
Journal of Information Security, 2018, 9, 100-132
http://www.scirp.org/journal/jis

ISSN Online: 2153-1242
ISSN Print: 2153-1234

DOI: 10.4236/jis.2018.91009 Jan. 23, 2018 100 Journal of Information Security

A Security Architecture for SCADA Systems

Arun Velagapalli, Mahalingam Ramkumar

Mississippi State University, Starkville, MS, USA

Abstract
Supervisory Control and Data Acquisition (SCADA) systems are attractive
targets for attackers, as they offer an avenue to attack critical infrastructure
(CI) systems controlled by SCADA systems. Ultimately, an attack on any sys-
tem exploits some undesired (malicious or accidental) functionality in the
components of the system. Unfortunately, it is far from practical to eliminate
undesired functionality in every component of a system. The contribution of
this paper is a novel architecture for securing SCADA systems that guarantee
that “any malicious modification of the deployment configuration or the de-
sign configuration of the SCADA system will be detected”—even if undesired
functionality may exist in SCADA system components.

Keywords
SCADA, Security: Trusted Computing: Authenticated Data Structure, Critical
Infrastructure, DCS, PCS, Cyber Security, CIP

1. Introduction

Several important systems like power grids, water supply systems, oil and gas
production/distribution systems, mass transportation systems, etc., are consi-
dered as critical infrastructure (CI) systems due to the catastrophic nature of
damages that can result from their failure. The task of monitoring and control-
ling such systems is often entrusted to Supervisory Control and Data Acquisition
(SCADA) systems.

SCADA systems are an attractive target for attackers, as they offer an avenue
for launching attacks against high valued CI systems. A typical SCADA system
may include several remote terminal units (RTU), one or more master terminal
units (MTU), a variety of communication equipment and links, computers run-
ning human machine interface (HMI) software to enable more intuitive operator
driven control when necessary. Hidden malicious/accidental functionality in any

How to cite this paper: Velagapalli, A. and
Ramkumar, M. (2018) A Security Archi-
tecture for SCADA Systems. Journal of
Information Security, 9, 100-132.
https://doi.org/10.4236/jis.2018.91009

Received: December 14, 2017
Accepted: January 20, 2018
Published: January 23, 2018

Copyright © 2018 by authors and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

http://www.scirp.org/journal/jis
https://doi.org/10.4236/jis.2018.91009
http://www.scirp.org
https://doi.org/10.4236/jis.2018.91009
http://creativecommons.org/licenses/by/4.0/

A. Velagapalli, M. Ramkumar

DOI: 10.4236/jis.2018.91009 101 Journal of Information Security

SCADA system component could be exploited by an attacker to launch attacks
such as the above. Such hidden functionality could exist in (the logic pro-
grammed into) programmable logic controllers (PLC) in RTUs and MTUs, in
any computer used for programming PLCs, or in any peripheral of the computer
running the HMI software or the SCADA data logger, in the operating system of
such computers, in the HMI software, or even, ironically, in a computer that
runs the intrusion detection system (IDS) intended for protecting the SCADA
system.

In 2010, a virus known as Stuxnet1 that had evaded detection for over a year [1]
was identified. This virus targeted nuclear plants, and shut down centrifuges in-
side the plant by overwriting some set-points. In November 2011, the Illinois
Statewide Terrorism and Intelligence Center reported2 a cyber-attack on a small,
rural water utility outside Springfield, where attackers had gained remote access
to pumps. In May 2003 [2], a Slammer worm exploiting3 an un-patched version
of Microsoft SQL erased crucial SCADA system logs. “In March 2016, the U.S.
Justice Department claimed that Iran had attacked U.S. infrastructure by infil-
trating the industrial controls of a dam in Rye Brook, New York. The attackers
compromised the dams command-and-control system in 2013 using a cellular
modem” [3]. “In December 2015, a power company located in western Ukraine
suffered a power outage that impacted a large area that included the regional capi-
tal of Ivano-Frankivsk. The cybercriminals had facilitated the outage by using
BlackEnergy malware to exploit the macros in Microsoft Excel documents” [4].

It is indeed for very good reasons that such threats have been recognized as
“Advanced Persistent Threats” [5] [6] [7] [8] [9]. Due to the high value of targets,
the possibility of sophisticated state sponsored attacks has to be considered. So-
phisticated malicious functionality may be introduced even during the manu-
facturing process of various components that could ultimately end up in SCADA
systems. In addition, we cannot afford to ignore the possibility that an attacker
may have actually participated in the deployment of the SCADA system, or test-
ing of the deployed system, and taken advantage of such an opportunity to inject
hidden functionality in some component.

While it is important to take all possible practical steps to reduce the threat of
hidden malicious functionality, we may never be able to eliminate such functio-
nality in every component. Such functionality may be exploited to launch attacks
while simultaneously reporting “all clear” messages to the stake-holders. It is of
vital importance that we are at the minimum able to reliably detect such attacks,
even if hidden malicious functionality is inevitable.

1Stuxnet was able to use about twenty zero-day vulnerabilities [11] in a popular commercial
SCADA-system design software to gain control over the plant. Stuxnet has the potential to turn off
pumps, control actuators, and still report that everything is normal. Due to its popularity, this worm
is freely available, and could lead to more drastic attacks upon re-engineering.
2“A hacker calling himself ‘Prof’ posted screen shots from his computer showing him logged onto the
control system of a water utility in the Texas town of South Houston” [12].
3The SCADA systems data acquisition server was infected through the corporate network. The entry
point for the Slammer worm [13] was discovered to be a laptop.

https://doi.org/10.4236/jis.2018.91009

A. Velagapalli, M. Ramkumar

DOI: 10.4236/jis.2018.91009 102 Journal of Information Security

1.1. Active vs Passive Security Measures

The process of securing any system can be seen as consisting of three broad steps:
1) enumeration of desired assurances; 2) identification of reasonable assump-
tions; and 3) development of a process, viz., a security protocol, to translate the
assumptions into the desired assurances. In other words, if we begin with good
assumptions, and if the security protocol is correct, and if the agency responsible
for executing the protocol is trustworthy, then the desired assurances are guar-
anteed.

Approaches to secure systems can be broadly classified [10] into:
1) active approaches based on attack models; and
2) passive approaches based on system-state models.
Underlying active approaches is the notion that violations of desired assur-

ances result from attacks. As attacks exploit pitfalls in the implementation of
systems (resulting in undesired functionality) some of the practical tools used in
active approaches for identification, removal and/or isolation of attacks, include
machine learning for modeling, detecting, and classifying intrusions; isolation
mechanisms like hypervisors, containers, and various cryptographic mechan-
isms; and good programming practices to minimize bugs and potentially mali-
cious functionality. The complexity of most tools used in active approaches
render it infeasible to make meaningful assumptions regarding the integrity of
both: 1) the tools, and 2) the process that utilizes the tools, to realize the desired
assurances. Furthermore, due to the unrestricted freedom of attacks, active ap-
proaches will forever be engaged in an evolutionary arms race with attacks.

Passive approaches view digital assets of a system as a dynamic set of states.
The desired assurances dictate the nature of protection to be extended to each
state, and are expressed in the form of an unambiguous system-state transition
model. Executing the model, (or model-driven verification) is a process of 1)
actually verifying that the state-transition rules specified by the model are not
violated when the system is operational, and 2) reporting such findings to
stake-holders. To ensure that the model is correct, the model should be made
open to scrutiny. In such an event, the extent of trust in the assurances offered
by such an approach (that no state violation will go undetected) is only limited
by the trust in the environment for model-execution. The novel STCB (SCADA
Trusted Computing Base) approach proposed in this paper is a passive approach,
which leverages a rigorous standard for a trustworthy model-execution envi-
ronment.

Current approaches to secure systems, and more specifically, CI systems mo-
nitored by SCADA systems, are overwhelmingly active approaches. Ultimately,
both active and passive approaches are necessary. Active approaches attempt to
deflect/repel as many attacks as possible. Passive approaches diminish the
pay-off for attackers, as even state violations resulting from attacks that slip-past
active approaches will be detected by passive approaches. In addition, active ap-
proaches are also essential for the narrow purpose of thwarting attacks that seek

https://doi.org/10.4236/jis.2018.91009

A. Velagapalli, M. Ramkumar

DOI: 10.4236/jis.2018.91009 103 Journal of Information Security

to compromise the integrity of the model-execution environment.

1.2. Trusted Computing Base

For any system with a desired set of security requirements  , the trusted com-
puting base (TCB) is “a small amount of software and hardware we rely on” (to
realize the requirements ) and “that we distinguish from a much larger
amount that can misbehave without affecting security” [14]. In other words, as
long as the TCB is worthy of trust the TCB can be leveraged to realize the de-
sired assurances  regarding the operation of the entire system.

In the proposed passive approach to secure SCADA systems, a resource li-
mited trustworthy module—which we shall refer to as an STCB (SCADA
Trusted Computing Base) module serves as the TCB for model-execution. The
main contributions of this paper are: 1) a strategy for expressing of state-transition
models for SCADA systems; and 2) a functional specification for STCB modules,
for executing the model.

To improve the confidence in the integrity of STCB modules, they should
ideally be manufactured under a well-controlled environment, and consum-
mately tested for the designed functionality. To facilitate consummate testing, it
is necessary to deliberately constrain STCB modules to possess simple functio-
nality. For low-cost mass-realization of reliable STCB modules to be practical,
the simple functions executed inside STCB modules should nevertheless permit
them to serve as the TCB for any SCADA system—irrespective of the nature and
scale of the CI system. While the “instruction set” for specifying the state transi-
tion model should be rich enough to be suitable for any SCADA system, it
should simultaneously be simple enough to be executed even by severely re-
source limited STCB modules.

The main components of the proposed STCB based security architecture in-
clude

1) a systematic strategy for designing SCADA state-transition models for any
SCADA system, consisting of

a) an instruction set for expressing the model,
b) role of the designer of the SCADA system, and
c) role of the deployer of the system;
2) a functional specification for STCB modules, suitable for executing the in-

struction set for any SCADA system; and
3) an STCB protocol, for interacting with STCB modules, and obtaining

SCADA state reports.

1.3. Organization

The rest of this paper is organized as follows. Section 2 is an overview of STCB
approach. Section 3 outlines the STCB design process. Section 4 outlines
processes for STCB deployment and operation. Section 5 provides a detailed de-
scription of the STCB functionality. Section 6 describes the STCB protocol. Fi-
nally, conclusions are offered in Section 7.

https://doi.org/10.4236/jis.2018.91009

A. Velagapalli, M. Ramkumar

DOI: 10.4236/jis.2018.91009 104 Journal of Information Security

2. Overview of STCB Approach

While a state-based security approach can be extended to any system, such an
approach is indeed natural for critical infrastructure SCADA systems. Note that
the ultimate purpose of a SCADA system, viz., to monitor and report CI system
states to stake-holders, is indeed identical to that of state-model based security
architecture, consisting of model-driven verification and reporting.

