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Abstract 
A transition or rare-earth metal is modeled as the atom immersed in a jellium 
at intermediate electron gas densities specified by 4.0sr = . The ground states 
of the spherical jellium atom are constructed based on the Hohenberg-Kohn- 
Sham density-functional formalism with the inclusion of electron-electron 
self-interaction corrections of Perdew and Zunger. Static and dynamic polari-
zabilities of the jellium atom are deduced using time-dependent linear response 
theory in a local density approximation as formulated by Stott and Zaremba. 
The calculation is extended to include the intervening elements In, Xe, Cs, and 
Ba. The calculation demonstrates how the Lindhard dielectric function can be 
modified to apply to non-simple metals treated in the jellium model. 
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1. Introduction 

The dynamical polarizability, ( )α ω  and its corresponding static value, ( )0α  
for metals, have been investigated theoretically by mainly using aggregate of par-
ticles to mimic the metal. In particular, ( )0α  has been shown to have an ano-
malous enhancement over its classical expected value of ( ) 30 Rα = , where R is 
some characteristic radius of the metallic particle. In 1965, Gor’kov and Eliash-
berg (GE) [1] introduced the idea of exploring the electronic excitations of small 
metallic particles based on phenomenological temperature-dependent statistical 
mechanics. With this concept they provided an explanation to the anomalous 
enhancement in ( )0α . This insight generated interest in the physics of small 
metallic particles and similar investigations ensued thereafter that exploited other 
theoretical methods. In general, these theoretical approaches may be classified 
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into three grouping: those based on GEs original concept [2]-[15], those that rely 
on random phase approximation (RPA) and its variants [16] [17], and those that 
use self-consistent density-functional ideas [18]-[23]. 

We utilize the following model as a means of mimicking the medal. A transi-
tion or a rare-earth metal atom is immersed in a uniform electron gas of density 
prescribed by sr , namely, the jellium model. The ground state of the spherical 
jellium atom consisting of the discrete core levels and the continuum valence states 
are determined using the density functional prescription of Perdew and Zunger 
[24]. Since the prescription includes correction for electron self-interactions, it 
would provide a more accurate account of electron-electron interactions. A 
Thomas-Fermi pseudopotential has been used as the external potential to de-
termine the initial density of the system. This serves as input to the Hohenberg- 
Kohn-Sham density-functional scheme [25] [26] to be described in Section II. 
Once the self-consistent complete set of energies { }ασε  and wavefunctions  

( ){ }ασψ r , (with ,nl lα ε=  and 
1
2

σ = ± ) are determined, they are subjected to  

a time-dependent linear density approximation (TDLDA) methods [27] [28] [29] 
[30], that have been so successfully used to determine the polarizability of sys-
tems possessing spherical symmetry. The spherical jellium model is a crude one; 
nonetheless, calculations based on this model would serve as a first approxima-
tion for more realistic calculations that should have to incorporate the transla-
tional symmetry of the solid, especially in the transition metal atoms where the 
itinerant character of the valence states are crucial for many metallic properties. 

In the jellium model, the response of the interacting electron gas to an exter-
nal potential ( ),φ ωq  leads to a complex dynamic dielectric function ( ),ε ωq . 
If the external potential is weak, linear response theory may be invoked leading 
to a complex polarization function ( ),P ωq . Further, if the lowest term contri-
bution to ( ),P ωq , namely, ( ) ( )1 ,P ωq  is retained, then we get ( ),RPAε ω =q  
( ) ( )1 2, ,i qε ω ε ω+q , where ( )1 ,ε ωq  is proportional to ( ) ( )1 ,P ωq . 
The Lindhard expression for this quantity is given in, e.g., Fetter and Walecka 

[31] as 

( ) ( ) ( )
( )

( )
( )

2
1

2 2

2

1 22 1 1Re , 1 1 ln
2 2 1 24π

1 21 1 ln
2 2 1 2

F q qmk qP q
q q q q

q qq
q q q q

νν
ν

ν

νν
ν

   + −   = ⋅ − + − −   − −    
  + +   + − +   − +     



 

where the dimensionless energy parameter ν  and momentum parameter q  
are respectively given by FEν ω=  and Fq q k= . If atomic units ( 2e m= =

