go to sleep since its
transmission interferes with B’s reception. It is easy to
show that node E and F do not produce interference, so
they do not need to go to sleep. Should node C go to
sleep? C is two-hop away from B, and its transmission
does not interfere with B’s reception, so it is free to
transmit to its other neighbors like E. However, C is
unable to get any reply from E, e.g., CTS or data,
because E’s transmission collides with A’s transmission
at node C. So C’s transmission is simply a waste of
energy. In summary, all immediate neighbors of both the
sender and the receiver should sleep after they hear the
RTS or CTS packet until the current transmission is over.

Each node maintains the NAV to indicate the activity
in its neighborhood. When a node receives a packet
destined to other nodes, it updates its NAV by the
duration field in the packet. A non-zero NAV value
indicates that there is an active transmission in its
neighborhood. The NAV value decrements every time
when the NAV timer fires. Thus a node should sleep to
avoid overhearing if its NAV is not zero. It can wake up
when its NAV becomes zero.

Figure 4. Who should sleep when node A is transmitting to
B?

3.4. Message Passing

AN ENERGY-EFFICIENT MAC PROTOCOL FOR WIRELESS SENSOR NETWORKS 65

Copyright © 2008 SciRes. Wireless Sensor Network, 2008, 1, 1-69

This subsection describes how to efficiently transmit
a long message in both energy and latency. A message is
the collection of meaningful, interrelated units of data. It
can be a long series of packets or a short packet, and
usually the receiver needs to obtain all the data units
before it can perform in-network data processing or
aggregation.

The disadvantages of transmitting a long message as
a single packet are the high cost of re-transmitting the
long packet if only a few bits have been corrupted in the
first transmission. However, if we fragment the long
message into many independent small packets, we have
to pay the penalty of large control overhead and longer
delay. It is so because the RTS and CTS packets are
used in contention for each independent packet.

Our approach is to fragment the long message into
many small fragments, and transmit them in burst. Only
one RTS packet and one CTS packet are used. They
reserve the medium for transmitting all the fragments.
Every time a data fragment is transmitted, the sender
waits for an ACK from the receiver. If it fails to receive
the ACK, it will extend the reserved transmission time
for one more fragment, and re-transmit the current
fragment immediately.

As before, all packets have the duration field, which
is now the time needed for transmitting all the remaining
data fragments and ACK packets. If a neighboring node
hears a RTS or CTS packet, it will go to sleep for the
time that is needed to transmit all the fragments.

Switching the radio from sleep to active does not
occur instantaneously. For example, the RFM radio on
our testbed needs 20µs to switch from sleep mode to
receive mode [8]. Therefore, it is desirable to reduce the
frequency of switching modes. The message passing
scheme tries to put nodes into sleep state as long as
possible, and hence reduces switching overhead.

The purpose of using ACK after each data fragment
is to prevent the hidden terminal problem. It is possible
that a neighboring node wakes up or a new node joins in
the middle of a transmission. If the node is only the
neighbor of the receiver but not the sender, it will not
hear the data fragments being sent by the sender. If the
receiver does not send ACK frequently, the new node
may mistakenly infer from its carrier sense that the
medium is clear. If it starts transmitting, the current
transmission will be corrupted at the receiver.

Each data fragment and ACK packet also has the
duration field. In this way, if a node wakes up or a new
node joins in the middle, it can properly go to sleep no
matter if it is the neighbor of the sender or the receiver.
For example, suppose a neighboring node receives an
RTS from the sender or CTS from the receiver, it goes to
sleep for the entire message time. If the sender extends
the transmission time due to fragment losses or errors,
the sleeping neighbor will not be aware of the extension
immediately. However, the node will learn it from the
extended fragments or ACKs when it wakes up.

It is worth to note that IEEE 802.11 also has the
fragmentation support. We should point out the
difference between that scheme with our message
passing.

In 802.11, the RTS and CTS only reserve the medium
for the first data fragment and the first ACK. The first
fragment and ACK then reserves the medium for the
second fragment and ACK, and so forth. So for each
neighboring node, after it receives a fragment or an
ACK, it knows that there is one more fragment to be
sent. So it has to keep listening until all the fragments
are sent. Again, for energy-constrained nodes,
overhearing by all neighbors wastes a lot of energy.

The reason for 802.11 to do so is to promote fairness.
If the sender fails to get an ACK for any fragment, it
must give up the transmission and re-contend for the
medium. So other nodes have a chance to transmit. This
causes a long delay if the receiver really needs the entire
message to start processing. In contrast, message passing
extends the transmission time and re-transmits the
current fragment. Thus it has fewer contentions and a
small latency. There should be a limit on how many
extensions can be made for each message in case that the
receiver is really dead or lost in connection during the
transmission. However, for sensor networks,
application-level fairness is the goal as opposed to per-
node fairness.

