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Abstract 
Rising atmospheric CO2 levels pose many challenges to global climate, thus to 
all forms of life including plants. The impact of elevated CO2 on plant growth 
and development and the nutritional quality in relation to major nutrients in 
many crops has been explored extensively. However, information on the ele-
vated CO2 effects on the health-promoting phytochemicals in food crops is 
rather limited. Major nutrients in food crops including protein, phosphorus, 
potassium, calcium, iron, zinc and other micronutrients in many food crops 
are known to be suppressed at elevated CO2 levels. Elevated CO2 increases 
carbohydrate accumulation but decreases nitrogen accumulation in plants 
thus affecting their C-N ratio. A number of studies show that high C-N ratio 
and nitrogen limiting conditions in plants can result in the accumulation of 
carbon-based secondary metabolites, many of which are health-promoting 
phytochemicals and allelochemicals involved in plants’ defense against pa-
thogens and herbivory. Although the results from these studies are variable, it 
can be concluded that while elevated CO2 is known to suppress the content of 
major nutrients, it may actually have a favorable impact on the accumulation 
of carbon-based phytochemicals in food crops. 
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1. Introduction 

The world population is projected to increase to nearly 10 billion by the middle 
of this century [1]. The rapidly growing population poses two important chal-
lenges, first, to be able to produce enough food to feed the growing population 
and second, to maintain the quality of food produced, especially in the face of 
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rapidly changing climate and rising global CO2 level. The rising CO2 concentra-
tion is both an immediate and a long term concern to plants and animals in-
cluding humans because in recent decades, global atmospheric CO2 concentra-
tion has risen at an alarmingly rapid rate and is expected to reach dangerous le-
vels in the near future. Presently, the global CO2 level exceeds 400 ppm, [2] 
nearly a 30% increase since the 1950s and is projected to double by the end of 
this century [3]. 

Increasing amount of CO2 in the atmosphere affects the global climate, espe-
cially temperature, which can have an adverse effect on all life forms on this 
planet. In addition to the direct impact of elevated CO2 on the global tempera-
ture, CO2 has a unique role in plants. That is because it plays a key role in pho-
tosynthesis which produces sugars, complex carbohydrates and carbon skeletons 
for most organic compounds in plants, and in fact, more than 90% of the plant 
dry matter is derived from photosynthesis. Thus, numerous studies have focused 
on understanding the CO2 effects on various aspects of plant growth, productiv-
ity and survival in crops and as well as in native flora [4] [5] [6]. However, only a 
few studies have dealt with the nutritional quality of food crops and even fewer 
studies on the health-promoting phytochemicals in food crops. Health-promoting 
phytochemicals have been known to play an important role in preventing nu-
merous chronic and degenerative diseases and in the well-being of humans [7]. 
Plants produce myriad classes of secondary metabolites, many of which are 
known to have health-promoting qualities while others (allelochemicals) are in-
volved in plant defense against pathogens and herbivores. The purpose of this 
review is to focus more on the studies dealing with the health-promoting phyto-
chemicals in plants and in food we consume, and look for a common theme in 
plants’ responses to elevated CO2. In order to provide a broader context to this 
subject, the review includes a brief discussion on the effects of elevated CO2 on 
the overall growth characteristics of plants and the general nutritional quality of 
food crops relating to major nutrients. 

