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Abstract 
 
This paper proposes S-MAC, a medium-access control (MAC) protocol designed for wireless sensor 
networks. Wireless sensor networks use battery-operated computing and sensing devices. A network of these 
devices will collaborate for a common application such as environmental monitoring. We expect sensor 
networks to be deployed in an ad hoc fashion, with individual nodes remaining largely inactive for long 
periods of time, but then becoming suddenly active when something is detected. These characteristics of 
sensor networks and applications motivate a MAC that is different from traditional wireless MACs such as 
IEEE 802.11 in almost every way: energy conservation and self-configuration are primary goals, while per-
node fairness and latency are less important. S-MAC uses three novel techniques to reduce energy 
consumption and support self-configuration. To reduce energy consumption in listening to an idle channel, 
nodes periodically sleep. Neighboring nodes form virtual clusters to auto-synchronize on sleep schedules. 
Inspired by PAMAS, S-MAC also sets the radio to sleep during transmissions of other nodes. Unlike 
PAMAS, it only uses in-channel signaling. Finally, S-MAC applies message passing to reduce contention 
latency for sensor-network applications that require store-and-forward processing as data move through the 
network. We evaluate our implementation of S-MAC over a sample sensor node, the Mote, developed at 
University of California, Berkeley. The experiment results show that, on a source node, an 802.11-like MAC 
consumes 2–6 times more energy than S-MAC for traffic load with messages sent every 1–10s. 
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1.  Introduction 
 
Wireless sensor networking is an emerging technology 
that has a wide range of potential applications including 
environment monitoring, smart spaces, medical systems 
and robotic exploration. Such a network normally 
consists of a large number of distributed nodes that 
organize themselves into a multi-hop wireless network. 
Each node has one or more sensors, embedded 
processors and low-power radios, and is normally 
battery operated. Typically, these nodes coordinate to 
perform a common task.  

Like in all shared-medium networks, medium access 
control (MAC) is an important technique that enables the 
successful operation of the network. One fundamental 
task of the MAC protocol is to avoid collisions so that 
two interfering nodes do not transmit at the same time. 

There are many MAC protocols that have been 
developed for wireless voice and data communication 
networks. Typical examples include the time division 
multiple access (TDMA), code division multiple access 
(CDMA), and contention-based protocols like IEEE 
802.11 [1].     

To design a good MAC protocol for the wireless 
sensor networks, we have considered the following 
attributes. The first is the energy efficiency. As stated 
above, sensor nodes are likely to be battery powered, 
and it is often very difficult to change or recharge 
batteries for these nodes. In fact, someday we expect 
some nodes to be cheap enough that they are discarded 
rather than recharged. Prolonging network lifetime for 
these nodes is a critical issue. Another important 
attribute is the scalability to the change in network size, 
node density and topology. Some nodes may die over 
time; some new nodes may join later; some nodes may 
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move to different locations. The network topology 
changes over time as well due to many reasons. A good 
MAC protocol should easily accommodate such network 
changes. Other important attributes include fairness, 
latency, and throughput and bandwidth utilization. These 
attributes are generally the primary concerns in 
traditional wireless voice and data networks, but in 
sensor networks they are secondary.  

This paper presents sensor-MAC (S-MAC), a new 
MAC protocol explicitly designed for wireless sensor 
networks. While reducing energy consumption is the 
primary goal in our design, our protocol also has good 
scalability and collision avoidance capability. It achieves 
good scalability and collision avoidance by utilizing a 
combined scheduling and contention scheme. To achieve 
the primary goal of energy efficiency, we need to 
identify what are the main sources that cause inefficient 
use of energy as well as what trade-offs we can make to 
reduce energy consumption. 

We have identified the following major sources of 
energy waste. The first one is collision. When a 
transmitted packet is corrupted it has to be discarded, 
and the follow-on retransmissions increase energy 
consumption. Collision increases latency as well. The 
second source is overhearing, meaning that a node picks 
up packets that are destined to other nodes. The third 
source is control packet overhead. Sending and receiving 
control packets consumes energy too, and less useful 
data packets can be transmitted. The last major source of 
inefficiency is idle listening, i.e., listening to receive 
possible traffic that is not sent. This is especially true in 
many sensor network applications. If nothing is sensed, 
nodes are in idle mode for most of the time. However, in 
many MAC protocols such as IEEE 802.11 or CDMA 
nodes must listen to the channel to receive possible 
traffic. Many measurements have shown that idle 
listening consumes 50–100% of the energy required for 
receiving. For example, Stemm and Katz measure that 
the idle:receive:send ratios are 1:1.05:1.4 [2], while the 
Digitan 2 Mbps Wireless LAN module (IEEE 
802.11/2Mbps) specification shows idle:receive:send 
ratios is 1:2:2.5 [3].  

S-MAC tries to reduce the waste of energy from all 
the above sources. In exchange we accept some 
reduction in both per-hop fairness and latency. Although 
per-hop fairness and latency are reduced, we will argue 
that the reduction does not necessarily result in lower 
end-to-end fairness and latency.  