3.5. Energy Savings vs. Increased Latency

This subsection analyzes the trade-offs between the
energy savings and the increased latency due to nodes
sleep schedules. We compare our protocol with
protocols that do not have periodic sleep such as the
IEEE 802.11, for a packet moving through a multi-hop
network; it experiences the following delays at each hop:

Carrier sense delay is introduced when the sender
performs carrier sense. Its value is determined by the
contention window size.

Backoff delay happens when carrier sense failed,
either because the node detects another transmission or
because collision occurs.

Transmission delay is determined by channel
bandwidth, packet length and the coding scheme
adopted.

Propagation delay is determined by the distance
between the sending and receiving nodes. In sensor
networks, node distance is normally very small, and the
propagation delay can normally be ignored.

Processing delay. The receiver needs to process the
packet before forwarding it to the next hop. This delay
mainly depends on the computing power of the node and
the efficiency of innetwork data processing algorithms.

Queuing delay depends on the traffic load. In the
heavy traffic case, queuing delay becomes a dominant
factor.

The above delays are inherent to a multi-hop network

66 W. YE ET AL.

Copyright © 2008 SciRes. Wireless Sensor Network, 2008, 1, 1-69

using contention-based MAC protocols. These factors
are the same for both S-MAC and 802.11-like protocols.
An extra delay in S-MAC is caused by nodes periodic
sleeping. When a sender gets a packet to transmit, it
must wait until the receiver wakes up. We call it sleep
delay since it is caused by the sleep of the receiver.

We call a complete cycle of the listen and sleep a
frame. Assume a packet arrives at the sender with equal
probability in time within a frame. So the average sleep
delay on the sender is

/ 2s frameD T= (1)

Where

f rame listen sleepT T T= + (2)

Comparing with protocols without periodic sleep, the
relative energy savings in S-MAC is

1sleep listen
s

frame frame

T TE
T T

= = − (3)

The last item in the above equation is the duty cycle
of the node. It is desirable to have the listen time as short
as possible so that for a certain duty cycle, the average
sleep delay is short. In our implementation we set the
listen time as 300ms. Figure 5 shows the percentage of
energy savings Es vs. average sleep delay Ds on each
node for the listen time of 300ms and 200ms. We can
see that even if the sleep time is zero (no sleeping) there
is still a delay. This effect is because contention only
starts at the beginning of each listen interval.

Figure 5. Energy savings vs. average sleep delay for the
listen time of 30ms.

4. Protocol Implementation

The purpose of our implementation is to demonstrate the
effectiveness of our protocol and to compare our
protocol with 802.11 through some basic experiments.

4.1. Testbed

We use Rene Motes, developed at UCB [7], as our

development platform and testbed (see Figure 6). A
mote is slightly larger than a quarter. The heart of the
node is the Atmel AT90LS8535 microcontroller [18],
which has 8K bytes of programmable flash and 512
bytes of data memory.

Figure 6. The UCB Rene Mote.

The radio transceiver on the mote is the model
TR1000 from RF Monolithics, Inc [8]. When using the
OOK (on-off keyed) modulation, it provides a
transmission rate of 19.2 Kbps. It has three working
modes, i.e., receiving, transmitting and sleep, each
drawing the input current of 4.5mA, 12mA (peak) and
5µA respectively.

Our motes use TinyOS, an efficient event-driven
operating system [9,19]. It provides the basic mechanism
for packet transmitting, receiving and processing.
TinyOS promotes modularity, data sharing and reuse.

As of July 2001, the standard release of TinyOS has
only one type of packet, which consists of a header, the
payload and a cyclic redundancy check (CRC). The
length of the header or the payload can be changed to
different values. However, once they are defined, all
packets have the same length and format. In our MAC
implementation, the header, payload and CRC fields
have 6B, 30B and 2B respectively.

Normally the control packets, such as RTS, CTS and
ACK, are very short and without payload. So we have
created another packet type in TinyOS, the control
packet, which only has the 6-byte header and the 2-byte
CRC. We have modified several TinyOS components to
accommodate the new packet. This enables us to
efficiently implement MAC protocols and accurately
measure their performance.

4.2. Implementation of MAC Protocols

We have implemented three MAC modules on the mote
and TinyOS platform, as listed below.