2. Plant Growth and Major Nutrients 

The effect of elevated CO2 on plant growth and development and yield responses 
has been extensively studied both under controlled and field conditions [8] [9]. 
Although the overall responses under these experimental conditions produce 
similar pattern, they are subdued in field experiments, especially those involving 
Free Air Carbon dioxide Enrichment (FACE) approach compared to the con-
trolled environmental studies [10] [11]. Typically, high CO2 levels can result in a 
larger canopy and an increase in plant height, dry biomass and crop yields [10] 
[11] [12] [13]. Generally, C3 crops and trees respond more strongly to elevated 
CO2 than do C4 or legumes. An overwhelming number of studies on field crops 
and on the native flora show an increase in the biomass accumulation at elevated 
CO2 [8] [10]. In fact, this finding has been exploited in many horticultural crops 
including fruits and vegetables by increasing the ambient CO2 levels during crop 
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growth under protected environments such as greenhouse and high tunnels [14] 
[15]. The rationale behind using CO2 enrichment is that the protective produc-
tion systems can often experience lower CO2 concentration during day time, es-
pecially in fall and winter [16] [17] [18]. However, what is not known is the ef-
fect of CO2 enrichment on the nutritional quality of these crops. Thus, the po-
tential challenge for horticultural food crop production is that these crops are 
likely to be exposed to high CO2 not only in the protective production systems 
but also in open fields because of the rapidly rising atmospheric CO2 levels. 

It is well established that with higher CO2 levels, the rate of photosynthetic ac-
tivity increases initially, however, this response tends to diminish over the long 
term, as plants acclimate to this new condition [9]. The acclimation may not 
necessarily be due to the elevated CO2 per se, but rather due to the changing C-N 
balance in the plants, resulting from the exposure to elevated CO2. In C3 plants, 
CO2 is fixed by the enzyme, ribulose-1,5 biphosphate carboxylase (Rubisco), its 
content and activity in the leaves are reduced at elevated CO2 levels [10] [19]. 
Thus, high CO2 which is likely to increase C-N ratio in plants could also make 
nitrogen potentially a limiting factor for the synthesis of Rubisco, thereby nega-
tively affecting the photosynthetic capacity, but increasing the nitrogen use effi-
ciency [20] [21]. Nevertheless, in response to elevated CO2, despite their accli-
mation, plants show a net accumulation of starch and sugars [20]. Thus, high 
CO2 favors carbon accumulation with concomitant decrease in nitrogen content 
[9]. In fact, nitrogen metabolism is closely linked to carbon metabolism and 
plays an important role in signaling and in inducing significant changes in the 
regulation of a wide array of genes affecting a large swath of metabolic pathways 
involved in many cellular functions including primary and secondary metabol-
isms [22] [23]. Another important impact of elevated CO2 on plants is that it can 
significantly reduce the leaf stomatal conductance [6] which can suppress leaf 
CO2 exchange, thus potentially affecting photosynthesis, and also transpiration 
in a number of both C3 and C4 species [10] [21]. Thus, reduced transpiration 
improves the water use efficiency and may actually ward off the adverse affects 
of drought at elevated CO2 [4] [21] [24] [25]. So, in a broader sense, C-N balance 
can affect not only plant functions but also the ecosystem at large including nu-
trient cycling, ecosystem dynamics, plant defense against biotic and abiotic 
stresses and plant interaction with herbivores and microbes [26] [27] [28]. 

While elevated CO2 has a direct effect on photosynthetic activity and carbon 
accumulation in plants, it can also affect the profile of chemical composition in 
cells and tissues. It has long been known to affect the mineral or nutrient con-
tents of plants including N, P, K, Ca and Mg [29]. As mentioned earlier, there is 
an overwhelming evidence that elevated CO2 decreases nitrogen concentration 
in plant tissues including in edible parts of the plants, which has an enormous 
implication on the nutritional quality of human diet [30] [31]. Diminished ni-
trogen content of plants, which mostly reflects on their protein content, is a ma-
jor concern as it plays an important role in the human diet. Malnutrition and 
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public health issues resulting from protein deficiency are a common problem 
globally, especially in regions where C3 cereal crops are the staple food. Thus, 
crops growing under elevated CO2 will pose a serious health threat to a wide 
swath of global population. The decreased nitrogen concentration in plants has 
been attributed to several factors including the dilution effect caused by the ac-
cumulation of carbon at high CO2 levels. However, after examining the concen-
trations of other nutrients in plant tissues exposed to elevated CO2, Myers et al. 
[31] concluded that the decrease in nitrogen content in tissue may not be as a 
result of dilution caused by the accumulation of carbohydrates. Also, Taub and 
Wang [32] have outlined other possible factors for low nitrogen concentration in 
plants at high CO2 including: a decrease demand for nitrogen, a decrease in up-
take of nitrogen and other nutrients by plants as elevated CO2 can reduce the 
transpiration rate, and a reduced assimilation of inorganic nitrogen into organic 
forms. Indeed, studies have shown that nitrate uptake by plants and its assimila-
tion into organic compounds are known to be affected at elevated CO2 in a wide 
variety of C3 plants [33] [34]. 