In traditional wireless voice or data networks, each 
user desires equal opportunity and time to access the 
medium, i.e., sending or receiving packets for their own 
applications. Perhop MAC level fairness is thus an 
important issue. However, in sensor networks, all nodes 
cooperate for a single common task. Normally there is 
only one application. At certain time, a node may have 
dramatically more data to send than some other nodes. In 
this case fairness is not important as long as application-

level performance is not degraded. In our protocol, we 
re-introduce the concept of message passing to 
efficiently transmit a very long message. The basic idea 
is to divide the long message into small fragments and 
transmit them in a burst. The result is that a node that 
has more data to send gets more time to access the 
medium. This is unfair from a per-hop, MAC level 
perspective, for those nodes that only have some short 
packets to send, since their short packets have to wait a 
long time for very long packets. However, as we will 
show later, message passing can achieve energy savings 
by reducing control overhead and avoiding overhearing. 

Latency can be important or unimportant depending 
on what application is running and the node state. 
During a period that there is no sensing event, there is 
normally very little data flowing in the network. Most of 
the time nodes are in idle state. Sub-second latency is 
not important, and we can trade it off for energy savings. 
S-MAC therefore lets nodes periodically sleep if 
otherwise they are in the idle listening mode. In the sleep 
mode, a node will turn off its radio. The design reduces 
the energy consumption due to idle listening. However, 
the latency is increased, since a sender must wait for the 
receiver to wake up before it can send out data.  

An important feature of wireless sensor networks is 
the innetwork data processing. It can greatly reduce 
energy consumption compared to transmitting all the 
raw data to the end node [4,5,6]. In-network processing 
requires store-andforward processing of messages. A 
message is a meaningful unit of data that a node can 
process (average or filter, etc.). It may be long and 
consists of many small fragments. In this case, MAC 
protocols that promote fragment-level fairness actually 
increase message-level latency for the application. In 
contrast, message passing reduces message-level latency 
by trading off the fragment-level fairness.  

To demonstrate the effectiveness and measure the 
performance of our MAC protocol, we have 
implemented it on our testbed wireless sensor nodes, 
Motes, developed by University of California, Berkeley 
[7]. The mote has a 8-bit Atmel AT90LS8535 
microcontroller running at 4 MHz. It has a low power 
radio transceiver module TR1000 from RF Monolithics, 
Inc [8], which operates at 916.5 MHz frequency and 
provides a transmission rate of 19.2 Kbps. The mote 
runs on a very small event-driven operating system 
called TinyOS [9]. In order to compare the performance 
of our protocol with some other protocols, we also 
implemented a simplified IEEE 802.11 MAC on this 
platform.  

The contributions of this work are therefore: 
 The scheme of periodic listen and sleep reduces 

energy consumption by avoiding idle listening. The 
use of synchronization to form virtual clusters of 
nodes on the same sleep schedule. These schedules 
coordinate nodes to minimize additional latency.   

 The use of in-channel signaling to put each node to 
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sleep when its neighbor is transmitting to another 
node. This method avoids the overhearing problem 
and is inspired by PAMAS [10], but does not require 
an additional channel. 

 Applying message passing to reduce application-
perceived latency and control overhead. Per-node 
fragment-level fairness is reduced since sensor 
network nodes are often collaborating towards a 
single application. 

 Evaluating an implementation of our new MAC over 
sensornet specific hardware. 

 
2.  Related Work 
 
The medium access control is a broad research area, and 
many researchers have done research work in the new 
area of low power and wireless sensor networks 
[11,12,13,14].  

Current MAC design for wireless sensor networks 
can be broadly divided into contention-based and 
TDMA protocols. The standardized IEEE 802.11 
distributed coordination function (DCF) [1] is an 
example of the contention-based protocol, and is mainly 
built on the research protocol MACAW [15]. It is widely 
used in ad hoc wireless networks because of its 
simplicity and robustness to the hidden terminal problem. 
However, recent work [2] has shown that the energy 
consumption using this MAC is very high when nodes 
are in idle mode. This is mainly due to the idle listening. 
PAMAS [10] made an improvement by trying to avoid 
the overhearings among neighboring nodes. Our paper 
also exploits similar method for energy savings. The 
main difference of our work with PAMAS is that we do 
not use any out-of-channel signaling. Whereas in 
PAMAS, it requires two independent radio channels, 
which in most cases indicate two independent radio 
systems on each node. PAMAS does not address the 
issue of reduce idle listening. 

The other class of MAC protocols are based on 
reservation and scheduling, for example TDMA-based 
protocols. TDMA protocols have a natural advantage of 
energy conservation compared to contention protocols, 
because the duty cycle of the radio is reduced and there 
is no contention-introduced overhead and collisions. 
However, using TDMA protocol usually requires the 
nodes to form real communication clusters, like 
Bluetooth [16,17] and LEACH [13]. Managing inter-
cluster communication and interference is not an easy 
task. Moreover, when the number of nodes within a 
cluster changes, it is not easy for a TDMA protocol to 
dynamically change its frame length and time slot 
assignment. So its scalability is normally not as good as 
that of a contention-based protocol. For example, 
Bluetooth may have at most 8 active nodes in a cluster. 

 Sohrabi and Pottie [12] proposed a self-organization 
protocol for wireless sensor networks. Each node 
maintains a TDMA like frame, called super frame, in 

which the node schedules different time slots to 
communicate with its known neighbors. At each time 
slot, it only talks to one neighbor. To avoid interference 
between adjacent links, the protocol assigns different 
channels, i.e., frequency (FDMA) or spreading code 
(CDMA), to potentially interfering links. Although the 
super frame structure is similar to a TDMA frame, it 
does not prevent two interfering nodes from accessing 
the medium at the same time. The actual multiple access 
is accomplished by FDMA or CDMA. A drawback of 
the scheme is its low bandwidth utilization. For example, 
if a node only has packets to be sent to one neighbor, it 
cannot reuse the time slots scheduled to other neighbors. 