The state reports from a SCADA system can be seen as a function of the cur-
rent states of all sensors associated with the system. For a SCADA system cha-
racterized by n sensors, let 1 nv v represent the states of the n sensors, and let

[] ()1 1s no o v v=  (1)

represent a function that captures the “physics” of the controlled system, and
reports values []1 so o to the stake-holder as the “state of the system”. More
specifically, as inputs 1 nv v to the SCADA system (sensor measurements)
may be received asynchronously, the function () is often realized as

() () ()1 2 n≡      (2)

where ,1i i n≤ ≤ is evaluated whenever an fresh measurement iv is made
available. Furthermore, in practical SCADA systems, evaluation of () is
performed jointly by numerous system components that may include PLCs in
multiple RTUs and MTUs, the HMI, and even actions by human operators.
Consequently, notwithstanding current active measures, the integrity of the state
reports is far from assured. Specifically, current active approaches include fea-
tures like a) cryptographic protection of links between RTUs and MTUs [15]-[20]
to prevent message injection attacks by attackers and b) intrusion detection sys-
tems to facilitate early detection of attacks [21] [22] [23] to detect and evade at-
tacks.

The goal of the STCB security model is to guarantee the integrity of state re-
ports provided by the agent. To achieve its goals, the STCB security model relies
only on a) the integrity of STCB modules, and b) the integrity of clearly defined
processes to be adopted by entities identified as the designer and the deployer of
the SCADA system. The designer is an entity with good domain knowledge (re-
garding the CI system); the deployer is a security professional who is not re-
quired to possess any knowledge of the CI system. To the extent the stake-holder
trusts the integrity of the STCB modules, and the verifiable processes adopted by
the designer and the deployer, the stake-holder is assured of the integrity of the
state report—even if malicious functionality may exist in SCADA system com-
ponents.

2.1. STCB System Components

The additional components introduced into a STCB-secured SCADA system in-
clude

1) an untrusted “STCB system manager” U,

https://doi.org/10.4236/jis.2018.91009

A. Velagapalli, M. Ramkumar

DOI: 10.4236/jis.2018.91009 105 Journal of Information Security

2) STCB modules { }1 kM M , and 0M .
All STCB modules are identical, and are capable of executing a set of simple

TCB functions. Modules 1 kM M are “closely bound” to SCADA system sen-
sors. In the rest of this paper we shall use the term sensor module (SM) for STCB
modules 1 kM M , and the term central module (CM), for STCB module 0M .

The untrusted STCB manager U periodically receives sensor reports from SMs

1 kM M and makes them available to CM 0M . CM 0M evaluates () , and
outputs state reports, see Figure 1. From a broad perspective, the authenticity of
the inputs to () are assured by SMs 1 kM M ; the integrity of the function

() is assured by the CM.
The exact make up of the manager U is irrelevant for our purposes of guaran-

teeing the integrity of () , as U is not trusted. Unless U performs it tasks
faithfully, valid state reports cannot be sent to the stake holders.

The state reports are relayed by the STCB manager U to an STCB module

rM associated with a stake-holder. Any number of stake holder modules like

rM may exist. More generally, a stake-holder module may be the CM for
another STCB deployment.

For example, the state reports from different SCADA systems may be pro-
vided as “sensor reports” to a system at a higher level of hierarchy. In such a
scenario, the stake-holder module rM can be seen as the CM of an STCB dep-
loyment at a higher level of hierarchy. Module rM considers the state reports
from the CMs of systems at the lower level as “sensor reports” from foreign
STCB deployments.

Any number of hierarchical levels may exist. For example, state reports from
multiple SCADA systems in a town may be inputs to a single SCADA system
that monitors the health of all such systems in the town. The reports from such

Figure 1. Top: STCB components. Bottom: Information flow in the STCB model. The
STCB module rM associated with the stake-holder can be the CM for a deployment at a
higher hierarchical level.

https://doi.org/10.4236/jis.2018.91009

A. Velagapalli, M. Ramkumar

DOI: 10.4236/jis.2018.91009 106 Journal of Information Security

SCADA systems in different towns may be inputs to another SCADA system at
an even higher level of hierarchy, that monitors the health of all systems in a
state, and so on.

2.2. Evaluating ()

The main challenge lies in the choice of a strategy for evaluating any
() () () ()1 2 n≡      inside the trusted confines of resource chal-

lenged STCB modules. Recall that we desire to deliberately constrain STCB
modules to possess only modest memory and computational abilities. Conse-
quently, we constrain STCB modules to perform only logical and cryptographic
hash operations. By performing simple logical operations the STCB modules
support a simple instruction set  for representing different ()i s. As no re-
strictions are placed on the nature and scale of the SCADA system, some of the
specific challenges are that

1) the number of sensors n can be unlimited;
2) evaluation of ()i ’s may require evaluation of complex functions, and

thus challenging to represent using merely the instruction set  .
Both challenges are addressed through the use of Merkle hash trees [24].

2.2.1. Merkle Trees
A Merkle tree is a binary hash tree which permits a resource limited entity to
assure the integrity of a dynamic database of practically any size, even while the
database is stored in an untrusted location. Specifically, the resource limited ent-
ity only needs to store a single cryptographic hash—the root of the tree.

A Merkle hash tree with 2Ln = leaves (for simplicity we shall assume that is
a power of (2) has L levels. For storing a database with n records, each record is
interpreted as a leaf of the tree. Corresponding to each leaf (record) R is a
leaf-hash obtained as ()h R , by hashing the leaf using a secure cryptographic
hash function ()h .

The n leaf-hashes (say, 0 0
0 1nv v −) corresponding to n records 0 1nR R − are

at level 0 of the binary tree. At level 1 of the tree are n/2 leaf hashes 1 1
0 2 1nv v − ,

where ()1 0 0
2 2 1,i i iv h v v += . Similarly, the n/2 leaves in level 1 result in n/4 nodes in

level 2, and so on. Construction of the tree stops at level L with a single node

0
Lv r= —the root of the tree. For any leaf iR (with corresponding leaf node

()i iv h R=), there exists a set of L complementary nodes, say, iv , and a se-
quence of L hash operations represented as ()vf such that (),v i if v r=v , see
Figure 2.

Protocols that employ Merkle hash trees can be seen as an interaction between
two parties—a prover and a verifier. The prover stores all n leaves and all 2 1n −
nodes (distributed over levels 0 to L). The verifier stores only the root r (the lone
node at level L). To demonstrate that a record R is part of the tree the prover
provides L complementary nodes v as proof. The verifier accepts record R as
authentic only if ()(),vr f h R= v . To update record R to R′ the verifier
simply sets it’s root to ()(),vf h Rξ ′ ′= v .

https://doi.org/10.4236/jis.2018.91009

A. Velagapalli, M. Ramkumar

DOI: 10.4236/jis.2018.91009 107 Journal of Information Security

Figure 2. A binary hash tree with 8 leaves. The set of complementary nodes for 6R are

“the siblings of all ancestors of 6R ”— 7v (sibling of 6v), 1
2v (sibling of ancestor 1

3v)

and 2
0v (sibling of ancestor 2

1v).

2.2.2. Merkle Trees in the STCB Approach
In the STCB approach resource challenged STCB modules store only the root of
the tree, and have the ability to perform ()vf operations. This capability is le-
veraged to assure the integrity of

1) a dynamic database of n sensor measurements;
2) any number of simple static “algorithms” to evaluate different ()i s,

where each algorithm is a small number of instructions (belonging to the in-
struction set ) supported by STCB modules; and

3) static look-up tables (of any size) for evaluating complex functions that may
be necessary to execute some (instruction in) ()i .

Specifically, the STCB module 0M for an STCB deployment stores a (static)
root of a static Merkle tree, and the (dynamic) root of a dynamic Merkle tree.
The leaves of the static tree are the specifications for a specific STCB deploy-
ment—provided by the designer and the deployer of the system. The leaves of
the dynamic tree are the current states of the n sensors of the system. The leaves
and all intermediate nodes of both trees, are stored by the untrusted STCB
manager U.

2.3. STCB Designer and Deployer

One of the main motivations for clearly demarcating between the roles of a de-
signer and a deployer is that entities with good domain knowledge (for example,
an entity with in-depth knowledge about the domain of specific CI system, like a
nuclear plant) are often unlikely to be security experts. Likewise, security experts
are unlikely to be experts in the domain of the specific CI system.

The designer is a domain expert with good knowledge of the CI system. The
designer is required to be aware of the purpose of each sensor in the system, and
the interpretation of their states. For example, (say) in a water-tank control sys-

https://doi.org/10.4236/jis.2018.91009

A. Velagapalli, M. Ramkumar

DOI: 10.4236/jis.2018.91009 108 Journal of Information Security

tem, “if 5 100S > (water level greater than 100) 6S should be zero (the pump
should be off).” The responsibility of the designer is to come up with a specifica-
tion for the function ()1 nv v that captures the physics of the system. Spe-
cifically, the designer specifies two types of records. For a system with n sensors,
the designer specifies

1) n static records 1 nG G which convey cryptographic commitments to
values (instructions, inputs, constants) necessary for executing each i ;

2) n records 1 nS S which convey the initial state of n sensors. During op-
eration, a sensor report from iS will trigger execution of instructions defined
in a record iG to modify record iS .

The deployer is a security professional who may not possess any CI system
domain knowledge. The responsibility of the deployer is to procure and install
STCB modules, and be aware of steps to be taken, for example, to

1) facilitate establishment of shared secrets between modules;
2) securely connect (for example, using tamper-evident connectors) physical

sensor outputs to SMs, and record such bindings (for example, ()5 8,S M indi-
cating that sensor 5S is connected to module 8M);

3) deploy the STCB manager U—which includes installation of all hard-
ware/software necessary to relay SM outputs to the STCB manager U, setting up
a channel to the CM 0M , and a channel to be used for conveying state reports
to stake holders. However, U, and such channels, are not trusted.

Ultimately, the components of the system-model specified by the deployer
take the form of two types of records. Records of type B (binding records) speci-
fy binding between a sensor identity iS and the module identity jM respon-
sible for authenticating reports from iS . Records of type R (or reporting
records) specify the identity of the STCB module to which a report regarding a
specific system-state is to be made.

3. STCB Design

The designer is entrusted with the responsibility of describing function

() () () ()1 1 2 2 n nv v v≡     

where () ,1i iv i n≤ ≤ is evaluated whenever an fresh measurement from sen-
sor iS is available.