1) Simplified IEEE 802.11 DCF
2) Message passing with overhearing avoidance
3) The complete S-MAC

For the purpose of performance comparison, we first

AN ENERGY-EFFICIENT MAC PROTOCOL FOR WIRELESS SENSOR NETWORKS 67

Copyright © 2008 SciRes. Wireless Sensor Network, 2008, 1, 1-69

implemented a simplified version of IEEE 802.11 DCF.
It has the following major pieces: physical and virtual
carrier sense, backoff and retry, RTS/CTS/DATA/ACK
packet exchange, and fragmentation support.

The duration of each carrier sense is a random time
within the contention window. The randomization is
very important to avoid collisions at the first step. For
simplicity, the contention window does not
exponentially increase when backoff happens. The
fragmentation support follows the same procedure as in
IEEE 802.11 standard [1] and is described in Section 3
of this paper.

With 802.11 the radio of each node does not go into
sleep mode. It is either in listen/receiving mode or
transmitting mode. The second module is the message
passing with overhearing avoidance. It achieves energy
savings by avoiding overhearing, reducing control
overhead and contention times. It does not include the
period listen and sleep. So there is no additional delay
comparing with the simplified IEEE 802.11. The radio
of each node goes into the sleep mode only when its
neighbors are in transmission.

With the message passing module we have
incorporated periodic listen and sleep, and completed
most basic functionalities in S-MAC. Currently, the
listen time for each node is 300ms, and sleep time can be
changed to different values, such as 300ms, 500ms, 1s,
etc., which makes different duty cycles of the radio. We
can also specify the frequency that the SYNC packet is
sent for schedule update between neighboring nodes. In
our following experiments, we have chosen the sleep
time as 1 second and the frequency for schedule update
is 10 listen/sleep period, i.e., 13 seconds.

It should be noted that the energy savings in the
current implementation is only due to the sleep of the
radio. In other words, the microcontroller does not go to
sleep. It actually has a sleep mode, which consumes
much less energy and can be waked up by a low-
frequency watchdog timer. If we put the microcontroller
into the sleep mode as well when the radio is sleeping,
we are able to save more energy.

5. Experimentation

The main goal of the experimentation described here is
to measure the energy consumption of the radio for
using each of the MAC modules we have implemented.

5.1. Experiment Setup

Figure 7 is the topology we used in our experiments.
This is a two-hop network with two sources and two
sinks. Packets from source A flow through node C and
end at sink D, while those from B also pass through C
but end at E. The topology is simple, but it is sufficient
to show the basic characteristics of the MAC protocols.

We will look at the energy consumption of each node

when utilizing different MAC protocols and under
different traffic loads.

Figure 7. Topology used in experiments: two-hop network
with two sources and two sinks.

The two sources periodically generate a sensing
message, which is divided into some fragments. In the
simplified IEEE 802.11 MAC, these fragments are sent
in a burst, i.e., RTS/CTS is not used for each fragment.
We did not measure the 802.11 MAC without
fragmentation, which treats each fragment as an
independent packet and uses RTS/CTS for each of them,
since it is obvious that this MAC consumes much more
energy than the one with fragmentation. In our protocol,
message passing is used, and fragments of a message are
always transmitted in a burst.

We change the traffic load by varying the inter-
arrival period of the messages. If the message inter-
arrival period is 5 seconds, a message is generated every
5 seconds by each source node. In our following
experiments, the message inter-arrival period varies
from 1s to 10s.

For each traffic pattern, we have done 10 independent
tests to measure the energy consumption of each node
when using different MAC protocols. In each test, each
source periodically generates 10 messages, which in turn
is fragmented into 10 small data packets supported by
the TinyOS. Thus in each experiment, there are 200
TinyOS data packets to be passed from their sources to
their sinks. For the highest rate with a 1s interarrival
time, the wireless channel is nearly fully utilized due to
its low bandwidth.

We measure the amount of time that each node has
used to pass these packets as well as the percentage time
its radio has spent in each mode (transmitting, receiving,
listening or sleep). The energy consumption in each
node is then calculated by multiplying the time with the
required power to operate the radio in that mode. We
found the power consumption from the data sheet of the
radio transceiver, which is 13.5mW, 24.75mW and
15µW, in receiving, transmitting and sleep respectively.
There is no difference between listening and receiving in
this radio transceiver model.

5.2. Results and Analysis

The experiments are carried out on the three MAC
modules we have implemented on our testbed nodes. In

68 W. YE ET AL.

Copyright © 2008 SciRes. Wireless Sensor Network, 2008, 1, 1-69

the result graphs, the simplified IEEE 802.11 DCF is
denoted as ‘IEEE 802.11’. The message passing with
overhearing avoidance is identified as ‘Overhearing
avoidance’. The complete S-MAC protocol, which
includes all pieces of our new protocol, is denoted as
‘SMAC’.