Piconet [11] is an architecture designed for low-
power ad hoc wireless networks. One interesting feature 
of piconet is that it also puts nodes into periodic sleep 
for energy conservation. The scheme that piconet uses to 
synchronize neighboring nodes is to let a node broadcast 
its address before it starts listening. If a node wants to 
talk to a neighboring node, it must wait until it receives 
the neighbor’s broadcast.  

Woo and Culler [14] examined different 
configurations of carrier sense multiple access (CSMA) 
and proposed an adaptive rate control mechanism, 
whose main goal is to achieve fair bandwidth allocation 
to all nodes in a multi-hop network. They have used the 
motes and TinyOS platform to test and measure different 
MAC schemes. In comparison, our approach does not 
promote per-node fairness, and even trade it off for 
further energy savings. 

 
3.  Sensor-MAC Protocol Design 
 
The main goal in our MAC protocol design is to reduce 
energy consumption, while supporting good scalability 
and collision avoidance. Our protocol tries to reduce 
energy consumption from all the sources that we have 
identified to cause energy waste, i.e., idle listening, 
collision, overhearing and control overhead. To achieve 
the design goal, we have developed the SMAC that 
consists of three major components: periodic listen and 
sleep, collision and overhearing avoidance, and message 
passing. Before describing them we first discuss our 
assumptions about the wireless sensor network and it 
applications. 
 
3.1.  Network and Application Assumptions 
 
Since sensor networks are somewhat different than 
traditional IP networks or ad hoc networks of laptop 
computers, we next summarize our assumptions about 
sensor networks and applications.    

We expect sensor networks to be composed of many 
small nodes deployed in an ad hoc fashion. Sensor 
networks will be composed of many small nodes to take 
advantage of physical proximity to the target to simplify 
signal processing. The large number of nodes can also 
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take advantage of short-range, multi-hop communication 
(instead of long-range communication) to conserve 
energy [4]. Most communication will be between nodes 
as peers, rather than to a single base-station. Because 
there are many nodes, they will be deployed casually in 
an ad hoc fashion, rather than carefully positioned. 
Nodes must therefore self-configure.   

We expect most sensor networks to be dedicated to a 
single application or a few collaborative applications, 
thus rather than node-level fairness (like in the Internet), 
we focus on maximizing system-wide application 
performance. 

In-network processing is critical to sensor network 
lifetime [5,6]. Since sensor networks are committed to 
one or a few applications, application-specific code can 
be distributed through the network and activated when 
necessary or distributed on-demand. Techniques such as 
data aggregation can reduce traffic, while collaborative 
signal processing can reduce traffic and improve sensing 
quality. In-network processing implies that data will be 
processed as whole messages at a time in store-and-
forward fashion, so packet or fragment-level interleaving 
from multiple sources only increases overall latency.  

Finally, we expect that applications will have long 
idle periods and can tolerate some latency. In sensor 
networks, the application such as surveillance or 
monitoring will be vigilant for long periods of time, but 
largely inactive until something is detected. For such 
applications, network lifetime is critical. These classes 
of applications can often also tolerate some additional 
latency. For example, the speed of the sensed object 
places a bound on how rapidly the network must detect 
an object. (One application-level approach to manage 
latency is to deploy a slightly larger sensor network and 
have edge nodes raised the network to heightened 
awareness when something is detected.)  

These assumptions about the network and application 
strongly influence our MAC design and motivate its 
differences from existing protocols such as IEEE 802.11. 
 
3.2.  Periodic Listen and Sleep 
 
As stated above, in many sensor network applications, 
nodes are in idle for a long time if no sensing event 
happens. Given the fact that the data rate during this 
period is very low, it is not necessary to keep nodes 
listening all the time. Our protocol reduces the listen 
time by letting node go into periodic sleep mode. For 
example, if in each second a node sleeps for half second 
and listens for the other half; its duty cycle is reduced to 
50%. So we can achieve close to 50% energy savings. 
 
3.2.1.  Basic Scheme 
 
The basic scheme is shown in Figure 1. Each node goes 
to sleep for some time, and then wakes up and listens to 
see if any other node wants to talk to it. During sleep, 

the node turns off its radio, and sets a timer to awake it 
later.  

The duration of time for listening and sleeping can be 
selected according to different application scenarios. For 
simplicity these values are the same for all the nodes.  

Our scheme requires periodic synchronization among 
neighboring nodes to remedy their clock drift. We use 
two techniques to make it robust to synchronization 
errors. First, all timestamps that are exchanged are 
relative rather than absolute. Second, the listen period is 
significantly longer than clock error or drift. For 
example, the listen duration of 0.5s is more than 105 
times longer than typical clock drift rates. Compared 
with TDMA schemes with very short time slots, our 
scheme requires much looser synchronization among 
neighboring nodes. All nodes are free to choose their 
own listen/sleep schedules. However, to reduce control 
overhead, we prefer neighboring nodes to synchronize 
together. That is, they listen at the same time and go to 
sleep at the same time. It should be noticed that not all 
neighboring nodes can synchronize together in a multi-
hop network. Two neighboring nodes A and B may have 
different schedules if they each in turn must synchronize 
with different nodes, C and D, respectively, as shown in 
Figure 2.   
 