3.1. STCB Design Tree

The designer provides a specification of ,1i i n≤ ≤ by constructing a static
Merkle tree—the design tree—with root sξ . The tree includes 1n + leaves

0 1, nξ G G (3)

where 0ξ is itself a root of a Merkle tree with n leaves. Each leaf specifies the
initial state of n sensors as records ,1i i n≤ ≤S . The other n leaves correspond to
the n design records ,1i i n≤ ≤G . The sensor records and design records are of
the form

https://doi.org/10.4236/jis.2018.91009

A. Velagapalli, M. Ramkumar

DOI: 10.4236/jis.2018.91009 109 Journal of Information Security

{ }
1

,1 ,

, , , ,

, , , ,
wi i i i i i i

i i i i i i q i

S v t o o

S S S S

τ

α λ

 =  
 ′=  





S

G
 (4)

Each sensor is associated with a set of 3w+ dynamic values, where w is a
constant. Specifically, 1) iv is the latest measurement of sensor iS ; 2) it is the
time of the measurement; 3)

1 wi io o are the w outputs of function i , eva-
luated when the last report (),i iv t was received from sensor iS . The value iτ
is a measure of time associated with the outputs

1 wi io o (and is not necessarily
the same as it).

In the design record iG for sensor iS , value ()i ihα = A is the hash of a
small number (say, m) of instructions chosen from the set  . Specifically, the
instructions iA define the function i to be evaluated on receipt of a report
from sensor iS . The value iλ is a one way function of a set of (say, l) constants
C. Such constants may specify various values like set-points, permitted ranges of
measurements, minimum expected frequency of reports from sensors, etc. In
addition, such constant values may also be used as look up tables. The values

,1 ,i i qS S specify (up to) q related sensors. Such sensors are “related” to iS as
the states of such sensors can influence i . Some or all of the q values ,1 ,i i qS S
can be set to zero if less than q related sensors suffice. Finally, the value iS ′ is
optional, and is the identity of a “synthetic” sensor (explained later).

3.1.1. Example System
To describe different steps involved in the construction of a design tree we will
use a simplified version of a thermal power plant with six sensors 1 6S S as a
running example, see Figure 3.

1S temperature sensor inside boiler.

2S coal weight sensor (coal fed into the boiler).

3S position of fire regulator.

4S temperature inside turbine cell.

5S pressure inside turbine cell.

6S speed of turbine.
The sensor records 1 6S S are of the form

Figure 3. Example: simplified version of thermal power plant.

https://doi.org/10.4236/jis.2018.91009

A. Velagapalli, M. Ramkumar

DOI: 10.4236/jis.2018.91009 110 Journal of Information Security

1

1

1 1 1 1 1 1 1

6 6 6 6 6 6 6

, , , ,

, , , ,

w

w

S v t o o

S v t o o

τ

τ

 =  

 =  







S

S

The design records 1 6G G are of the form

{ }

{ }

1 1 1 1 1,1 1, 1

6 6 6 6 6,1 6, 6

, , , ,

, , , ,

q

q

S S S S

S S S S

α λ

α λ

 ′=  

 ′=  







G

G

3.2. Inputs and Outputs of i

Due to limited memory inside STCB modules, there is a need for a strict upper
bound on the number of inputs to, and outputs of, each i . In other words, ir-
respective of the total number of sensors n, note that i s are restricted to speci-
fying only 1) up to q related sensors, 2) l constants, 3) m instructions, and 4) one
synthetic sensor as inputs. Each i produces w outputs.

As i is re-evaluated whenever a fresh report ,i iv t is available from sensor

iS , the inputs necessary to evaluate i are stored in reserved volatile registers
inside STCB modules, and include

1) values in the record iS associated with sensor iS (stored in a register 0s
inside the module);

2) values ,i iv t in a fresh report from sensor iS (register r);
3) values in records ,1 ,i i qS S for related sensors ,1 ,i i qS S (registers

1 qs s);
4) l constants in iC (register c); and
5) m instructions iA (some of which may be set to 0 to represent “no op-

eration” if m instructions are not required to evaluate i);
The m logical operations in iA provide the instructions to recompute the

outputs
1 wi io o 
 of i following a fresh report from iS . On evaluation of i

the record iS is modified. Specifically,
1) ,i iv t replace the previous values (),i iv t ,
2) outputs

1 wi io o 
 replace outputs

1 wi io o of the previous execution of

i ,
3) and iτ is replaced with

()1
min ,

qi i i itτ τ τ= 


 (5)

to reflect the staleness of the w outputs.
Note that dynamic values associated with any iS may be affected not just by

values corresponding to sensors directly related to iS , but also sensors indirect-
ly related to iS —for example sensors related to a related sensor jS (once re-
moved) or sensors related to a sensor related to jS (twice removed) and so on.
Computing the value τ as in Equation (5) ensures that the value iτ will be the
least of the sensor-report time t corresponding to every sensor that is directly or

https://doi.org/10.4236/jis.2018.91009

A. Velagapalli, M. Ramkumar

DOI: 10.4236/jis.2018.91009 111 Journal of Information Security

indirectly related sensor iS .
On a continuous basis, as and when new sensor reports are available, the

states of the reporting sensors are modified. A subset of dynamic values corres-
ponding to a subset of sensors may be reported to the stake-holder as values

1 mo o describing the state of the system. For example, if value
2j

o (second
output of i) is one of the values reported as the state of the system, the time
associated with the state

2j
o is reported as jτ .

3.2.1. Example i for Power Plant

For the example system 0.0.3, let the maximum number of related sensors be
3q = ; the number of outputs of each i be 2w = ; and the number of con-

stants 8l = . In this example, say there exists a rule that the values 1 2,v v of
sensors 1 2,S S have to be within threshold ranges () ()1 1 2 2, , ,l h l hx x x x respectively.
The design of function 1 checks if 1 2,v v are within thresholds

() ()1 1 2 2, , ,l h l hx x x x respectively. The inputs are 1 2,v v and constants. The output
is written in

10o . For evaluation of 1 , 2S is specified as a related sensor. As
no other related sensors are used,

21S and
31S are set to 0.

As 1 is re-evaluated whenever a fresh report 1 1,v t is available from sensor

1S , the inputs necessary to evaluate 1 are stored in reserved volatile registers
inside STCB modules, and include

1) values in the record 1S associated with sensor 1S (stored in a register 0s
inside the module);

2) values 1 1,v t in a fresh report from sensor 1S (register r);
3) values of record 2S is specified for 1,1S for related sensors, and 1,2S and

1,3S are set to 0 (registers 1 3s s);
4) l constants in 1C (register c); and
5) m instructions 1A
The m logical operations in iA provide the instructions to recompute the

outputs
10o of 1 following a fresh report from 1S . On evaluation of 1 the

record 1S is modified. Specifically,
1) 1 1,v t replace the previous values ()1 1,v t ,
2) output

10o replaces output
10o of the previous execution of 1 ,

3) and 1τ is replaced with

()1 31 1 1 1min , tτ τ τ= 


 (6)

to reflect the staleness of the w outputs.

3.3. Synthetic Sensors

The sensors 1 nS S can be of three types—real sensors, state-report sensors,
and synthetic sensors.

Real sensors are physical sensors in the SCADA deployment. Specifically,
during the STCB deployment phase, real sensors are bound to SMs.

State reports from a foreign STCB system are seen by the receiving CM as a

https://doi.org/10.4236/jis.2018.91009

A. Velagapalli, M. Ramkumar

DOI: 10.4236/jis.2018.91009 112 Journal of Information Security

“sensor” report; as such reports are authenticated by the CM of the foreign dep-
loyment, state-report sensors are bound to foreign CMs.

Synthetic sensors are not bound to CMs or SMs. In a design record iG , if
0iS ′ ≠ , implies that evaluation of i results in the “synthesis of a fresh report

from a (synthetic) sensor i jS S′ = ”. Just as a fresh report from a sensor iS
should be followed by evaluation of i , a fresh report from synthetic sensor

j iS S ′= should be followed by evaluation of j .
The primary motivation for using such synthetic sensors is to cater for com-

plex i where the fixed number of (m) instructions in iA may be insufficient.
By specifying a synthetic sensor j iS S ′= , evaluation of i is continued as
evaluation of j . Similarly, evaluation of j , specified by the designer as

,1 ,, , , ,j j j j q j j jS S S Sα λ ′ =  G may be continued again, if necessary, by speci-
fying 0jS ′ ≠ .

3.4. Constants and Look-Up Tables

In general, the value iλ —which is a one way function of constants required to
evaluate i —may be a function of multiple sets of l constants (l constants in
each set). More specifically, iλ is itself the root of a Merkle tree, where each
leaf specifies a set of l constants. Any number of such leaves may exist, with a
minimum of one.

Permitting an unlimited number of constants facilitates the use of look-up
tables (LUT) for evaluating i . An LUT for evaluating a complex function

()y f x= will have many sets of l constants—say ,1 ,j j lC C where there are
no practical limits on j. In each set 1 ,1 ,j l j lc C c C= = two of the l constants
will specify the range of the independent variable x, and one will specify the cor-
responding dependent variable y. For 2 dimensional LUTs of the form

()1 2,y f x x= , four of the l constants will specify the ranges for the two inde-
pendent variables, and a fifth constant will specify the corresponding value of y.

Special instructions (say LUT1 and LUT2) in the instruction set  will spe-
cify the operands—the dependent and independent variables. As one possible
design of the two instructions, instruction LUT1 interprets constants 1c and

2c as the range of the independent variable x and constant 3c as the corres-
ponding dependent variable y. Before the module executes the instruction LUT1,
it expects the value of the input operand to be within the range of constants 1c
and 2c —else the execution will not proceed. If the input operand satisfies the
requirement, then the value of the output operand is set to 3c . Similarly, for
LUT2, constants 1c and 2c specify the range of the first input operand 1x ;

3 4,c c specify the range of the second operand 2x ; 5c is the corresponding
output y.

3.5. Instruction Set 

Each instruction in  specifies a logical operation (opcode), input operands (1,
2 or 3) depending on the type of opcode, and an output operand. The operands
are restricted to be values in STCB registers 0 qs s , c, r, etc. Specifically, as the

https://doi.org/10.4236/jis.2018.91009

A. Velagapalli, M. Ramkumar

DOI: 10.4236/jis.2018.91009 113 Journal of Information Security

instructions in each i can modify only values in register 0s (the current
state of sensor iS when i is computed), only such values, and a temporary
register T can be specified as output operands.

Examples of simple logical operations include traditional operations like addi-
tion/subtraction, logical operations, bit-wise operations, COPY, MOV, etc., and
some special instructions like LUT1 and LUT2. Other potentially useful special
instructions for SCADA systems is a bounds checking operation CHKB which
checks a specific value is within set-points specified as constants and tolerance
checking TOL where two values are verified to be close enough—within a toler-
ance specified by a third value.