1= ) are used, then the input frequency ω  is in rydbergs. Since ( ) ( )1Im ,P ωq  
is proportional to the absorption probability for transferring the four-momentum 
( ),ωq  to the electron gas, we expect this quantity to be proportional to 

( )0Imα ω  for some fixed q . In the above, ( )0α ω  is the non-interacting com-
plex frequency-dependent polarizability, and ( )α ω  is its interacting counterpart. 
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These quantities are the subjects of our investigation in this work to be outlined 
in Section IIA. In Figure 1, calculations for ( ) ( )1Re ,FP q k ω= , for different 
momentum transfers are displayed. Figure 2 shows calculations of ( )0Reα ω  for 
some selected metals with 4sr = . The semblance of the profiles in the two-panel- 
figure display suggests that using the spherical jellium model to represent the 
metal is a feasible one for the determination of the polarizability of metals. 

2. Methods 

1) The stationary state 
We briefly review the Perdew-Zunger [24] theory of self-interaction correc-

tion (SIC) to density-functional approximations for many-body electron systems 
on which the calculations are based. According to this exposé, a stationary state 
of an atom or ion immersed in a uniform electron gas (the jellium) may be de-
scribed, within the local-spin-density (LSD) approximation, by a charge density 

( ) ( ),n nασ
ασ

= ∑r r                        (1) 

where 

( ) ( ) 2
,n fασ ασ ασψ=r r                      (2) 

is the density of an orbital with quantum numbers α  and σ , and ( )1
2

σ = + ↑  

or ( )1
2

− ↓  is the electronic spin, and fractional occupation numbers are 

 

 
Figure 1. Real part of the Lindhard function. Upper graph panels: Dash plot ( 0.1q = ); 
Dash Dot plot ( 0.2q = ); Dash Dot-Dot plot ( 0.5q = ); Short Dash plot ( 1.0q = ); Solid 
line (sum of the q’s). Lower graph panel: Dash plot ( 2.0q = ); Dot plot ( 3.0q = ); Dash 
Dot plot ( 4.0q = ); Solid line (sum of the q’s). 
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Figure 2. Real part of ( )α ω . Dash plot (independent particle); Solid line (with interactions).  
 

allowed ( )0 1fασ≤ ≤ . In this approximation, the set of one-electron orbitals sa-
tisfies a Schrödinger-like equation (in atomic units, 2 1e m= = = ) 

( ) ( ) ( )21 .
2

eff SICv rασ ασ ασ ασψ ε ψ − ∇ + =  
r r

               
(3) 

The orbital-dependent potential is 

( ) ( ) ( ) [ ]( ) ( ){ }
[ ]( ) [ ]( ){ }

,

,

2 ; , ;

; ,0 ; .

eff LSD
xc

LSD
xc

v v B u n v n n

u n r v n r

σ
ασ

ασ ασ

µσ ↑ ↓

↑

= − + +   

− +

r r r r r
 

      

 (4) 

In the above µ  is the chemical potential [= −electronegativity] and ( )B r  is 
an external magnetic field that couples to the electron spin σ .  

The self-interaction correction to the potential is the second curly bracket in 
Equation (4). The direct Coulomb potential is the expression 

[ ]( ) ( )3; d ,u n r n′ ′ ′= −∫r r r r                   (5) 

while the LSD exchange-correlation potential is 

( ) ( ) ( )( ), , ,LSD
xc xcv n nσ σµ ↑ ↓=r r r                   (6) 
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and xc
σµ  is given by the functional derivative ( ),xcn n n nσε ↑ ↓

 ∂ ∂  . The ex-
pression ( ),xc n nε ↑ ↓  is the exchange-correlation energy per particle of an elec-
tron gas with the spin density ,n n↑ ↓ . This makes it possible for the homogene-
ous system to be folded into calculations for the inhomogeneous systems like 
atoms and ions. For the detailed construct of the expressions in this section, the 
interested reader is referred to the original formulation in Reference [24].  