We first look at the experiment results on the source
nodes A and B. Figure 8 is the measured average energy
consumption from these two nodes. The traffic is heavy
when the message inter-arrival time is less than 4s. In
this case, 802.11 MAC uses more than twice the energy
used by S-MAC. Since idle listening rarely happens,
energy savings from periodic sleeping is very limited. S-
MAC achieves energy savings mainly by avoiding
overhearing and efficiently transmitting a long message.

When the message inter-arrival period is larger than
4s, traffic load becomes light. In this case, the complete
S-MAC protocol has the best energy property, and far
outperforms 802.11 MAC. Message passing with
overhearing avoidance also performs better than 802.11
MAC. However, as shown in the figure, when idle
listening dominates the total energy consumption, the
periodic sleep plays a key role for energy savings. The
energy consumption of S-MAC is relatively independent
of the traffic pattern.

Compared with 802.11, message passing with
overhearing avoidance saves almost the same amount of
energy under all traffic conditions. This result is due to
overhearing avoidance among neighboring nodes A, B
and C. The number of packets to be sent by each of them
is the same in all traffic conditions.

Figure 8. Measured energy consumption in the source
nodes.

Figure 9 shows the percentage of time that the source
nodes are in the sleep mode. It is interesting that the S-
MAC protocol adjusts the sleep time according to traffic
patterns. When there is little traffic, the node has more
sleep time (although there is a limit by the duty cycle of
the node). When traffic increases, nodes have fewer
chances to go to periodic sleep and thus spend more time
in transmission.

This is a useful feature for sensor network
applications, since the traffic load indeed changes over

time. When there is no sensing event, the traffic is very
light. When some nodes detect an event, it may trigger a
big sensor like a camera, which will generate heavy
traffic. The S-MAC protocol is able to adapt to the
traffic changes. In comparison, the module of message
passing with overhearing avoidance does not have
periodic sleep, and nodes spend more and more time in
idle listening when traffic load decreases.

Figure 9. Measured percentage of time that the source
nodes in the sleep mode.

Figure 10 shows the measured energy consumption in
the intermediate node C. We can see in the light traffic
case, it still outperforms 802.11 MAC. In heave traffic
case, it consumes slightly more energy than 802.11. One
reason is that S-MAC has synchronization overhead of
sending and receiving SYNC packets. Another reason is
that S-MAC introduces more latency and actually uses
more time to pass the same amount of data.

Figure 10. Measured energy consumption in the
intermediate node.

In fact, if the traffic is extremely heavy and a node
does not have any chance to follow its sleep schedule,
the scheme of periodic listen and sleep does not benefit
at all. However, message passing and overhearing
avoidance are still effective means of saving energy.
This has been illustrated in the results of the source
nodes (Figure 8). But we cannot see similar results on
the intermediate node C, since all packet transmissions
involve this node. In this case, its energy consumption is

AN ENERGY-EFFICIENT MAC PROTOCOL FOR WIRELESS SENSOR NETWORKS 69

Copyright © 2008 SciRes. Wireless Sensor Network, 2008, 1, 1-69

about the same as that of using the 802.11 MAC.

6. Conclusions and Future Work

This paper presents a new MAC protocol for wireless
sensor networks. It has very good energy conserving
properties comparing with IEEE 802.11. Another
interesting property of the protocol is that it has the
ability to make trade-offs between energy and latency
according to traffic conditions. The protocol has been
implemented on our testbed nodes, which shows its
effectiveness.

Future work includes system scaling studies and
parameter analysis. More tests will be done on larger
testbeds with different number of nodes and system
complexity.

7. Acknowledgement

This work is supported by NSF under grant ANI-
9979457 as the SCOWR project
(http://robotics.usc.edu/projects/scowr/), and by DARPA
under grant DABT63-99-1-0011 as the SCADDS
project (http://www.isi.edu/scadds/) and under contract
N66001-00-C-8066 as the SAMAN project (http:
//www.isi.edu/saman/) via the Space and Naval Warfare
Systems Center San Diego.

The authors would like to acknowledge the
discussions and suggestions from members of the
SCOWR, SCADDS and SAMAN projects.

We would also like to thank the TinyOS group
(http:// tinyos.millennium.berkeley.edu/) at UCB for
their support with TinyOS and Motes.