 
 

Figure 1. Periodic listen and sleep 
 

 
 

Figure 2. Neighboring nodes A and B have different 
schedules. Thay synchronize with nodes C and D 
respectively. 
 

Nodes exchange their schedules by broadcasting it to 
all its immediate neighbors. This ensures that all 
neighboring nodes can talk to each other even if they 
have different schedules. For example, in Figure 2 if 
node A wants to talk to node B, it just waits until B is 
listening. If multiple neighbors want to talk to a node, 
they need to contend for the medium when the node is 
listening. The contention mechanism is the same as that 
in IEEE 802.11, i.e., using RTS (Request To Send) and 
CTS (Clear To Send) packets. The node who first sends 
out the RTS packet wins the medium, and the receiver 
will reply with a CTS packet. After they start data 
transmission, they do not follow their sleep schedules 
until they finish transmission.  

Another characteristic of our scheme is that it forms 
nodes into a flat topology. Neighboring nodes are free to 
talk to each other no matter what listen schedules they 
have. Synchronized nodes from a virtual cluster. But 
there is no real clustering and thus no problems of inter-



AN ENERGY-EFFICIENT MAC PROTOCOL FOR WIRELESS SENSOR NETWORKS                    63 
 

Copyright © 2008 SciRes.                                                                                                          Wireless Sensor Network, 2008, 1, 1-69 

cluster communications and interference. This scheme is 
quite easy to adapt to topology changes. We will talk 
about this issue later. 

The downside of the scheme is that the latency is 
increased due to the periodic sleep of each node. 
Moreover, the delay can accumulate on each hop. So the 
latency requirement of the application places a 
fundamental limit on the sleep time. 
 
3.2.2.  Choosing and Maintaining Schedules 
 
Before each node starts its periodic listen and sleep, it 
needs to choose a schedule and exchange it with its 
neighbors. Each node maintains a schedule table that 
stores the schedules of all its known neighbors. It 
follows the steps below to choose its schedule and 
establish its schedule table. 
 
1) The node first listens for a certain amount of time. If 

it does not hear a schedule from another node, it 
randomly chooses a time to go to sleep and 
immediately broadcasts its schedule in a SYNC 
message, indicating that it will go to sleep after t 
seconds. We call such a node a synchronizer, since it 
chooses its schedule independently and other nodes 
will synchronize with it.  

2) If the node receives a schedule from a neighbor 
before choosing its own schedule, it follows that 
schedule by setting its schedule to be the same. We 
call such a node a follower. It then waits for a random 
delay td and rebroadcasts this schedule, indicating 
that it will sleep in t−td seconds. The random delay is 
for collision avoidance, so that multiple followers 
triggered from the same synchronizer do not 
systematically collide when rebroadcasting the 
schedule.  

3) If a node receives a different schedule after it selects 
and broadcasts its own schedule, it adopts both 
schedules (i.e., it schedules itself to wake up at the 
times of both is neighbor and itself). It broadcasts it 
own schedule before going to sleep. 

 
We expect that nodes only rarely adopt multiple 

schedules, since every node tries to follow existing 
schedules before choosing an independent one. On the 
other hand, it is possible that some neighboring nodes 
fail to discover each other at beginning due to collisions 
when broadcasting schedules. They may still find each 
other later in their subsequent periodic listening.   

To illustrate this algorithm, consider a network where 
all nodes can hear each other. The timer of one node will 
fire first and its broadcast will synchronize all of its 
peers on its schedule. If instead two nodes independently 
assign schedules (either because they cannot hear each 
other, or because they happen to transmit at nearly the 
same time), those nodes on the border between the two 
schedules will adopt both. In this way, a node only needs 
to send once for a broadcast packet. The disadvantage is 

that these border nodes have less time to sleep and 
consume more energy than others.  

Another option is to let the nodes on the border adopt 
only one schedule, which is the one it receives first. 
Since it knows another schedule that some other 
neighbors follow, it can still talk to them. However, for 
broadcast packets, it needs to send twice to the two 
different schedules. The advantage is that the border 
nodes have the same simple pattern of period listen and 
sleep as other nodes. 
 
3.2.3.  Maintaining Synchronization 
 
The listen/sleep scheme requires synchronization among 
neighboring nodes. Although the long listen time can 
tolerate fairly large clock drift, neighboring nodes still 
need to periodically update each other their schedules to 
prevent long-time clock drift. The updating period can 
be quite long. The measurements on our testbed nodes 
show that it can be on the order of tens of seconds.  

Updating schedules is accomplished by sending a 
SYNC packet. The SYNC packet is very short, and 
includes the address of the sender and the time of its 
next sleep. The next-sleep time is relative to the moment 
that the sender finishes transmitting the SYNC packet, 
which is approximately when receivers get the packet 
(since propagation delays are short). Receivers will 
adjust their timers immediately after they receive the 
SYNC packet. A node will go to sleep when the timer 
fires.  

In order for a node to receive both SYNC packets and 
data packets, we divide its listen interval into two parts. 
The first part is for receiving SYNC packets, and the 
second one is for receiving RTS packets, as shown in 
Figure 3. Each part is further divided into many time 
slots for senders to perform carrier sense. For example, 
if a sender wants to send a SYNC packet, it starts carrier 
sense when the receiver begins listening. It randomly 
selects a time slot to finish its carrier sense. If it has not 
detected any transmission by the end of the time slot, it 
wins the medium and starts sending its SYNC packet at 
that time. The same procedure is followed when sending 
data packets.   
 