An iterative procedure is used to solve Equations (1)-(4). First, an initial guess 
is made for the spin ( ) ( ){ },n n↑ ↓r r  and the spin orbital densities ( ){ }nασ r  
instead of using Equations ((1) and (2)). Then Equations ((3) and (4)) are solved 
using a direct predictor-corrector numerical integration. Thereafter, Equations 
(1)-(4) are successively solved until self-consistency is achieved with a relative 
accuracy of 10−6 in both sets of densities, or a relative accuracy of 10−6 in energy, 
whichever occurs first. The orbital densities ( ){ }nασ r  are first sphericalized 
before evaluating the potential and the total energy. (A bar over any variable in 
an expression or equation signifies that the self-consistent value is used in eva-
luating it.) After a self-consistent set of orbitals ( ){ }ασψ r  is obtained, the total 
energy within the LSD may be computed as 

( ) ( ) [ ]( ) ( )
[ ]( ) [ ]( ) }

2 ,

,

1 2 ; , ;
2

; ,0 ; .

SIC
tot

LSD
xc

LSD
xc

E f

f v B u n v n n

u n v n

ασ ασ
ασ

σ
ασ ασ ασ

ασ

ασ ασ ασ ασ

ε

ψ µσ ψ

ψ ψ

↑ ↓

↑

=

= − ∇ + − + +    
− +

∑

∑ r r r r

r r

 (7) 

Again, the more prescribed calculational details are left for the interested 
reader to consult with the original paper of Reference [24].  

2) Linear response and polarizability 
In Section IIA the stationary states are set up to perform spin-polarized calcu-

lation. From now onward, we drop the bars on quantities in Section IIA. We set 
n n n↑ ↓= =  so that the calculation is now spin non-polarized. Further, we drop 
the spin label σ  and take the set of quantum labels { } { }nlα = . According to 
the theory of linear response, if an arbitrary system of electrons is perturbed by 
an external potential ( ),extv ωr  it induces a deviation ( ),nδ ωr  in its density 
from its ground state value ( )0n r  given by 

( ) ( ) ( ), d , , ,extn r vδ ω χ ω ω′ ′ ′= ∫ r r r r                 (8) 

The quantity ( ), ,χ ω′r r  is the frequency-dependent response function for 
the interacting electron system. On the other hand, if the density fluctuation is 
viewed as arising from an induced effective potential for the system, then it may 
equivalently be represented as 

( ) ( ) ( )0, d , , , .effn vδ ω χ ω ω′ ′ ′= ∫r r r r r                (9) 

Here ( )0 , ,χ ω′r r  is the non-interacting response function for the fermion 
system, and the effective potential ( ),effv ωr  is given by 

( ) ( ) ( ) ( ) ( ),
, , d d , , ,eff ext xc

n
v v v n

δ ω
ω ω δ ω′ ′ ′ ′ ′= + +

′−∫ ∫
r

r r r r r r r
r r

    (10) 
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with 

( ) [ ]
( ) ( ) ( )0

2

, xc
xc

n n

E n
v

n n
δ

δ δ
=

′ ′ =
′

r

r r
r r

,                 (11) 

where it is considered that ( ) ( ) ( )0n n nδ= +r r r . A popular approximation to 
the exchange-correlation energy is the local density approximation (LDA) in 
which xcv′  is simply taken as a function of the density, and Equation (11) be-
comes 

( ) ( )
( )

( )
0

d
, .

d
xc

xc
n n

v n
v

n
δ

=

 
 ′ ′ ′= −
 
 r

r r r r

             

 (12) 

The response function is an embodiment of all possible excitations from the 
ground state ( ){ },i irψ ε  to excited states ( ){ },j jrϕ ε . The eigenfunctions jϕ  
and eigenenergies jε  will be presumed to be solutions to the Kohn-Sham equ-
ations 

( ) ( ) ( )21 ,
2 eff j j jv ϕ ε ϕ − ∇ + =  

r r r                (13) 

( ) ( ) 2
,j

j
n ϕ=∑r r                       (14) 

( ) ( ) ( ) ,eff xcv v nφ= +   r r r                    (15) 

where ( )φ r  is the electrostatic Hartree potential and ( )xcv n  r  is the exchange- 
correlation potential. 