8. References

[1] LAN MAN Standards Committee of the IEEE Computer

Society, “Wireless LAN Medium Access Control (MAC)
and Physical Layer (PHY) Specification,” IEEE, New
York, NY, USA, IEEE Std 802.11, 1997 edition, 1997.

[2] M. Stemm and R.H. Katz, “Measuring and Reducing
Energy Consumption of Network Interfaces in Hand-
Held Devices,” IEICE Transactions on Communications,
vol. E80-B, no. 8, pp. 1125–1131, August 1997.

[3] O. Kasten, “Energy Consumption,” Eldgenossische
Technische Hochschule Zurich,
http://www.inf.ethz.ch/~kasten/research/bathtub/energy_
consumption.html.

[4] G.J. Pottie and W.J. Kaiser, “Embedding the Internet:
Wireless Integrated Network Sensors,” Communications
of the ACM, vol. 43, no. 5, pp. 51–58, May 2000.

[5] C. Intanagonwiwat, R. Govindan, and D. Estrin,
“Directed Diffusion: A Scalable and Robust
Communication Paradigm for Sensor Networks,” in
Proceedings of the ACM/IEEE International Conference
on Mobile Computing and Networking, Boston, MA,
USA, pp. 56–67, ACM, August 2000.

[6] J. Heidemann, F. Silva, C. Intanagonwiwat, R. Govindan,
D. Estrin, and D. Ganesan, “Building Efficient Wireless
Sensor Networks with Low-Level Naming,” in
Proceedings of the Symposium on Operating Systems
Principles, Lake Louise, Banff, Canada, October 2001.

[7] http://www.cs.berkeley.edu/˜awoo/smartdust/.
[8] RF Monolithics Inc., ASH Transceiver TR1000 Data

Sheet,
http://www.rfm.com/.

[9] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and
K. Pister, “System Architecture Directions for
Networked Sensors,” in Proceedings of the 9th
International Conference on Architectural Support for
Programming Languages and Operating Systems,
Cambridge, MA, USA, Nov. 2000, pp. 93–104, ACM.

[10] S. Singh and C.S. Raghavendra, “PAMAS: Power Aware
Multi-Access Protocol with Signalling for Ad Hoc
Networks,” ACM Computer Communication Review,
vol. 28, no. 3, pp. 5–26, July 1998.

[11] F. Bennett, D. Clarke, J.B. Evans, A. Hopper, A. Jones,
and D. Leask, “Piconet: Embedded Mobile Networking,”
IEEE Personal Communications Magazine, vol. 4, no. 5,
pp. 8–15, October 1997.

[12] K. Sohrabi and G.J. Pottie, “Performance of a Novel
Selforganization Protocol for Wireless Ad Hoc Sensor
Networks,” in Proceedings of the IEEE 50th Vehicular
Technology Conference, pp. 1222–1226, 1999.

[13] W.R. Heinzelman, A. Chandrakasan, and H.
Balakrishnan, “Energy-Efficient Communication
Protocols for Wireless Microsensor Networks,” in
Proceedings of the Hawaii International Conference on
Systems Sciences, January 2000.

[14] A. Woo and D. Culler, “A Transmission Control Scheme
for Media Access in Sensor Networks,” in Proceedings
of the ACM/IEEE International Conference on Mobile
Computing and Networking, Rome, Italy, ACM, July
2001.

[15] V. Bharghavan, A. Demers, S. Shenker, and L. Zhang,
“Macaw: A Media Access Protocol for Wireless Lans,”
in Proceedings of the ACM SIGCOMM Conference,
1994.

[16] J.C. Haartsen, “The Bluetooth Radio System,” IEEE
Personal Communications Magazine, pp. 28–36,
February 2000.

[17] Bluetooth SIG Inc., “Specification of the Bluetooth
System: Core,” 2001,
http: //www.bluetooth.org/.

[18] Atmel Corporation, AVR Microcontroller AT90LS8535
Reference Manual,
http://www.atmel.com/.

[19] http://tinyos.millennium.berkeley.edu/.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /KOR <FEFFace0d488c9c8c7580020d504b9acd504b808c2a40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e0020c7740020c124c815c7440020c801c6a9d558b824ba740020ae00af340020d3ecd5680020ae30b2a5c7440020c0acc6a9d574c57c0020d569b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee575284e8e9ad88d2891cf76845370524d6253537030028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f0030028fd94e9b8bbe7f6e89816c425d4c51655b574f533002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c9069752865bc9ad854c18cea76845370524d521753703002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f300290194e9b8a2d5b9a89816c425d4c51655b57578b3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