 
 
Figure 3. Timing relationship between a receiver and 
different senders. CS stands for carrier sense. 
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Figure 3 also shows the timing relationship of three 
possible situations that a sender transmits to a receiver. 
CS stands for carrier sense. In the figure, sender 1 only 
sends a SYNC packet. Sender 2 only wants to send data. 
Sender 3 sends a SYNC packet and a RTS packet.  

Each node periodically broadcasts SYNC packets to 
its neighbors even if it has no followers. This allows 
new nodes to join an existing neighborhood. The new 
node follows the same procedure in the above subsection 
to choose its schedule. The initial listen period should be 
long enough so that it is able to learn and follow an 
existing schedule before choosing an independent one. 
 
3.3.  Collision and Overhearing Avoidance 
 
Collision avoidance is a basic task of MAC protocols. 
SMAC adopts a contention-based scheme. It is common 
that any packet transmitted by a node is received by all 
its neighbors even though only one of them is the 
intended receiver. Overhearing makes contention-based 
protocols less efficient in energy than TDMA protocols. 
So it needs to be avoided. 
 
3.3.1.  Collision Avoidance 
 
Since multiple senders may want to send to a receiver at 
the same time, they need to contend for the medium to 
avoid collisions. Among contention based protocols, the 
802.11 does a very good job of collision avoidance. Our 
protocol follows similar procedures, including both 
virtual and physical carrier sense and RTS/CTS 
exchange. We adopt the RTS/CTS mechanism to address 
the hidden terminal problem [15].  

There is a duration field in each transmitted packet 
that indicates how long the remaining transmission will 
be. So if a node receives a packet destined to another 
node, it knows how long it has to keep silent. The node 
records this value in a variable called the network 
allocation vector (NAV) [1] and sets a timer for it. Every 
time when the NAV timer fires, the node decrements the 
NAV value until it reaches zero. When a node has data 
to send, it first looks at the NAV. If its value is not zero, 
the node determines that the medium is busy. This is 
called virtual carrier sense. 

Physical carrier sense is performed at the physical 
layer by listening to the channel for possible 
transmissions. The procedure was described in section 
3.2.3. The randomized carrier sense time is very 
important for collision avoidance. The medium is 
determined as free if both virtual and physical carrier 
sense indicates that it is free. 

All senders perform carrier sense before initiating a 
transmission. If a node fails to get the medium, it goes to 
sleep and wakes up when the receiver is free and 
listening again. Broadcast packets are sent without using 
RTS/CTS. Unicast packets follow the sequence of 
RTS/CTS/DATA/ACK between the sender and the 

receiver. 
 
3.3.2.  Overhearing Avoidance 
 
In 802.11 each node keeps listening to all transmissions 
from its neighbors in order to perform effective virtual 
carrier sensing. As a result, each node overhears a lot of 
packets that are not directed to it. This is a significant 
waste of energy, especially when node density is high 
and traffic load is heavy.  

Our protocol tries to avoid overhearing by letting 
interfering nodes go to sleep after they hear an RTS or 
CTS packet. Since DATA packets are normally much 
longer than control packets, the approach prevents 
neighboring nodes from overhearing long DATA 
packets and the following ACKs. In next subsection we 
describe how to efficiently transmit a long packet 
combining with the overhearing avoidance. Now we 
look at which nodes should go to sleep when there is an 
active transmission going on.  

As shown in Figure 4, node A, B, C, D, E, and F 
forms a multi-hop network where each node can only 
hear the transmissions from its immediate neighbors. 
Suppose node A is currently transmitting a data packet 
to B. The question is which of the remaining nodes 
should go to sleep now. 

Remember that collision happens at the receiver. It is 
clear that node D should go to sleep since its 
transmission interferes with B’s reception. It is easy to 
show that node E and F do not produce interference, so 
they do not need to go to sleep. Should node C go to 
sleep? C is two-hop away from B, and its transmission 
does not interfere with B’s reception, so it is free to 
transmit to its other neighbors like E. However, C is 
unable to get any reply from E, e.g., CTS or data, 
because E’s transmission collides with A’s transmission 
at node C. So C’s transmission is simply a waste of 
energy. In summary, all immediate neighbors of both the 
sender and the receiver should sleep after they hear the 
RTS or CTS packet until the current transmission is over.  

Each node maintains the NAV to indicate the activity 
in its neighborhood. When a node receives a packet 
destined to other nodes, it updates its NAV by the 
duration field in the packet. A non-zero NAV value 
indicates that there is an active transmission in its 
neighborhood. The NAV value decrements every time 
when the NAV timer fires. Thus a node should sleep to 
avoid overhearing if its NAV is not zero. It can wake up 
when its NAV becomes zero. 
 

 
 
Figure 4. Who should sleep when node A is transmitting to 
B? 
 
3.4.  Message Passing 



AN ENERGY-EFFICIENT MAC PROTOCOL FOR WIRELESS SENSOR NETWORKS                    65 
 

Copyright © 2008 SciRes.                                                                                                          Wireless Sensor Network, 2008, 1, 1-69 

This subsection describes how to efficiently transmit 
a long message in both energy and latency. A message is 
the collection of meaningful, interrelated units of data. It 
can be a long series of packets or a short packet, and 
usually the receiver needs to obtain all the data units 
before it can perform in-network data processing or 
aggregation.  