Following the approach of Reference [28], the non-interacting response func-
tion may be expressed in terms of retarded Green’s function ( ), ,G E′r r  as 

( ) ( ) ( ) ( ) ( ) ( ) ( )0

,
, , 2 , , , ,i i i i i i

i occ
G r r G r rχ ω ψ ψ ε ω ψ ψ ε ω′ ′ ′= + + −  ∑r r r r r r  

( ) ( ) ( ) ( ) ( ) ( ) ( )0

,
, , 2 , , , ,i i i i i i

i occ
G Gχ ω ψ ψ ε ω ψ ψ ε ω∗ ∗ ′ ′ ′ ′ ′= + + − ∑r r r r r r r r r r  (16) 

where the summation is over the occupied states and  

( ) ( ) ( )
, , j j

j j

G E
E i
ϕ ϕ

ε δ

′
′ =

− +∑
r r

r r                   (17) 

Rather than using Equation (17) to determine the non-interacting susceptibil-
ity in Equation (16), the retarded Green’s function can be directly obtained as 
the solution to the differential equation of Equation (13), 

( ) ( ) ( )21 , ,
2 effv E G E δ  ′ ′− ∇ + − = − −  

r r r r r ,           (18) 

with the appropriate outgoing wave boundary conditions. 
3) Response function with spherical symmetry 
Since we are dealing with a spherical jellium atom, it becomes convenient to 

work in spherical harmonics and write 

( ) ( ) ( ) ( )0 ˆ ˆ, , , ,l lm lm
lm

r r Y r Y rχ ω χ ω ∗′ ′ ′= ∑r r              (19) 
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and 

( ) ( ) ( ) ( )ˆ ˆ, , , ,l lm lm
lm

G G r r Y r Y rω ω ∗′ ′ ′= ∑r r .         (20) 

The application of a uniform frequency-dependent electric field ( )ωE  to 
the spherical atom corresponds to an external potential 

( ) ( ) ( ) ( ) ( )4π ˆˆ,
3

l

ext lm lm
m l

v E r Y r Y Eω ω ω
+

∗

=−

= ⋅ = ∑r E r       (21) 

If Equations ((20) and (21)) are substituted into Equation (16), only the dipo-
lar component ( )1l =  couples to the external perturbation Equation (21) and 
the non-interacting dipolar response function is 

( )

( ) ( )

( ){ } ( ) ( ){ }
( ){ } ( ) ( ){ }

0
1

,

1 1

1 1

, ,
1

2π

, , 1 , ,

, , 1 , ,

i i i i

i i

i i

n l n l
i occ

i l i l l i

i l i l l i

r r

R r R r

l G r r l G r r

l G r r l G r r

χ ω

ε ω ε ω

ε ω ε ω

− +

− +

′

′=

 ′ ′× + + + +
′ ′+ − + + − 

∑
        (22) 

where 

( ) ( ) ( )ˆ
i i i ii n l l mR r Y rψ =r .                    (23) 

From Equation (17) the harmonic component representation of the retarded 
Green’s function becomes 

( )
( ) ( )

,
1, , j j j j

j
j j

n l n l
l l l

j n l

u r u r
G r r E

rr E i
δ

ε δ

′
′ =

′ − +∑ ,             (24) 

and we have written ( ) ( )j jr u r rϕ = . But as has been remarked earlier, the 
daunting task of performing the summation over single-particle radial orbitals 
can be circumvented since from Equation (18), ( ), ,lG r r E′  is a solution to the 
inhomogeneous radial differential equation 

( ) ( ) ( ) ( )2
2 2 2

11 d d 1, ,
d d2 2 eff l

l l
r v r E G r r E r r

r rr r r
δ

+   ′ ′− + + − = − −  
  

,  (25) 

which satisfies the appropriate boundary conditions at the origin and at infinity. 
Following earlier observations [28], if E corresponds to a bound state energy 
then ( ), ,lG r r E′  can be expressed in terms of solutions to the radial homoge-
neous equation at energy 2 2E k= : 