Ultimately, a comprehensive specification for STCB modules will fix values
like the number of related sensors q, number of outputs w, and the number of
constants l (and hence the number of addressable values in the STCB registers).
Such a specification will also include a detailed listing of all permitted opcodes
and their interpretation. This paper, however, is restricted to describing some of
the salient features of STCB modules.

3.5.1. Instructions for Thermal Power Plant Example
For the example system 3.1.1, let 1 6v v be the values reported by sensors

1 6S S required to determine the state of the system.
Let us assume that the state report expected by the stake-holder is a single bit

value— 1 1o = if the system is in an acceptable state, and 1 0o = otherwise. Ac-
cording to the designer, the system is in an acceptable state if the following con-
ditions are satisfied:

1) 1 6v v are all within thresholds () ()1 1 6 6, ,l h l hx x x x respectively, where
(),i i

l hx x represents lower and higher thresholds for sensor iS .
2) The speed of turbine should be between upper and lower limits depending

on the temperature and pressure inside the turbine cell. ()6 1 4 5 1,v f v v δ= ±
where 1δ is another threshold (the speed of the turbine should be a specific
function of the pressure and temperature inside the turbine cell).

3) The position of the fire regulator should be between upper and lower limits
depending on the current speed of turbine 6v and the current temperature and
pressure values inside the boiler cell. ()3 2 1 6 2,v f y v δ= ± where ()1 3 1 2,y f v v=
is a function of the temperature and pressure of the boiler.

Let the maximum number of related sensors be 3q = ; the number of outputs
of each  be 2w = ; and the number of constants 8l = . A possible design of
functions ,1 6i i≤ ≤ is as follows:

1) 1 checks if 1 2,v v are within thresholds () ()1 1 2 2, , ,l h l hx x x x respectively.
The inputs are 1 2,v v and constants. The output is written in

10o . For evalua-
tion of 1 , 2S is specified as a related sensor. As no other related sensors are
used,

21S and
31S are set to 0.

2) 2 performs LUT2 operation for function ()3f . The inputs are 1 2,v v
and an LUT leaf. The output is written

20o . For chaining the output of 1
(now stored in register 1s) to entire system state, the current value at output

https://doi.org/10.4236/jis.2018.91009

A. Velagapalli, M. Ramkumar

DOI: 10.4236/jis.2018.91009 114 Journal of Information Security

register
11

o of 1S is copied to 2S ‘s output register
10o .

3) 3 regards 2S and 6S as related sensors, and perform LUT2 operation
()2f on

21o (an output of related sensor 2S) and value 2 6u v= of other re-
lated sensor 6S (now stored in register 2s . The contents of output register

11
o

of 2S are copied to
10o of 3S .

4) 4 checks if 4 5,v v are within thresholds () ()4 4 5 5, , ,l h l hx x x x respectively.
The inputs are 4 5,v v and constants. The output is provided in register

10o . 5S
is specified as a related sensor of 4S .

5) 5 regards 4S as related sensor and perform a LUT2 operation ()1f
on value 4v of related sensor 4S (value u in record 1s) and 5v (u in register

0s), the output is stored in
20o . The content register

11
o (of 4S) are copied to

10o (of 5S).
6) 6 regards 3S and 5S as related sensors. This function checks if 3 6,v v

are within thresholds () ()3 3 6 6, , ,l h l hx x x x respectively and the output is stored at
register

10o of 6S . In addition, 6 also performs the following steps:
a) if 3v available at 1u satisfies 2 2f δ± —the result of 2f is now available

at
21o of related sensor 3S ; the result of the check is stored at

20o of 6S . The
result of an AND operation performed on outputs in

10o and
20o is stored

back in
10o ;

b) if 5v available at 2u satisfies 1 1f δ± —the output of 1f is available at

22o of related sensor 5S ; the 1/0 result is stored in register
20o .

A result of AND operation of output registers of 6S —
100 ,

200 placed in
100

of 6S represents the entire state of system (acceptable-1, unacceptable-0).
The constants required to evaluate i are provided as a leaf that can be

proved against corresponding root λ . The designer specifies the following con-
stant trees:

1) A tree with one leaf with 8 constants 1 1 2 2 4 4 5 5, , , , , , ,l h l h l h l hx x x x x x x x   with root

aλ .
2) A tree with one leaf with 8 constants 6 6 3 3

1 2, , , , , ,0,0l h l hx x x xδ δ   with root

bλ .
3) Three trees—one for a 2D LUT for function ()1f with root cλ ; one for a

2D LUT for function ()2f with root dλ ; and the third for 2D LUT for func-
tion ()3f with root eλ .

With available information from 1 6U U the designer specifies the follow-
ing design records:

{ }1 1 2 1, ,0,0 , , ,0aS S α λ=   G

{ }2 2 1 2, ,0,0 , , ,0eS S α λ=   G

{ }3 3 2 6 3, , ,0 , , ,0dS S S α λ =  G

{ }4 4 5 4, ,0,0 , , ,0aS S α λ =  G

{ }5 5 4 5, ,0,0 , , ,0cS S α λ=   G

https://doi.org/10.4236/jis.2018.91009

A. Velagapalli, M. Ramkumar

DOI: 10.4236/jis.2018.91009 115 Journal of Information Security

{ }6 6 3 5 6, , ,0 , , ,0bS S S α λ =  G (7)

where 1 2α α are hashes of instructions outlined in Table 1.

4. STCB Deployment

The deployer of the SCADA system is trusted to verify the integrity of the phys-
ical bindings between various sensors and SMs. Specifically, the deployer is re-
quired to permanently connect the outputs of every sensor to an SM, and apply
tamper-evident seals to such connections. The deployer specifies binding
records of the form

Table 1. Instructions for thermal power plant.

Algorithm OPCODE Input registers Output registers

1α

CHKB 1 0 0: , :C uc s T

CHKB 3 1 1: , :C uc s
20 0: os

AND
20 0, :T os

10 0: os

2α
LUT2 1 1 0 0: , :u us s

20 0: os

COPY
11 1: os

10 0: os

3α
COPY

11 1: os
10 0: os

LUT2
21 1 2 2: , :o us s

20 0: os

4α

CHKB 5 0 0: , :C uc s T

CHKB 7 1 1: , :C uc s
20 0: os

AND
20 0, :T os

10 0: os

5α
LUT2 1 1 0 0: , :u us s

20 0: os

COPY
11 1: os

10 0: os

6α

CHKB 3 0 0: , :C uc s T

CHKB 5 1 1: , :C uc s
20 0: os

AND
20 0, :T os

10 0: os

MOV 2: Cc T

TOL
21 1 1 1: , :o us s

20 0: os

AND
1 20 0 0 0: , :o os s

10 0: os

MOV 1: Cc T

TOL
22 2 2 2: , :o us s

20 0: os

AND
1 20 0 0 0: , :o os s

10 0: os

https://doi.org/10.4236/jis.2018.91009

A. Velagapalli, M. Ramkumar

DOI: 10.4236/jis.2018.91009 116 Journal of Information Security

(), , ,i i j iS M θ= B (8)

to convey that
1) measurements corresponding to sensor iS will be reported by a module

jM ; if iS is a real sensor, then jM is an SM; if iS is a state-report sensor,
then jM is the identity of the CM of a foreign system. Recall that synthetic
sensors are not bound to CMs or SMs and thus have no binding records. The
deployer may be totally oblivious of the existence of such records;

2) i is an achievable minimum round-trip duration between module jM ,
and the CM for the deployment; and

3) 0θ = implies a record corresponding to a real sensor; 0θ ≠ implies re-
port from a foreign STCB system with STCB descriptor spξ θ= .

To indicate that a module 0M was deployed as the CM for the STCB system,
the binding records includes a record for the CM 0M as

()0 00, , 0, 0S M θ= = = =B

Depending on the requirements specified by the stake holder, the deployer al-
so specifies reporting records of the form

(), , , ,1j r r jS M S l l w= ≤ ≤R (9)

to indicate that the value
lj

o (corresponding to sensor jS) should be reported
to the stake-holder module rM , and that the report should indicate

lj
o as the

latest (time jτ) “measurement” from state-report sensor rS .
All such iB and jR are included as leaves of a static Merkle hash tree con-

structed by the deployer—the STCB deployment tree. Let pξ be the root of the
deployment tree with leaves

{ } { },i j   B R (10)

The end-result of the design and deployment processes are two hash trees
with roots sξ and pξ . The design root sξ can be seen as concise representa-
tion of the physics ()1 nv v of the system. The deployment root pξ is a
concise representation of the bindings between real-sensors & SMs, and
state-report-sensors & CMs of foreign STCB deployments. The value

(),sp s phξ ξ ξ= (11)

can now be seen as the root of a Merkle tree with two sub-trees—the design tree
to the left, with root sξ , and the deployment tree to the right, with root pξ .
The static value spξ is the unique descriptor for a specific STCB deployment
(deployed to secure a specific SCADA system), see Figure 4.

Note that two different deployments of identical SCADA systems may have
the same design root sξ , but will have different deployment root pξ as dif-
ferent STCB modules will be used in the two deployments. If ()h is collision
resistant, no two STCB deployments will have the same descriptor spξ .

https://doi.org/10.4236/jis.2018.91009

A. Velagapalli, M. Ramkumar

DOI: 10.4236/jis.2018.91009 117 Journal of Information Security

Figure 4. Static descriptor spξ is a concise summary of the specification for an STCB

system.

4.1. STCB Operation

To commence operation in a SCADA deployment, the STCB module 0M asso-
ciated with the system is initialized with the STCB descriptor spξ , and the value

0ξ corresponding to the initial state of sensors. All leaves of the tree with root

spξ (which includes two sub-trees—the design tree and the deployment tree)
are stored by U; all n leaves of the form ,1i i n≤ ≤S corresponding to the initial
states of all sensors are also stored by U.

During regular operation of the system the STCB manager U receives authen-
ticated sensor reports from SMs (and possibly CMs from foreign deployments),
and submits them one at a time, to the CM 0M . Such reports take the form of a
message authentication code (MAC) computed as

(), , , , ,sph S v t c Kµ ξ ′= (12)

where
1) values (), ,S v t indicates a report for sensor S to convey a fresh measure-

ment v and measurement time t;
2) c is the clock-tick value of the module that created the report;
3) spξ is STCB descriptor of the creator of the report (which was the value

used to initialize the module);
4) K ′ is a shared secret between the creator (SM or foreign CM) and receiv-

er (CM 0M).
Along with the report from sensor iS (authenticated by a module jM), U

also submits a binding record iB constructed by the deployer, consistent with
the static root spξ .