The disadvantages of transmitting a long message as 
a single packet are the high cost of re-transmitting the 
long packet if only a few bits have been corrupted in the 
first transmission. However, if we fragment the long 
message into many independent small packets, we have 
to pay the penalty of large control overhead and longer 
delay. It is so because the RTS and CTS packets are 
used in contention for each independent packet.  

Our approach is to fragment the long message into 
many small fragments, and transmit them in burst. Only 
one RTS packet and one CTS packet are used. They 
reserve the medium for transmitting all the fragments. 
Every time a data fragment is transmitted, the sender 
waits for an ACK from the receiver. If it fails to receive 
the ACK, it will extend the reserved transmission time 
for one more fragment, and re-transmit the current 
fragment immediately.  

As before, all packets have the duration field, which 
is now the time needed for transmitting all the remaining 
data fragments and ACK packets. If a neighboring node 
hears a RTS or CTS packet, it will go to sleep for the 
time that is needed to transmit all the fragments. 

Switching the radio from sleep to active does not 
occur instantaneously. For example, the RFM radio on 
our testbed needs 20µs to switch from sleep mode to 
receive mode [8]. Therefore, it is desirable to reduce the 
frequency of switching modes. The message passing 
scheme tries to put nodes into sleep state as long as 
possible, and hence reduces switching overhead. 

The purpose of using ACK after each data fragment 
is to prevent the hidden terminal problem. It is possible 
that a neighboring node wakes up or a new node joins in 
the middle of a transmission. If the node is only the 
neighbor of the receiver but not the sender, it will not 
hear the data fragments being sent by the sender. If the 
receiver does not send ACK frequently, the new node 
may mistakenly infer from its carrier sense that the 
medium is clear. If it starts transmitting, the current 
transmission will be corrupted at the receiver. 

Each data fragment and ACK packet also has the 
duration field. In this way, if a node wakes up or a new 
node joins in the middle, it can properly go to sleep no 
matter if it is the neighbor of the sender or the receiver. 
For example, suppose a neighboring node receives an 
RTS from the sender or CTS from the receiver, it goes to 
sleep for the entire message time. If the sender extends 
the transmission time due to fragment losses or errors, 
the sleeping neighbor will not be aware of the extension 
immediately. However, the node will learn it from the 
extended fragments or ACKs when it wakes up. 

It is worth to note that IEEE 802.11 also has the 
fragmentation support. We should point out the 
difference between that scheme with our message 
passing.  

In 802.11, the RTS and CTS only reserve the medium 
for the first data fragment and the first ACK. The first 
fragment and ACK then reserves the medium for the 
second fragment and ACK, and so forth. So for each 
neighboring node, after it receives a fragment or an 
ACK, it knows that there is one more fragment to be 
sent. So it has to keep listening until all the fragments 
are sent. Again, for energy-constrained nodes, 
overhearing by all neighbors wastes a lot of energy. 

The reason for 802.11 to do so is to promote fairness. 
If the sender fails to get an ACK for any fragment, it 
must give up the transmission and re-contend for the 
medium. So other nodes have a chance to transmit. This 
causes a long delay if the receiver really needs the entire 
message to start processing. In contrast, message passing 
extends the transmission time and re-transmits the 
current fragment. Thus it has fewer contentions and a 
small latency. There should be a limit on how many 
extensions can be made for each message in case that the 
receiver is really dead or lost in connection during the 
transmission. However, for sensor networks, 
application-level fairness is the goal as opposed to per-
node fairness. 
 
3.5.  Energy Savings vs. Increased Latency 
 
This subsection analyzes the trade-offs between the 
energy savings and the increased latency due to nodes 
sleep schedules. We compare our protocol with 
protocols that do not have periodic sleep such as the 
IEEE 802.11, for a packet moving through a multi-hop 
network; it experiences the following delays at each hop: 

Carrier sense delay is introduced when the sender 
performs carrier sense. Its value is determined by the 
contention window size. 

Backoff delay happens when carrier sense failed, 
either because the node detects another transmission or 
because collision occurs. 

Transmission delay is determined by channel 
bandwidth, packet length and the coding scheme 
adopted. 

Propagation delay is determined by the distance 
between the sending and receiving nodes. In sensor 
networks, node distance is normally very small, and the 
propagation delay can normally be ignored. 

Processing delay. The receiver needs to process the 
packet before forwarding it to the next hop. This delay 
mainly depends on the computing power of the node and 
the efficiency of innetwork data processing algorithms. 

Queuing delay depends on the traffic load. In the 
heavy traffic case, queuing delay becomes a dominant 
factor. 

The above delays are inherent to a multi-hop network 
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using contention-based MAC protocols. These factors 
are the same for both S-MAC and 802.11-like protocols. 
An extra delay in S-MAC is caused by nodes periodic 
sleeping. When a sender gets a packet to transmit, it 
must wait until the receiver wakes up. We call it sleep 
delay since it is caused by the sleep of the receiver.  

We call a complete cycle of the listen and sleep a 
frame. Assume a packet arrives at the sender with equal 
probability in time within a frame. So the average sleep 
delay on the sender is 

 

/ 2s frameD T=                                       (1) 

Where 
 

f rame listen sleepT T T= +                          (2) 
 

Comparing with protocols without periodic sleep, the 
relative energy savings in S-MAC is 

 

1sleep listen
s

frame frame

T TE
T T

= = −                      (3) 

 

The last item in the above equation is the duty cycle 
of the node. It is desirable to have the listen time as short 
as possible so that for a certain duty cycle, the average 
sleep delay is short. In our implementation we set the 
listen time as 300ms. Figure 5 shows the percentage of 
energy savings Es vs. average sleep delay Ds on each 
node for the listen time of 300ms and 200ms. We can 
see that even if the sleep time is zero (no sleeping) there 
is still a delay. This effect is because contention only 
starts at the beginning of each listen interval.  
 