( ) ( ) ( )
2

2
2 2

1d 2 0
d eff lk

l l
v r k u r

r r
+ 

− + + − = 
 

.            (26) 

The harmonic component Green’s function is then given by 

( ) ( )
( ) ( )1

1

2, ,
,

lk lk
l

lk lk

r
G r r

rrW

φ χ
ω

φ χ
′ = ⋅

′ 
 

.              (27) 

Here ( ) ( )1
lk rχ  is the solution of Equation (26) that behaves asymptotically for 
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r →∞  as ( ) ( )1
lrh kr  and ( )lk rφ  is the solution which is regular at the origin; 

W refers to the Wronskian of the two solutions. If E does not correspond to a 
bound state energy, Equation (27) is further simplified by normalizing ( )lk rφ  
such that it behaves asymptotically as ( ) ( ) ( ) ( )1 2

l lr h kr h krγ +  . In this case 
( ), ,lG r r ω′  becomes 

( ) ( ) ( ) ( )1, , ; ;l l lG r r ikR r k R r kω ′= − ,                (28) 

where ( ) ( );l lkR r k r rφ=  and ( ) ( ) ( ) ( )1 1;l lkR k r r rχ= . 
For the spherical jellium atom, the induced density can be expressed as 

( ) ( ) ( ) ( ) ( ) ( )4π ˆˆ, , ,
3

l

lm lm
m l

n r r r Y r Y Eδ ω α ω ω α ω
+

∗

=−

= − ∑r E .      (29) 

Putting this result in Equation (9) using Equation (10) leads to a linear 
integral equation for the position-dependent polarizability ( ),rα ω  as 

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

3 0
1

0

2 2 0
1 1

0 0

2 2 0
1 ,1

0 0

, d , ,

d d , , , ,

d d , , , ,xc

r r r r r

r r r r r r Y r r r

r r r r r r v r r r

α ω χ ω

χ ω α ω

χ ω α ω

∞

∞ ∞

∞ ∞

′ ′ ′= −

′ ′ ′′ ′′ ′ ′ ′′ ′′+

′ ′ ′′ ′′ ′ ′ ′ ′′ ′′+

∫

∫ ∫

∫ ∫

,      (30) 

where 

( ) 1

4π,
2 1

l

l l

rY r r
l r

<
+

>

′ =
+

,                     (31) 

On the other hand, the application of the perturbation ( ),extv ωr  of Equation 
(21) gives rise to the induced dipole moment 

( ) ( )d ,rω δ ω= −∫p r r                      (32) 

in the spherical atom. Using Equation (29) we infer from Equation (32) that 

( ) ( ) ( ) ( )( )22 3

0

ˆˆd ,E r r r r Eω ω ω α ω
∞

⋅ = ⋅∫p E .           (33) 

But the dynamic polarizability ( )α ω  is related to the induced dipole mo-
ment and the applied field as 

( ) ( ) ( )ω α ω ω=p E .                     (34) 

Substituting this value of ( )ωp  into Equation (33) yields the complex 
frequency-dependent polarizability as 

( ) ( )3

0

4π d ,
3

r r rα ω α ω
∞

= ∫ .                   (35) 

3. Results and Discussion 

The prescription contained in Section IIC has been used to calculate ( )Imα ω , 
the imaginary part of the polarizability, for the transition metals (TMs) and for 
the rare earth metals (REMs), including calculations for some intervening metals. 
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The results of these calculations using Equation (35) are displayed for the TMs 
(Figure 3 and Figure 4), for the intervening metals In, Cs, Xe, and Ba (Figure 5), 
and for the REMs (Figures 6-8). The breaks in the graphs are those energy input 
ranges for which there were convergence problems in the numerical procedure. 
The dashed curves represent the independent particle or non-interacting polari-
zabilities in which the Coulomb and exchange-correlation interactions are 
switched off. The solid curves have those interactions present. 