The STCB manager U is then required to submit other values required for the
CM to evaluate i . Such values include: 1) sensor state record iS ; 2) the state
records of the (up to) q related sensors; 3) a design record iG consistent with
descriptor spξ ; 4) l constant values iC ; and 5) m instructions iA .

https://doi.org/10.4236/jis.2018.91009

A. Velagapalli, M. Ramkumar

DOI: 10.4236/jis.2018.91009 118 Journal of Information Security

As dynamic sensor states associated with the n sensors are maintained by U as
leaves of dynamic a Merkle tree with root ξ , sensor state records provided by U
will be accepted as valid only if they can be verified to be consistent with a copy
of the dynamic root ξ stored inside the CM 0M . The instructions iA will be
accepted as valid only if ()i ihα = A where iα is specified in the design record

iG . The set of constants iC will be accepted as valid only if ()ih C can be
demonstrated to be a node in the binary tree with root iλ —where iλ is speci-
fied in the design record iG .

The values used for evaluating i have fixed reserved locations in the inter-
nal memory of the STCB modules, and are specified as the operands for the m
instructions in A. An internal module function ()eval if A executes every in-
struction sequentially. The end result is the modification of the values in the
sensor state record iS of iS . To “remember” such changes to iS the module
modifies the dynamic root ξ .

If untrusted U does not modify iS in the same manner, then iS will no
longer be consistent with the root ξ stored inside the CM. Thus, if U provides
a fresh sensor report to the CM to invoke i , it is forced to modify the state of

iS exactly in the manner specified by the designer.
At any time, a reporting record { }(), , , 1r r jS M S l w= ∈ R consistent with

spξ can be provided as input, along with the state record jS consistent with
ξ , to request the STCB module 0M to report (to module rM) values

lj
o and

lτ in a state-report “sensor” rS .
If U does not invoke functions to evaluate any i , the time it associated

with iS cannot be updated. Thus, in any state-report that directly or indirectly
depends on sensor iS the time τ will be stuck at it , and will thus be recog-
nized as stale by the stake-holder (or CM of a foreign deployment).

4.1.1. STCB Interfaces
To interact with the STCB modules (SMs and CM), U employs various interfaces
exposed by the modules. An interface ()peerF is used to set up shared keys
between modules that send and receive sensor/state reports. A function ()hsF
can be invoked to engage two modules in a hand-shake sequence within a dura-
tion  , to enable the modules to estimate their respective clock offsets with an
error less than  . Interface ()initF is used to initialize a module as a CM for a
deployment with identifier spξ , or as a SM for a specific real sensor inS (in an
STCB deployment with identifier spξ).

A function ()sndF is invoked to request a module to send a report to anoth-
er module, in which ()rcvF is invoked to accept the report. Function ()ldF is
used to load various values necessary to evaluate some iU . Function ()updF is
then invoked to evaluate i and update the root ξ stored inside the module.
Functions () ,rcv ldF F and ()updF are utilized only in modules used as CMs.

To the extent the SMs and the deployer (who is trusted to verify and specify
bindings between sensors and SMs) are trusted, we can trust the authenticity of
sensor reports provided to the CM module. To the extent the CM module 0M ,

https://doi.org/10.4236/jis.2018.91009

A. Velagapalli, M. Ramkumar

DOI: 10.4236/jis.2018.91009 119 Journal of Information Security

and the designer (who is responsible for specifying the functions ()i) are
trusted, the stake-holder trusts the integrity of the state reports.

In practice, the SMs will need to be located as close as possible to the sensors
to improve the security of the binding between sensors and SMs. The CM could
be housed in any location—for example, a secure location far removed even
from the SCADA control center. Components of U will need to be housed close
to SMs, and close to the CM.

5. STCB Architecture

STCB modules have a unique identity, and a unique secret issued by a trusted
key distribution center (KDC). Two modules (say) iM and jM can use their
respective secrets (say) iQ and jQ issued by the KDC to compute a common
pairwise secret ijK [25]. Specifically, associated with a pair of modules

,i jM M is a non-secret value ijP which is also made available by the KDC (for
example, in a public repository), where ijP is computed as

() (), ,ij i j j iP h Q M h Q M= ⊕ (13)

Module iM and jM can compute a common secret (),ij i jK h Q M= ,

()
()

, 0 Computed by Module

, Computed by Module

i j i
ij

j i ij j

h Q M M
K

h Q M P M

 ⊕= 
⊕

 (14)

Every module possesses three values that are affected whenever a module is
powered on:

1) a clock tick counter c, which is set to 0;
Self-secret γ
Static root spξ
Dynamic root ξ
Peer module params { }, , ,in outM K Kσ′ ′=p
Constants []0 lC C= c

Sensor report register { }, ,S v t= 



r

Sensor state register
10 0 0 0 0 0 0, , , ,

w
S u t o o τ =  s

Related sensor states 1 qs s
Where ,1

ˆ ˆˆ ˆ ˆ ˆ, , , ,
wj j j j j j jS u t o o τ =  s

Temporary register T
SM Registers ,in inS v
2) a non-volatile session counter σ , which is incremented; and
3) a random secret γ , which is spontaneously generated inside the module.

5.1. Module Registers

Non-volatile storage inside the module is used to store three values—secret Q
issued by the KDC, session counter σ , and module identity M.

Every module has the following reserved volatile registers:
The self-secret γ spontaneously generated inside the module remains privy

https://doi.org/10.4236/jis.2018.91009

A. Velagapalli, M. Ramkumar

DOI: 10.4236/jis.2018.91009 120 Journal of Information Security

only to the module. This secret is used for computing self-certificates. A
self-certificate is a “memorandum to self”,—memoranda issued by the module
for verification by itself at a later time, during the same session σ .

The register spξ is the (160-bit) descriptor of the STCB system. The register
ξ is the dynamic root of a Merkle tree. Register p contains various parameters
regarding a peer module from which 1) sensor/state report has to be received, or
2) a report has to be sent.

The register c is reserved for storing a set of l constants to be used to evaluate
some i corresponding to a sensor iS . Values that reflect the current state iS
of iS should be stored in register 0s . The states of q related sensors are stored
in registers qss 1 . Register r is reserved for a freshly received sensor report
from iS .

For example, if at some instant of time,
1) the contents of the dynamic record iS corresponding to sensor iS is

stored in location 0s , and
2) records corresponding to sensor ,1 ,i i qS S are stored on location 1 qs s

respectively, and
3) values from a fresh report from sensor iS are stored in register r, then

iS S= 

,
ˆ

j i jS S=

()0 measurement ofi iu v S=

(),ˆ measurements of related sensors ofj i j iu v S=

(),ˆ ,1
x xj i jo o x w= ≤ ≤ (15)

The SM register inS indicates the sensor to which the module is bound (if
the module is used as a SM) or is set to zero (if the module is used as a CM). If
the module is used as an SM, the register inv always contains the (dynamic)
sensor measurement.

STCB modules have a built in hash function ()h which is reused extensively
for binary tree ()()vf computations, computing shared secrets, computing
message authentication codes, and self-certificates.

An in-built function ()execf A in every module can execute a set of m in-
structions A , where each instruction (chosen from the set ) identifies a) an
opcode (type of logical operation), b) one or more input operands (from the
values stored in registers 0s , 1 qs s , c, T), depending on the type of opcode;
and c) the output operand (

10 0w
o o , or temporary register T).

5.2. Initializing Peer Parameters

The pairwise secret K that a module M shares with a peer module M ′ is used
for computing message authentication codes (MAC) for outgoing messages to
peer M ′ , and for verifying incoming MACs from peer M ′ . Specifically, the se-
cret used by M for computing outgoing MACs is (),outK h K σ= where σ is

https://doi.org/10.4236/jis.2018.91009

A. Velagapalli, M. Ramkumar

DOI: 10.4236/jis.2018.91009 121 Journal of Information Security

the session counter of M; consequently, the secret used for verifying MACs re-
ceived from M ′ is (),inK h K σ ′= , where σ ′ is the session counter of M ′ .

STCB modules possess reserved registers to store the identity M ′ of a peer
module (to which it needs to send a message, or from which it needs to receive a
message), the session counter σ ′ of the peer, and MAC secrets inK and outK .
Function ()peerF exposed by a module can be invoked to populate values

, , ,in outM K Kσ′ ′ related to a peer module M ′ .

()
()

() ()

, , {
: ; : ; : , ;
: , ; : , ;

}

peer

in out

F I P s
M I s K h Q M P
K h K K h K

σ
σ σ

′ ′ ′= = = ⊕
′= =

To facilitate secure communications between two modules iM and jM ,
(), ,peer j ij jF M P σ should be invoked on iM , and (),0,peer i iF M σ should be

invoked on jM . iM computes the pairwise secret using the public value ijP ;

jM computes the same value without using ijP (or 0ijP = as XORing with 0
results in no change).

5.3. Self Certificates

Two types of certificates are computed by STCB modules—binary hash tree cer-
tificates, and offset certificates.

5.3.1. Binary Tree Certificates
A binary hash tree certificate is computed as

(), , , ,bt h x x y yρ γ′ ′= (16)

Such a self-memoranda states that “x is a node in a binary hash tree with root
y”, and “if x x′→ then y y′→ ”.

STCB modules expose a function ()mtF which evaluates a sequence of hash
operations ()vf , and output a binary tree certificate.

()
() ()

()

()
()()
()()

()

1 2

1

2

, , {
: , ; : , ;

RETURN : , , , , ;
}

, , , , , , , {
IF , , , , RETURN ERROR;

IF , , , , RETURN ERROR;

RETURN : , , , , ;
}

mt x

v x v x

bt

mtc

bt

F x x
y f x y f x

h x x y y

F x x y y z z
h x x y y

h y y z z

h x x z z

ρ γ

ρ ρ
ρ γ

ρ γ

ρ γ

′
′ ′= =

′ ′=

′ ′ ′
′ ′≠

′ ′≠

′ ′=

v
v v

A function ()mtcF concatenates two such certificates to create another cer-
tificate. Specifically, a certificate binding node x (and x′) to an ancestor y (and
y′) and a certificate binding a node y (and y′) to an ancestor z (and z′) can be

combined to a certificate binding node x (and x′) to an ancestor z (and z′).
The primary need for the function ()mtcF is due to restrictions on the size of

https://doi.org/10.4236/jis.2018.91009

A. Velagapalli, M. Ramkumar

DOI: 10.4236/jis.2018.91009 122 Journal of Information Security

inputs to module functions. Specifically, we can now place a hard limit on the
size of the input xv —to (say) 8 hashes. For computing relationships between a
node and the root of a tree with a million leaves (20 levels) three calls to ()mtF
(to produce certificates binding 1) a level zero node to a level 8 node, 2) level 8
node to a level 16 node, and 3) a level 16 node to a level 20 node) and two calls

()mtcF (to combine the first two certificates, and combine the resulting certifi-
cate with the third certificate) can be used.