In addition to decreased protein level in edible portion of many crops, study 
by Myers et al. [31] demonstrated a suppression of mineral nutrients in response 
to elevated CO2 in several genotypes of commonly cultivated crops including 
rice, wheat, corn, sorghum, soybean and peas grown in diverse geographical lo-
cations over many growing seasons. The results showed a significant decrease in 
levels of important micronutrients such as zinc and iron in the edible portions of 
C3 cereal and legume crops. This turns out to be significant because a large part 
of our global population receive their dietary zinc and iron from C3 grains and 
legumes, and an estimated 2 billion people world-wide may suffer from defi-
ciency of these micronutrients [35]. Thus, depressed levels of these nutrients in 
staple foods are likely to exacerbate this global health problem. Similar results 
were noted in leafy vegetables, such as lettuce and spinach, where elevated CO2 
showed a significant decrease in a number of major and micronutrients includ-
ing protein and zinc [36]. In a meta-analysis of nutritional quality of many food 
crops as affected by elevated CO2, Loladze [37] showed that the overall pattern in 
many C3 plants was that elevated CO2 depressed not only nitrogen but many 
other nutrients including iron, zinc, calcium, potassium, sulfur and other mi-
cronutrients. 

Thus, rising atmospheric CO2 level, in addition to inducing many adverse 
predictable climatic changes like warming and extreme weather-related events 
and the dire consequences on food security and safety, is likely to pose a real 
threat to the nutritional quality of food we consume. Ironically, in the face of the 
uncertainty of being able to produce enough food going forward because of the 
accelerated climatic changes, people may have to actually consume more food to 
get adequate nutrition. In fact, many studies have shown that herbivores and in-
sect pests of plants consume more food at elevated CO2 to successfully complete 
their life cycles [38] [39] [40]. 

https://doi.org/10.4236/ajps.2018.92013


C. B. Rajashekar 
 

 

DOI: 10.4236/ajps.2018.92013 154 American Journal of Plant Sciences 
 

3. Phytochemicals 

There is limited information with a great deal of variability with regard to the 
impact of elevated CO2 on the phytochemical content of plants. Thus, the major 
challenge has been to make valid comparisons of studies that often use different 
experimental conditions or methods to treat plants with CO2, methods ranging 
from closed chambers with protected environmental conditions to open-top 
chambers and FACE system under field conditions, especially, when we know 
that plant responses vary greatly depending on the experimental conditions [10]. 
In addition, the concentrations of most phytochemicals in most tissues are likely 
to be low compared to major nutrients and strongly depend on many factors in-
cluding genotype, plant part and plant developmental stage [41]. Therfore, a 
good deal of caution is warranted in comparing such disparate studies to draw 
valid conclusions. 

Carbon and nitrogen metabolisms are tightly controlled in plants and typical-
ly, there is an inverse relationship between the contents of carbon and nitrogen 
in plants. The interrelationship between these nutrients (balance) has been ex-
plored quite extensively in relation to allelochemicals, plant defense and ecosys-
tem characterization, but not so much with regard to health-promoting phyto-
chemicals in crop plants. Higher atmospheric CO2 can lead reallocation of re-
sources with in the plant affecting many physiological process including changes 
in primary and secondary metabolisms, growth, and development. Elevated CO2 
can result in increased carbohydrate reserves in the plants, which affects not only 
the nutrient balance in plants but also serve as a source of secondary metabolites, 
many of which are health-promoting phytochemicals and others regarded as al-
lelochemicals which can play an important role in plant defense against biotic 
and abiotic stresses. It is important to note that the distinction between 
health-promoting phytochemicals and allelochemicals is not always clear as 
many health-promoting phytochemicals can also play a key role in plant defense. 