 
 
Figure 5. Energy savings vs. average sleep delay for the 
listen time of 30ms. 
 
4.  Protocol Implementation 
 
The purpose of our implementation is to demonstrate the 
effectiveness of our protocol and to compare our 
protocol with 802.11 through some basic experiments. 
 
4.1.  Testbed 
 
We use Rene Motes, developed at UCB [7], as our 

development platform and testbed (see Figure 6). A 
mote is slightly larger than a quarter. The heart of the 
node is the Atmel AT90LS8535 microcontroller [18], 
which has 8K bytes of programmable flash and 512 
bytes of data memory. 
 

 
 

Figure 6. The UCB Rene Mote. 
 

The radio transceiver on the mote is the model 
TR1000 from RF Monolithics, Inc [8]. When using the 
OOK (on-off keyed) modulation, it provides a 
transmission rate of 19.2 Kbps. It has three working 
modes, i.e., receiving, transmitting and sleep, each 
drawing the input current of 4.5mA, 12mA (peak) and 
5µA respectively.  

Our motes use TinyOS, an efficient event-driven 
operating system [9,19]. It provides the basic mechanism 
for packet transmitting, receiving and processing. 
TinyOS promotes modularity, data sharing and reuse. 

As of July 2001, the standard release of TinyOS has 
only one type of packet, which consists of a header, the 
payload and a cyclic redundancy check (CRC). The 
length of the header or the payload can be changed to 
different values. However, once they are defined, all 
packets have the same length and format. In our MAC 
implementation, the header, payload and CRC fields 
have 6B, 30B and 2B respectively.  

Normally the control packets, such as RTS, CTS and 
ACK, are very short and without payload. So we have 
created another packet type in TinyOS, the control 
packet, which only has the 6-byte header and the 2-byte 
CRC. We have modified several TinyOS components to 
accommodate the new packet. This enables us to 
efficiently implement MAC protocols and accurately 
measure their performance. 
 
4.2.  Implementation of MAC Protocols 
 
We have implemented three MAC modules on the mote 
and TinyOS platform, as listed below. 
 
1) Simplified IEEE 802.11 DCF 
2) Message passing with overhearing avoidance 
3) The complete S-MAC 
 

For the purpose of performance comparison, we first 
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implemented a simplified version of IEEE 802.11 DCF. 
It has the following major pieces: physical and virtual 
carrier sense, backoff and retry, RTS/CTS/DATA/ACK 
packet exchange, and fragmentation support. 

The duration of each carrier sense is a random time 
within the contention window. The randomization is 
very important to avoid collisions at the first step. For 
simplicity, the contention window does not 
exponentially increase when backoff happens. The 
fragmentation support follows the same procedure as in 
IEEE 802.11 standard [1] and is described in Section 3 
of this paper. 

With 802.11 the radio of each node does not go into 
sleep mode. It is either in listen/receiving mode or 
transmitting mode. The second module is the message 
passing with overhearing avoidance. It achieves energy 
savings by avoiding overhearing, reducing control 
overhead and contention times. It does not include the 
period listen and sleep. So there is no additional delay 
comparing with the simplified IEEE 802.11. The radio 
of each node goes into the sleep mode only when its 
neighbors are in transmission. 

With the message passing module we have 
incorporated periodic listen and sleep, and completed 
most basic functionalities in S-MAC. Currently, the 
listen time for each node is 300ms, and sleep time can be 
changed to different values, such as 300ms, 500ms, 1s, 
etc., which makes different duty cycles of the radio. We 
can also specify the frequency that the SYNC packet is 
sent for schedule update between neighboring nodes. In 
our following experiments, we have chosen the sleep 
time as 1 second and the frequency for schedule update 
is 10 listen/sleep period, i.e., 13 seconds. 

It should be noted that the energy savings in the 
current implementation is only due to the sleep of the 
radio. In other words, the microcontroller does not go to 
sleep. It actually has a sleep mode, which consumes 
much less energy and can be waked up by a low-
frequency watchdog timer. If we put the microcontroller 
into the sleep mode as well when the radio is sleeping, 
we are able to save more energy. 
 
5.  Experimentation 
 
The main goal of the experimentation described here is 
to measure the energy consumption of the radio for 
using each of the MAC modules we have implemented. 
 
5.1.  Experiment Setup 
 
Figure 7 is the topology we used in our experiments. 
This is a two-hop network with two sources and two 
sinks. Packets from source A flow through node C and 
end at sink D, while those from B also pass through C 
but end at E. The topology is simple, but it is sufficient 
to show the basic characteristics of the MAC protocols. 

We will look at the energy consumption of each node 

when utilizing different MAC protocols and under 
different traffic loads. 

 

 
 
Figure 7. Topology used in experiments: two-hop network 
with two sources and two sinks. 
 

The two sources periodically generate a sensing 
message, which is divided into some fragments. In the 
simplified IEEE 802.11 MAC, these fragments are sent 
in a burst, i.e., RTS/CTS is not used for each fragment. 
We did not measure the 802.11 MAC without 
fragmentation, which treats each fragment as an 
independent packet and uses RTS/CTS for each of them, 
since it is obvious that this MAC consumes much more 
energy than the one with fragmentation. In our protocol, 
message passing is used, and fragments of a message are 
always transmitted in a burst. 