5.3.2. Offset Certificates
An offset certificate is computed as

(), , , , ,os h M osρ σ σ γ′ ′=  (17)

and states that the module M (that issued the certificate) had performed a
handshake within a duration  with a module M ′ , and had estimated the off-
set between their clocks to be os . The certificate also states that the handshake
was performed when it’s session counter was σ and the session counter of
M ′ was σ ′ . The offset certificate is issued by a function ()hsF exposed by
modules.

The function ()hsF can be invoked on pair of modules to perform a hand-
shake, after which the initiator of the handshake obtains an estimate of the clock
offset of the responder. Before ()hsF is invoked, ()peerF should be invoked
on both nodes to set up respective peer identities, session counters, and secrets

inK and outK to be used for incoming and outgoing MACs.
The function ()hsF has three inputs—a received MAC µ′ (from peer M ′)

with time stamp c′ , and a time-stamp c that was previously sent to peer M ′
(which had triggered the response µ′ from M ′). The output of ()hsF is ei-
ther a MAC intended for the peer or a self-MAC intended for itself, indicating
the estimated offset for peer M ′ .

()hsF is first invoked on the initiator with all inputs (), ,c cµ′ ′  set to zero;
the output of ()hsF is ()()1

1 ,0, , ,i r ih c h Kµ σ σ= where 1
ic and iσ are the

current clock-counter and the session counter of the initiator and rσ is the ses-
sion counter of the responder.

()hsF is then invoked in the responder module with inputs ()1
1, ,0icµ . If the

clock tick count of the responder is rc , the output is ()()1
2 , , , ,r i i rh c c h Kµ σ σ= .

()hsF is then invoked on the initiator for the second time, at time 2
ic , with

inputs ()1
2 , ,r ic cµ . The offset between the clock of the initiator and the res-

ponder can be estimated by the initiator to within the round-trip duration
2 1
i ic c= − . The best estimate of the initiator is that, when the clock tick count of

responder was rc , the clock tick count of the initiator was ()1 2 2i ic c+ , and
thus, the best estimate of the offset is ()1 2 2i i ros c c c= + − .

The output of ()hsF in this case is the offset certificate. This certificate can
be provide to the module at any time to convince the module that “the offset to
M ′ was estimated as os with a tolerance of  ”, and that “the offset to M ′
was estimated when the session counters of the modules were iσ and rσ ”. If

https://doi.org/10.4236/jis.2018.91009

A. Velagapalli, M. Ramkumar

DOI: 10.4236/jis.2018.91009 123 Journal of Information Security

any of the two session counters had changed since the certificate was issued, the
certificate becomes invalid.

()
()

()
()

()
()

()

, , {
IF 0 / / Send challenge

RETURN ,0, , ; / /Sent as challenge
IF (, , , RETURN ERROR;
IF 0 / /Respond to challenge

RETURN , , , ;
ELSE // Process response to estimate offset

: ; : 2

hs

out

in

out

F c c

h c K
h c c K

c
h c c K

c c os c c

µ
µ

σ
µ σ

σ

′ ′
′ =

′
′ ′≠
=

′ ′

= − = + −







 

()
;

RETURN : , , , , , ;
}

os

c
h M osρ σ σ γ

′
′ ′= 

5.4. Initializing STCB Modules

Initializing an STCB module M implies initializing three internal registers re-
served for values ,spξ ξ and inS . Specifically, a module M can be initialized to
participate in a deployment spξ only if a binding record for module M can be
demonstrated to be consistent with spξ .

As 0ξ is a node in a tree with root spξ , U can use ()mtF to obtain a certif-
icate

()0 0, , , ,sp sphρ ξ ξ ξ ξ γ= (18)

Similarly, as binding record [], , ,i iS M θ= B that exists in deployment tree is
used to initialize the register inS Now U can use ()mtF to obtain a certificate

(), , , ,sp sph v vρ ξ ξ γ= (19)

Function ()initF can be used to initialize a module M as
1) a CM for a deployment spξ or
2) as an SM for a sensor S in deployment spξ .
To initialize a module as a CM for the deployment, the inputs ()1 2, ,ξ ξ ρ to
()initF are such that ρ is a binary tree certificate relating a node 0 1ξ ξ= and

root 2 spξ ξ= (inputs S ′ and ′ are set to 0).
To initialize the module as a SM the certificate, inputs S ′ and  are

non-zero. The binary tree certificate should relate ()1 , , ,0h S Mξ ′ ′=  and

2 spξ ξ= to prove to the module that “in an STCB system with descriptor spξ ,
the module M (which is being initialized) is authorized to report measurements
corresponding to sensor S ′ ”. Accordingly, the register inS in the module M is
set to S ′ .

For a module jM initialized as a SM for a sensor kS , the output of the sen-
sor kS is physically connected to module jM using a tamper-evident seal by
the deployer. The physical connection ensures that the sensor measurement kv
is always available in the register inv of the SM. measurement Later (during
regular operation) module jM cannot be initialized to act as a SM for any

https://doi.org/10.4236/jis.2018.91009

A. Velagapalli, M. Ramkumar

DOI: 10.4236/jis.2018.91009 124 Journal of Information Security

other sensor kS S′ ≠ , as no record binding S ′ to jM can be demonstrated to
be a part of the tree with root spξ .

()
()()

()
()()

0 1 2

1 0 0

2

0

, , , , , {
IF , , , , RETURN ERROR;

: , , ,0 ;
IF , , , , RETURN ERROR;

; : ; ; RETURN;
}

init

sp in

F r S
h r r

x h S M
h x x r r

r S S

ξ ρ ρ
ρ ξ ξ γ

ρ γ

ξ ξ ξ

≠

=
≠

′= = =





During regular operation, any dynamic sensor record can be loaded on to any
register 0s or 1 qs s using function ()ldF . A record s provided as input is
simply loaded onto register js where j is the index specified. Specifically, the
record is loaded only if the inputs ρ and ()h s are consistent with dynamic
root ξ .

5.5. Sensor and State Reports

In an STCB deployment with SMs 1 kM M , and STCB module 0M , the state
reports are made available to a module rM associated with the stake holder. In
general, rM can be seen as an STCB module associated with a different STCB
system at a higher level of hierarchy.

The handshake sequence (which involves two calls to ()hsF in the initiator
module and one ()hsF call in the responder module) the handshake sequence
is orchestrated by U between

1) k responders 1 kM M , with 0M (as initiator)
2) rM as initiator and 0M as responder.
After the 1k + hand-shake sequences have been completed, k

self-certificates of type OS osρ are created by 0M —one corresponding to each
SM, and one self-certificate is created by rM . Such certificates indicate both the
estimated offset os, and the maximum error  in the estimate os.

Now modules are ready to exchange authenticated messages. More specifically,
SMs send authenticated and time-stamped sensor reports to 0M , and STCB
module 0M can send state reports to rM . Such messages exchanged between
modules are computed as

(), , , , ,sp outh S v t c Kµ ξ= (20)

where for sensor reports (from SMs to 0M)
1) inS S= is the identity of a sensor that is bound to the module that created

the report, and inv v= ;
2) t c= is the current clock tick count of the creator of the report;
3) spξ is the value used to initialize the module.
A report from 0M to stake holders is made in accordance with a record

[], , ,1r r iS M S l w≤ ≤ . Such a report can be created for the benefit of rM only if
the state of sensor iS is loaded in register 0s (or 0 iS S=), to report the value

https://doi.org/10.4236/jis.2018.91009

A. Velagapalli, M. Ramkumar

DOI: 10.4236/jis.2018.91009 125 Journal of Information Security

0
le and time 0τ . In such a report rS S= is a label assigned to the report,

0
lv e= , and tt τ= is the time associated with 0

lv e= (or t c≠).
When ()sndF is invoked in a SM (with register 0inS ≠) the output is

(), , , , ,in in sp outh S v c c Kµ ξ= . When invoked on an STCB module, this function
should be able to verify the existence of an appropriate reporting record R that
authorizes the module to report one of the w values 1 w

o oe e stored in register

0s .

()
()

()
()

()()
()

0

0 0

, , {
IF 0

RETURN , , , , , , ;

, , , ;

IF , , , ,

RETURN , , , , , , ;

ELSE RETURN ERROR;
}

j

snd

in in sp out

sp sp

sp out

F S j
S

c h S v c c K

y h S M S j

h y y

c h S o c K

ρ

µ ξ

ρ ξ ξ γ

µ τ ξ

′

≠

=

′ ′=

=

′=

Corresponding to a state report for a “sensor” rS , while the STCB module

0M that generates the report is initialized with the spξ , the stake-holder
module rM —which in general can be seen as the STCB module associated
with a foreign STCB system may be initialized with a different descriptor spξ ′ .
For the module rM to accept the report from a foreign system, the deploy-
ment tree in the foreign system with root spξ ′ should include a binding
record

0, , , 0r spS M θ ξ = = ≠ B (21)

Function ()rcvF can be invoked in the STCB module to provide a fresh
sensor report to the module. Specifically, before a sensor report from a module

jM can be provided to a module, the function ()peerF should be invoked on
the receiving module to set jM M′ = . Now,

1) inputs , ,iS θ′ to ()rcvF are used to compute the leaf hash
(), , ,ix h S M θ′ ′=  of a binding record iB .

2) input ρ is used to confirm that (), , ,ix h S M θ′ ′=  (the hash of the
binding record) is a node in a tree with root spξ .

3) inputs ,os and osρ are used to verify that (), , , , ,os h M osρ σ σ γ′ ′=  .
4) and inputs , ,iv t c′ ′ ′ and µ′ are used to verify that (), , , , ,i i inh S v t c y Kµ′ ′ ′ ′=

where spy ξ= if 0θ = , or y θ= if 0θ ≠ .
The function returns error if ′>  , or on failure of verification of inputs nvρ

or osρ or µ′ .
Ultimately, the purpose of function ()rcvF is to receive two values iv′ and

time it′ corresponding to a sensor iS where it t os′ = + is the offset corrected
time associated with iv′ . Values ,i iS v′ and it′ are then stored in a reserved
register R for further processing.

https://doi.org/10.4236/jis.2018.91009

A. Velagapalli, M. Ramkumar

DOI: 10.4236/jis.2018.91009 126 Journal of Information Security

()
()

()()
()
()

()()
()()

, , , , , , , , , , , {
IF RETURN ERROR;
IF , , , , , RETURN ERROR;

0 ? : ;
, , , ;

IF , , , , RETURN ERROR;

IF , , , , , RETURN ERROR;

: ,

rcv i bt os i

os

sp

i

bt sp sp

i i in

i i

F S os v t c

h M os

y
x h S M y

h x x

h S v t c y K

S S v v

θ ρ ρ ρ µ

ρ σ σ γ

θ ξ θ

ρ ξ ξ γ

µ

′

′

′

′ ′ ′ ′
′>

′ ′≠

= =
′ ′=

≠

′ ′ ′≠

= = =r

n n
n n

n

n

� �(), ;
}

t t os′= +
�

5.6. Sensor Updates and Incremental State Evaluations

Values r in a fresh sensor report from iS are part of the inputs used to evaluate

i . Evaluation of i results in modifications to the state iS of sensor iS .
Before i can be evaluated it should be ensured that appropriate values are
loaded on to registers r, 0s , 0 qs s , and c.