Considerable research on allelochemicals and plant defense has focused on the 
basic hypothesis that reallocation of plant resources, especially to secondary me-
tabolites, is based on the premise of carbon–nutrient balance (CNB). Many stu-
dies have supported this hypothesis that a higher carbon accumulation can to 
lead to the accumulation of carbon-based secondary metabolites such as phenol-
ic compounds [42] [43] [44]. However, this premise has also been a subject of 
considerable debate as some studies subsequently have failed to show the relia-
bility of CNB in predicting the accumulation of carbon-based secondary meta-
bolites in plants [45] [46]. The results are variable depending on the specific 
phytochemicals and plant species used in these studies. For example interme-
diates of phenylpropanoid pathway, a source of many phytochemicals, are a dy-
namic part of a complex network of pathways and many are likely to be in a state 
of flux as they may have rapid turnover rates. Some examples of such labile in-
termediates are phenolic glycosides, monoterpenes and sesquiterpenes whose 
concentrations are typically low and show great variability temporally and be-
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tween plant organs. Thus, one would expect to see a lack of consistency in the 
results when these intermediates are measured in response to elevated CO2. On 
the other hand, more stable intermediates or end products like condensed tan-
nin or lignin are likely to show more consistent positive response with high car-
bon accumulation [44] [47]. Nonetheless, it should be noted that many of the la-
bile intermediates of secondary metabolism are often likely to be more impor-
tant with regard to the health-promoting qualities of food than the stable end 
products. 

Many studies have shown that higher carbohydrate levels can lead to the ac-
cumulation of certain carbon-based secondary metabolites such as phenolic 
compounds including flavonoids in numerous plant species [48] [49] [50] [51]. 
In response to elevated CO2, accumulations of phenolic acids, many flavonoids 
including condensed tannins have been observed in birch, willows and as well as 
in other species [52] [53] [54] [55]. Similarly, several flavonoid glycosides and 
other phenolic compounds accumulate in lettuce in response to high CO2 [51]. 
High CO2 has also been shown to improve the nutritional quality of tomato 
fruits by increasing the level of their carotenoids such as lycopene and 
β-carotene, and ascorbic acid [18] and in broccoli by increasing its glucosinolate 
content [56]. Furthermore, many studies have also shown that some of these 
phytochemicals, which are antioxidants, induced by elevated CO2, play not only 
a key role in plant defense against many biotic and abiotic stresses but also miti-
gate the adverse effects caused by these stresses [57]-[62]. 

However, on the other hand, there are also studies that show negative or con-
flicting responses to elevated CO2 in relation to carbon-based secondary metabo-
lites. For example, elevated CO2 produced low phenolic accumulation in needles 
of pine [48] and Norway spruce [63]. It has also been shown to reduce the quali-
ty of rice grains as measured by the contents of phytochemicals including total 
phenolics, flavonoids, tocopherol and tocotrienols [64]. In addition, it is not un-
usual to find contrasting results of CO2 effects reported in the same species. For 
example, Sun et al. [65] reported lower antioxidant activity in strawberry fruits 
while Wang et al. [66] observed higher amounts of ascorbic acid, glutathione 
and phenolic compounds with higher antioxidant activity against many reactive 
oxidative species. Similarly in birch leaves, high CO2 favored low accumulation 
of flavones while, in contrast, it was found to increase the accumulation of many 
flavonoids including condensed tannins [53]. 

Notwithstanding these conflicting results, a comparative review of secondary 
metabolite responses to elevated CO2 by Pennuelas and Estiarte [67] suggests 
that in a majority of plant species studied there was a positive response to ele-
vated CO2 and N-limiting conditions leading to the accumulation phenolic 
compounds and condensed tannins. 