We change the traffic load by varying the inter-
arrival period of the messages. If the message inter-
arrival period is 5 seconds, a message is generated every 
5 seconds by each source node. In our following 
experiments, the message inter-arrival period varies 
from 1s to 10s.  

For each traffic pattern, we have done 10 independent 
tests to measure the energy consumption of each node 
when using different MAC protocols. In each test, each 
source periodically generates 10 messages, which in turn 
is fragmented into 10 small data packets supported by 
the TinyOS. Thus in each experiment, there are 200 
TinyOS data packets to be passed from their sources to 
their sinks. For the highest rate with a 1s interarrival 
time, the wireless channel is nearly fully utilized due to 
its low bandwidth.  

We measure the amount of time that each node has 
used to pass these packets as well as the percentage time 
its radio has spent in each mode (transmitting, receiving, 
listening or sleep). The energy consumption in each 
node is then calculated by multiplying the time with the 
required power to operate the radio in that mode. We 
found the power consumption from the data sheet of the 
radio transceiver, which is 13.5mW, 24.75mW and 
15µW, in receiving, transmitting and sleep respectively. 
There is no difference between listening and receiving in 
this radio transceiver model. 
 
5.2.  Results and Analysis 
 
The experiments are carried out on the three MAC 
modules we have implemented on our testbed nodes. In 
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the result graphs, the simplified IEEE 802.11 DCF is 
denoted as ‘IEEE 802.11’. The message passing with 
overhearing avoidance is identified as ‘Overhearing 
avoidance’. The complete S-MAC protocol, which 
includes all pieces of our new protocol, is denoted as 
‘SMAC’.  

We first look at the experiment results on the source 
nodes A and B. Figure 8 is the measured average energy 
consumption from these two nodes. The traffic is heavy 
when the message inter-arrival time is less than 4s. In 
this case, 802.11 MAC uses more than twice the energy 
used by S-MAC. Since idle listening rarely happens, 
energy savings from periodic sleeping is very limited. S-
MAC achieves energy savings mainly by avoiding 
overhearing and efficiently transmitting a long message. 

When the message inter-arrival period is larger than 
4s, traffic load becomes light. In this case, the complete 
S-MAC protocol has the best energy property, and far 
outperforms 802.11 MAC. Message passing with 
overhearing avoidance also performs better than 802.11 
MAC. However, as shown in the figure, when idle 
listening dominates the total energy consumption, the 
periodic sleep plays a key role for energy savings. The 
energy consumption of S-MAC is relatively independent 
of the traffic pattern. 

Compared with 802.11, message passing with 
overhearing avoidance saves almost the same amount of 
energy under all traffic conditions. This result is due to 
overhearing avoidance among neighboring nodes A, B 
and C. The number of packets to be sent by each of them 
is the same in all traffic conditions. 
 

 
 
Figure 8. Measured energy consumption in the source 
nodes. 
 

Figure 9 shows the percentage of time that the source 
nodes are in the sleep mode. It is interesting that the S-
MAC protocol adjusts the sleep time according to traffic 
patterns. When there is little traffic, the node has more 
sleep time (although there is a limit by the duty cycle of 
the node). When traffic increases, nodes have fewer 
chances to go to periodic sleep and thus spend more time 
in transmission. 

This is a useful feature for sensor network 
applications, since the traffic load indeed changes over 

time. When there is no sensing event, the traffic is very 
light. When some nodes detect an event, it may trigger a 
big sensor like a camera, which will generate heavy 
traffic. The S-MAC protocol is able to adapt to the 
traffic changes. In comparison, the module of message 
passing with overhearing avoidance does not have 
periodic sleep, and nodes spend more and more time in 
idle listening when traffic load decreases. 
 

 
 
Figure 9. Measured percentage of time that the source 
nodes in the sleep mode. 
 

Figure 10 shows the measured energy consumption in 
the intermediate node C. We can see in the light traffic 
case, it still outperforms 802.11 MAC. In heave traffic 
case, it consumes slightly more energy than 802.11. One 
reason is that S-MAC has synchronization overhead of 
sending and receiving SYNC packets. Another reason is 
that S-MAC introduces more latency and actually uses 
more time to pass the same amount of data. 
 

 
 
Figure 10. Measured energy consumption in the 
intermediate node. 
 

In fact, if the traffic is extremely heavy and a node 
does not have any chance to follow its sleep schedule, 
the scheme of periodic listen and sleep does not benefit 
at all. However, message passing and overhearing 
avoidance are still effective means of saving energy. 
This has been illustrated in the results of the source 
nodes (Figure 8). But we cannot see similar results on 
the intermediate node C, since all packet transmissions 
involve this node. In this case, its energy consumption is 
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about the same as that of using the 802.11 MAC. 
 
6.  Conclusions and Future Work 
 
This paper presents a new MAC protocol for wireless 
sensor networks. It has very good energy conserving 
properties comparing with IEEE 802.11. Another 
interesting property of the protocol is that it has the 
ability to make trade-offs between energy and latency 
according to traffic conditions. The protocol has been 
implemented on our testbed nodes, which shows its 
effectiveness. 

Future work includes system scaling studies and 
parameter analysis. More tests will be done on larger 
testbeds with different number of nodes and system 
complexity. 
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