Recall that register r is populated by function ()rcvF . Function ()ldF can
be used to load the dynamic values S associated with any sensor on to any of the

1q + registers 0s , 0 qs s .

()
()

()()

()
()

()()
0

0 1

, , {
: ;

IF , , , , RETURN ERROR;

/ / Record is a leaf in the dynamic tree
: ;

}

, , , , , , , {

IF RETURN ERROR;

, , , , ; / / hash of a design record

/ / tmp should be a node in the st

ld

j

upd c upd i

q i

F j
x h

h x x

F S

S S

tmp h S R R h S

ρ

ρ ξ ξ γ

λ ρ ρ ξ ρ

λ

′
′=
≠

=

′ ′

≠

′ =  

s
s

s S

C A

A

�

n

()()
()

()()
()0

0 0

atic tree with root

IF , , , , RETURN ERROR;

; / / hash of constant record
/ / should be a node in the constant tree with root
IF , , , , RETURN ERROR;

: ; / / Record before evaluation of

: min

sp

sp sp

c

h tmp tmp

tmp h

h tmp tmp

tmp h U

t

ξ

ρ ξ ξ γ

λ
ρ λ λ γ

τ

≠

=

≠

=

=

C

s
�()

()() ()()()()

()

1

0 0

0

, ;

: ; : ; : ;

IF ERROR , , , ,

CLEAR-ALL AND RETURN;
: ;

IF 0 : ;
}

q

upd

i i

T v v v t t

f h tmp h

S S S

τ τ

ρ ξ ξ γ

ξ ξ

′

′ ′

= = =

′= ∨ ≠

′=
′ ≠ =

A s

n
�� �

�

https://doi.org/10.4236/jis.2018.91009

A. Velagapalli, M. Ramkumar

DOI: 10.4236/jis.2018.91009 127 Journal of Information Security

The main purpose of ()updF is to evaluate iU corresponding to a sensor

iS . For this purpose, ()updF verifies that all inputs required to evaluate iU
are available. If a design record corresponding to sensor iS is

1
, , , ,

qi i i i i i iS S S Sα λ ′=  G (22)

it should be ensured that the current state of sensor iS is loaded onto register

0s , and the states of related sensors
1 qi iS S are loaded on to registers 1 qs s

respectively. Other values required to evaluate i are provided as inputs to
()updF .

Specifically,
1) the constants C should be such that ()x h= C is node in a tree with root

iλ . This can be demonstrated by providing a certificate (), , , ,c i ih x xρ λ λ γ= .
2) the instructions A should be such that () ih α=A .
3) iλ and iα should exist in the design record

10 , , ,
qi i i iS S S α λ 

  . More
specifically, ()10 , , , ,

qi i i i iy h S S S Nα λ=  should be a node in the tree with root

spξ . This can be demonstrated by providing a certificate (), , , ,sp sph y yρ ξ ξ γ= .
4) the values 0S ∈s (the identity of the sensor to be updated) and S ∈ r

(the sensor from which a fresh report has been received) should be the same.
During execution of the algorithm A, in situations where many options exist

for choosing the set of constants C consistent with λ it is the responsibility of
U to choose the correct set of constants that satisfy the range of the independent
variable(s). On successful evaluation of the algorithm A the status of sensor 0S
in register 0s will be updated. If x is the hash of register 0s before the update,
and if x′ is the hash of register 0s after the update, then a new root ξ ′ and a
certificate ρ should be provided as input satisfying

(), , , ,h x xρ ξ ξ γ′ ′= (23)

6. STCB Protocol

The STCB protocol can be seen as the actions to be performed by the untrusted
STCB manager U to submit sensor reports from SMs and CMs of foreign dep-
loyments to the CM 0M of the STCB deployment, obtain state-reports from

0M , and submit such reports to stake holders (or CMs of foreign deployments).

6.1. Generation of Offset Certificates

The first step in the operation of an STCB deployment is that of performing
handshakes between various modules to obtain offset certificates. In general one
offset certificate will be generated for every module specified in the binding
records of the deployment.

For a STCB system with n sensors (real, state-report and synthetic) the total
number of binding records is 1n′ + , where n n′− is the number of synthetic
records: no binding record exists for synthetic records, and one binding record is
for the CM 0M . The total number of distinct modules in general will be n n′′ ′≤ .
Specifically, while there will exist one module corresponding to every real sensor,

https://doi.org/10.4236/jis.2018.91009

A. Velagapalli, M. Ramkumar

DOI: 10.4236/jis.2018.91009 128 Journal of Information Security

as a single CM may report multiple states, the number of state-report sensors
may be greater that the number of foreign CMs that provide state reports.

A total of n′′ hand shake sequences will be invoked to obtain n′′ offset cer-
tificates. Recall that each such sequence begins with a challenge from the CM

0M generated using ()hsF to which a response is generated by invoking
()hsF in the responder module, and finally, the response is submitted to the

CM to generate the certificate. If any SM is rebooted, the offset certificate cor-
responding to the SM has to be regenerated. If the CM is rebooted, all offset cer-
tificates will need to be regenerated.

Before ()hsF is invoked, ()peerF should be invoked on both modules to
set up the MAC secrets inK and outK .

6.2. Generating Static Binary Tree Certificates

The second step is for U to obtain binary tree certificates corresponding to all
leaves of the static tree with root spξ . Specifically, as U maintains the tree with
root spξ , U can readily provide the complementary nodes for any leaf in the
static tree to function ()btF , and obtain certificates of the form

(), , , ,s s s sp sph x xρ ξ ξ γ= (24)

where sx is the cryptographic hash of the sth leaf of the static tree. The total
number of static leaves is () ()1 1n n m′+ + + + where

1) n is the number of design records: one for each sensor (real, state-report, or
synthetic);

2) one leaf corresponds to the value 0ξ in the design tree;
3) 1n′ + is the number of binding records (including one for the CM 0M);

and
4) m is the number of reporting records.

6.3. Initialization and Regular Operation

The third step is the initialization of STCB modules to operate in deployment

spξ —by invoking ()initF on each STCB module. For initializing the modules
the two binary tree certificates are required: one linking 0ξ to spξ , and one
linking a binding record for the module with the static root spξ .

On completion of the three steps, the STCB manager maintains a dynamic
Merkle tree with leaves as sensor records. As the initial values of such records
are specified by the designer, the root of the tree should be the same as the initial
value 0ξ ξ= stored by the STCB module.

Once all STCB modules have been initialized, sensor reports from SMs (or
CMs of foreign deployments) are submitted to the CM as and when they are re-
ceived. In general, not all sensors may report at the same frequency.

As all SMs send messages only to the CM, ()peerF needs to be invoked only
once on each SM (which was already performed before invoking ()hsF to
generate offset certificates).

To create a sensor report from an SM, U will invoke ()sndF on an SM. Some

https://doi.org/10.4236/jis.2018.91009

A. Velagapalli, M. Ramkumar

DOI: 10.4236/jis.2018.91009 129 Journal of Information Security

sensor reports corresponding to state reports from foreign CMs may also be re-
ceived by U.

Once a sensor report for some sensor iS has been received, U is expected to
make appropriate modifications to the sensor state iS , and accordingly, modify
the Merkle tree maintained by U. Let ξ ξ ′→ be the change in the root of the
dynamic tree, corresponding to the modification i i′→S S triggered by the re-
ceived sensor report. If ()ih x=S and ()ih x′ ′=S , U can readily determine
complementary nodes required to obtain the certificate

(), , , ,bt h x xρ ξ ξ γ′ ′= (25)

The STCB manager invokes ()peerF followed by ()rcvF to submit the re-
port to the CM. Recall that inputs to ()rcvF include a MAC received from an
SM/CM, a binding record along with a certificate linking the record to spξ , and
an offset certificate corresponding to the reporting module.

Corresponding to the sensor state record for sensor iS and q related sensors
U invokes ()btF to obtain 1q + certificates binding the sensor state records
to dynamic root ξ . Following this, the STCB manager uses ()ldF up to 1q +
times to load the 1) previous sensor state iS on to register 0s and 2) the states
of related sensors on to registers 1 qs s .

Finally, the STCB manager invokes ()updF . Recall that the inputs to ()updF
include btρ obtained as per Equation (25), a certificate binding design record

iG to STCB descriptor spξ , the set of m instructions iA , a set of l constants,
and a certificate binding the constants to a value λ in the design record. Only
if the modification i i′→S S computed by the CM is exactly the same as that
performed by the STCB manager U will the update be successful in modifying
the dynamic root ξ stored inside the CM to ξ ′ .

At any time the STCB manager can invoke a ()updF to load a state record
consistent with ξ on to register 0s . Now ()sndF can be invoked to create a
state-report. Note that when ()sndF is invoked on a CM a certificate binding a
reporting record to the static root should be provided as input.

7. Conclusions

The ever growing complexity of systems poses a severe threat—the possibility of
hard-to-detect hidden functionality that can be exploited to take control of the
system. Current strategies for securing SCADA systems are predominantly fo-
cused on development of suitable intrusion detection systems. Such security
measures ignore the very real possibility of hidden functionality in the intrusion
detection systems themselves.

In the proposed approach to secure SCADA systems only STCB modules are
trusted to provide the assurance that “no attack will go undetected”. The pro-
posed approach involves three stages—a design process carried out by a designer
with good domain knowledge, a deployment process carried out by a security
professional, and regular operation of the STCB system. The designer and dep-
loyer together specify a concise description spξ of the system. During regular

https://doi.org/10.4236/jis.2018.91009

A. Velagapalli, M. Ramkumar

DOI: 10.4236/jis.2018.91009 130 Journal of Information Security

operation, an STCB module reports the state of a system identified as spξ to
stake-holders.