4. Role of Nitrogen 

A number of studies have examined the role of nitrogen in the secondary meta-
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bolism and the results show that N-limiting conditions lead to the accumulation 
of carbon-based secondary metabolites [68]. Bryant et al. [68] showed that low 
leaf nitrogen in Alaska paper birch seedlings, induced by defoliation, resulted in 
the accumulation of condensed tannin. Fritz et al. [69] examined the regulation 
of synthesis of secondary metabolites in relation to C-N status in tobacco plants. 
They found that nitrate nutrition can suppress the accumulation of many car-
bon-based secondary metabolites but increase the content of N-containing alka-
loid such as nicotine. On the other hand, nitrate deficient tobacco plants induced 
many genes involved in phenylpropanoid pathway including PAL, 4CL-2 and 
HQT and thus, accumulated a number of phenylpropanoids and flavonoids, 
such as benzoic acid, coumaric acid, caffeic acid, chlorogenic acid, rutin and lig-
nin. They demonstrated that this response is driven by the lack of adequate ni-
trate nutrition to the plants rather than the organic nitrogen status of plants. 
This is consistent with the results observed in Arabidopsis where a number of 
genes involved phenylpropanoid and flavonoid metabolism were activated in 
N-deficient plants while nitrate addition resulted in a coordinated repression of 
genes involved in these pathways [23]. 

Thus form these studies, it can be concluded that nitrogen nutrition of plants 
plays a major role in the accumulation of carbon-based secondary metabolites. 
This is supported by many field studies where limited nitrogen fertilization can 
produce results very similar to those in response to elevated CO2. Low nitrogen 
fertilization in numerous crops including many fruits and vegetables can result 
in increased accumulation of a whole host of phenolic compounds (see the ex-
cellent review by Treutter [70]). Low nitrogen favored the accumulation of sev-
eral phenolic compounds including flavonoids and chlorogenic acid in apple 
fruits [71]. Similar results were observed in apple leaves by Leser and Treutter 
[72] with regard to a number of secondary metabolites including hydroxyl cin-
namic acids and many flavonoids. In field trials, low nitrogen application to 
cabbage stimulated the accumulation of nitrogen and sulfur containing phyto-
chemicals such as glucosinolates [73]. Similar results have been reported in other 
brassica species as well [74]. However, it should be noted that while there is a 
strong evidence from these studies that low nitrogen fertilization can induce the 
synthesis of carbon-based phytochemicals, it is not clear whether carbon accu-
mulation also played any role in this as carbon accumulation was not measured 
in these studies. However based on many other studies [42] [67] [69], it is safe to 
assume that both nitrogen nutrition and carbon accumulation have a significant 
role in the accumulation of phytochemicals in plants. 

5. Conclusion 

In conclusion, elevated CO2 is known to have a positive effect on photosynthetic 
activity, plant growth, biomass accumulation and yield. It can also reduce trans-
piration, increase water use efficiency and improve drought resistance. Higher 
photosynthetic activity can result in carbon accumulation and a higher C-N ratio 
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which can affect a wide range of metabolic functions including primary and 
secondary metabolisms in plants. Elevated CO2 depresses nitrogen content (pro-
tein) along with a number of major nutrients including phosphorus, potassium, 
calcium, iron, zinc and others in food crops which certainly can lead to serious 
global health crisis and malnutrition. As carbon and nitrogen metabolisms are 
tightly controlled, carbon accumulation and nitrogen limitation are known to 
coordinate and regulate numerous genes across several metabolic pathways, in-
cluding secondary metabolism, thus affecting many cell functions. Elevated CO2 
and N-limiting conditions have been known to favor the accumulation of car-
bon-based secondary metabolites which have a key role in health-promoting 
qualities of food crops and in plant defense against herbivory in many plant spe-
cies. While the results are variable with regard to the effect of elevated CO2 on 
the health-promoting phytochemical accumulation in food crops, a great num-
ber of studies support the fact that elevated CO2 may favor the accumulation 
carbon-based phytochemicals. Thus, although elevated CO2 can suppress the 
contents of major nutrients, it may enhance certain group of health-promoting 
phytochemicals in food crops. 
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