The static polarizabilities ( )0ω =  have been calculated for the jellium atoms 
of the transition metals and the rare earth metals. These are compared with the 
density functional-based code for the neutral atoms of these systems by Zangwill 
and Liberman [32], and the results are displayed in Figure 9. In the case of the 
TMs both the neutral and jellium atoms show monotonically decreasing static 
polarizabilities with increasing atomic number (Z). In fact, the values may be 
fitted to an exponential decay function of the form 

0e Z ky A y−= + ,                       (36) 

with the following values for the parameters 8068.11A = , 4.53k = , and 

0 25.41y =  with an adjusted 2 0.9949R =  for the neutral atoms, while the values  
 

 

Figure 3. Imaginary part of ( )α ω  for Sc, Ti, V, Cr, Mn, Fe: Dash plot (independent particle); Solid line (with interactions).  
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Figure 4. Imaginary part of ( )α ω  for Co, Cu, Ni, Zn: Dash plot (independent particle); Solid line (with interactions). 
 

 
Figure 5. Imaginary part of ( )α ω  for In, Xe, Cs, Ba: Dash plot (independent particle); Solid line (with interactions). 
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Figure 6. Imaginary part of ( )α ω  for La, Ce, Pr, Nd: Dash plot (independent particle); Solid line (with interactions). 

 

 
Figure 7. Imaginary part of ( )α ω  for Pm, Sm, Eu, Gd, Tb, Dy: Dash plot (independent particle); Solid line (with interactions). 

https://doi.org/10.4236/jmp.2018.92020


K. Nuroh 
 

 

DOI: 10.4236/jmp.2018.92020 298 Journal of Modern Physics 
 

 
Figure 8. Imaginary part of ( )α ω  for Ho, Er, Tm, Yb: Dash plot (independent particle); Solid line (with interactions). 

 

 
Figure 9. Static polarizabilities for the TMs and REMs for the jellium and neutral atoms. 
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for the jellium atoms are 110612.23A = , 7.94k = , and 0 2747.64y = −  with 
an adjusted 2 0.9335R = . The function defined in Equation (36) should not be 
construed as portraying dynamics of the atomic systems. Its purpose is to see 
trends in the atomic numbers with respect to the static polarizabilities. 

In the case of the REMs there were instabilities in the numerical procedure 
yielding spurious negative values for the polarizabilities for some of the systems 
when the 4f states were included. Hence, they were frozen. These are the systems 
with asterisk marks in Figure 9. For the neutral atoms, if we exclude the obvious 
outliers 57,  58 and 64Z = , then the rest of the systems may be fitted to an ex-
ponential decay function like the one of Equation (36). The values of the fitted 
parameters are 25385.19A = , 10.69k = , and 0 127.94y =  25A = , with an 
adjusted 2 0.9987R =  R-square value of 0.99865. Likewise for the jellium atoms 
if the outliers 56,57Z = , and 66 are excluded, the rest of the systems may be 
fitted to Equation (36) with the parameters 81.09736 10A = × , 3.83k = , and 

0 4.51y =  with an adjusted 2 0.9646R = . 

4. Conclusions 

The calculations portray extensive enhancement in the real part of the polariza-
bilities of the jellium atom is compared to the Lindhard counterpart, in support 
of the observations made by Gor’kov and Eliashberg in their pioneer work based 
on aggregate of particles to mimic metals, and subsequently validated by others. 

Except for few elements, both the jellium TM and REM static polarizabilities 
show monotonically decreasing values with increasing atomic number just as the 
corresponding neutral atomic counterparts. Because of the localized nature of 
the 4f-states in REMs, often the neutral atomic values of polarizabilities are tak-
en to represent the metallic without recourse to incorporating the band structure 
of the solid state. Magnitude-wise, the calculations presented here suggest that 
they would be different from the metallic counterparts if band-structure calcula-
tions exploiting the translational symmetry of the solid state are included. In that 
case, the values reported here for the REMs (as well as the TMs) would be a good 
gauge for such calculations. 
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