Some of the important features of the STCB approach that make it well suited
for any SCADA system of any size include

1) the ability to support hierarchical deployments;
2) the ability to support any type of function  —if necessary through the

use of 1-D, or 2-D look up tables (which are also specified as leaves of the design
tree); and

3) the ability to specify synthetic sensors.
Such features are intended to enable the use of STCB modules for securing

any SCADA system.
The first pre-requisite for deployment of STCB based security solutions is the

actual availability of STCB modules/chips. Towards this end, the work that has
been performed is a small first step—identification of a functional specification
of such chips. In arriving at an appropriate functional specification, some our
main goals have been

1) reducing computational and memory requirement inside STCB chips;
2) reducing interface complexity (size of inputs and outputs to/from the STCB

chips); and
3) simplifying the STCB protocol—which is a specification of a sequence of

interactions with the STCB modules—to realize the desired assurances.
The proposed functional specification (for STCB modules) is merely a speci-

fication, and not the specification. Just as there are numerous ways to realize a
block-cipher or a hash function, there are numerous ways to arrive at a “set of
STCB functions” (which can be leveraged to realize the same assurances). The
functional specification in this paper is however the first of its kind.

Acknowledgements

This research was funded by the Department of Homeland Security (DHS)-sponsored
Southeast Region Research Initiative (SERRI) at the Department of Energy’s Oak
Ridge National Laboratory.

References
[1] Matrosov, A., Rodionov, E., Harley, D. and Malcho, J. (2010) Stuxnet under the Mi-

croscope.
https://www.esetnod32.ru/company/viruslab/analytics/doc/Stuxnet_Under_the_Mi
croscope.pdf

[2] Turk and Robert, J. (2005) Cyber Incidents Involving Control Systems. Idaho Na-
tional Engineering and Environmental Laboratory, Idaho Falls.

[3] Lynch, L.E., Comey, J.B. and Carlin, J.P. (2016) Manhattan U.S. Attorney An-
nounces Charges Against Seven Iranians for Conducting Coordinated Campaign of
Cyber Attacks against U.S. Financial Sector on Behalf of Islamic Revolutionary
Guard Corps-Sponsored Entities. News, Southern District of New York.

[4] Eric, A. and Jim, F. (2015) Ukraine Utility Cyber Attack Wider than Reported: Ex-

https://doi.org/10.4236/jis.2018.91009
https://www.esetnod32.ru/company/viruslab/analytics/doc/Stuxnet_Under_the_Microscope.pdf
https://www.esetnod32.ru/company/viruslab/analytics/doc/Stuxnet_Under_the_Microscope.pdf

A. Velagapalli, M. Ramkumar

DOI: 10.4236/jis.2018.91009 131 Journal of Information Security

perts.
http://www.reuters.com/article/us-ukraine-crisis-malware-idUSKBN0UI23S201601
04

[5] McWhorter, D. (2013) Mandiant Exposing APT1—One of China’s Cyber Espionage
Units & Releases 3,000 Indicators.

[6] Reid, W. (2013) Spear Phishing Attempt. Digital Bond.
http://www.digitalbond.com/blog/2012/06/07/spear-phishing-attempt/

[7] Gorman, S. (2013) Chinese Hackers Suspected in Long-Term Nortel Breach. The
Wall Street Journal.

[8] Fidler and David, P. (2011) Was Stuxnet an Act of War? Decoding a Cyberattack.
IEEE Security & Privacy, 9, 56-59. https://doi.org/10.1109/MSP.2011.96

[9] Sood, A. and Enbody, R. (2013) Targeted Cyber Attacks—A Superset of Advanced
Persistent Threats. IEEE Security & Privacy, 11, 54-61.

[10] Ramkumar, M. (2016) Cybersecurity: It’s All about the Assumptions. National Cy-
ber Summit (NCS), Huntsville, 8-9 June 2016.

[11] Weaver, N., Paxson, V., Staniford, S. and Cunningham, R. (2003) A Taxonomy of
Computer Worms. Proceedings of the 2003 ACM Workshop on Rapid Malcode,
Washington DC, 27 October 2003, 11-18. https://doi.org/10.1145/948187.948190

[12] Reid, W. (2011) Cyber Attacks on Texas Utility.
http://www.washingtontimes.com/news/2011/nov/18/hackers-apparently-based-in-
russia-attacked-a-publ

[13] Moore, D., Paxson, V., Savage, S., Shannon, C., Staniford, S. and Weaver, N. (2003)
Inside the Slammer Worm. IEEE Security and Privacy, 99, 33-39.
https://doi.org/10.1109/MSECP.2003.1219056

[14] Lampson, B., Abadi, M., Burrows, M. and Wobber, E. (1992) Authentication in
Distributed Systems: Theory and Practice. ACM Transactions on Computer Sys-
tems (TOCS), 8, 18-36. https://doi.org/10.1145/138873.138874

[15] Wright, A., Kinast, J. and McCarty, J. (2004) Low-Latency Cryptographic Protection
for SCADA Communications. Applied Cryptography and Network Security. Lec-
ture Notes in Computer Science, Vol. 3089, Springer, Berlin, 263-277.
https://doi.org/10.1007/978-3-540-24852-1_19

[16] Tsang, P. and Smith, S.W. (2007) YASIR: A Low-Latency, High-Integrity Security
Retrofit for Legacy SCADA Systems. Proceedings of the Ifip Tc 11 23rd International
Information Security Conference, Vol. 278, Springer, Boston, 445-459.
https://doi.org/10.1007/978-0-387-09699-5_29

[17] Wang, Y. and Chu, B.-T. (2012) sSCADA: Securing SCADA Infrastructure Com-
munications. International Journal of Communication Networks and Distributed
Systems, 6, 59-78. https://doi.org/10.1504/IJCNDS.2011.037328

[18] Majdalawieh, M., Parisi-Presicce, F. and Wijesekera, D. (2006) DNPSec: Distributed
Network Protocol Version 3 (DNP3). Security Framework. In: Elleithy, K., Sobh, T.,
Mahmood, A., Iskander, M. and Karim, M., Eds., Advances in Computer, Informa-
tion, and Systems Sciences, and Engineering, Springer, Dordrecht, 227-234.
https://doi.org/10.1007/1-4020-5261-8_36

[19] Hieb, J., Graham, J. and Patel, S. (2007) Security Enhancements for Distributed
Control Systems, Mathematics and Its Applications. 2nd Edition, Critical Infra-
structure Protection, Springer, Berlin, 133-146.
https://doi.org/10.1007/978-0-387-75462-8_10

[20] Shahzad, A. and Musa, S. (2012) Cryptography and Authentication Placement to

https://doi.org/10.4236/jis.2018.91009
http://www.reuters.com/article/us-ukraine-crisis-malware-idUSKBN0UI23S20160104
http://www.reuters.com/article/us-ukraine-crisis-malware-idUSKBN0UI23S20160104
http://www.digitalbond.com/blog/2012/06/07/spear-phishing-attempt/
https://doi.org/10.1109/MSP.2011.96
https://doi.org/10.1145/948187.948190
http://www.washingtontimes.com/news/2011/nov/18/hackers-apparently-based-in-russia-attacked-a-publ
http://www.washingtontimes.com/news/2011/nov/18/hackers-apparently-based-in-russia-attacked-a-publ
https://doi.org/10.1109/MSECP.2003.1219056
https://doi.org/10.1145/138873.138874
https://doi.org/10.1007/978-3-540-24852-1_19
https://doi.org/10.1007/978-0-387-09699-5_29
https://doi.org/10.1504/IJCNDS.2011.037328
https://doi.org/10.1007/1-4020-5261-8_36
https://doi.org/10.1007/978-0-387-75462-8_10

A. Velagapalli, M. Ramkumar

DOI: 10.4236/jis.2018.91009 132 Journal of Information Security

Provide Secure Channel for SCADA Communication. International Journal of Se-
curity, 6, 28.

[21] Patel, A., Joaquim Jr., C. and Pedersen, J. (2013) An Intelligent Collaborative Intru-
sion Detection and Prevention System for Smart Grid Environments. Computer
Standards & Interfaces. https://doi.org/10.1016/j.csi.2013.01.003

[22] Berthier, R. and Sanders, W.H. (2010) Intrusion Detection for Advanced Metering
Infrastructures: Requirements and Architectural Directions. 2010 First IEEE Inter-
national Conference on Smart Grid Communications (SmartGridComm), Gai-
thersburg, 4-6 October 2010, 350-355.
https://doi.org/10.1109/SMARTGRID.2010.5622068

[23] Zhu, B., Sastry, S. and Fefferman, C. (2010) SCADA-Specific Intrusion Detec-
tion/Prevention Systems: A Survey and Taxonomy. Proceedings of the 1st Work-
shop on Secure Control Systems (SCS), Stockholm, 12 April 2010, 34.

[24] Merkle, R.C. (1980) Protocols for Public Key Cryptosystems. IEEE Symposium on
Security and Privacy, Oakland, 14-16 April 1980, 122.
https://doi.org/10.1109/SP.1980.10006

[25] Ramkumar, M. (2008) On the Scalability of an Efficient Nonscalable Key Distribu-
tion Scheme. 2008 International Symposium on a World of Wireless, Mobile and
Multimedia Networks, Newport Beach, 23-26 June 2008, 1-6.

https://doi.org/10.4236/jis.2018.91009
https://doi.org/10.1016/j.csi.2013.01.003
https://doi.org/10.1109/SMARTGRID.2010.5622068
https://doi.org/10.1109/SP.1980.10006

	A Security Architecture for SCADA Systems
	Abstract
	Keywords
	1. Introduction
	1.1. Active vs Passive Security Measures
	1.2. Trusted Computing Base
	1.3. Organization

	2. Overview of STCB Approach
	2.1. STCB System Components
	2.2. Evaluating
	2.2.1. Merkle Trees
	2.2.2. Merkle Trees in the STCB Approach

	2.3. STCB Designer and Deployer

	3. STCB Design
	3.1. STCB Design Tree
	3.1.1. Example System

	3.2. Inputs and Outputs of
	3.2.1. Example for Power Plant

	3.3. Synthetic Sensors
	3.4. Constants and Look-Up Tables
	3.5. Instruction Set
	3.5.1. Instructions for Thermal Power Plant Example

	4. STCB Deployment
	4.1. STCB Operation
	4.1.1. STCB Interfaces

	5. STCB Architecture
	5.1. Module Registers
	5.2. Initializing Peer Parameters
	5.3. Self Certificates
	5.3.1. Binary Tree Certificates
	5.3.2. Offset Certificates

	5.4. Initializing STCB Modules
	5.5. Sensor and State Reports
	5.6. Sensor Updates and Incremental State Evaluations

	6. STCB Protocol
	6.1. Generation of Offset Certificates
	6.2. Generating Static Binary Tree Certificates
	6.3. Initialization and Regular Operation

	7. Conclusions
	Acknowledgements
	References

