

Generating Sets of the Complete Semigroups of Binary Relations Defined by Semilattices of the Class $\Sigma_2(X,4)$

Bariş Albayrak¹, Omar Givradze², Guladi Partenadze²

¹Department of Banking and Finance, School of Applied Sciences, Çanakkale Onsekiz Mart University, Çanakkale, Turkey ²Shota Rustaveli State University, Batumi, Georgia Email: balbayrak77@gmail.com, omari@mail.ru, guladi@gmail.com

How to cite this paper: Albayrak, B., Givradze, O. and Partenadze, G. (2018) Generating Sets of the Complete Semigroups of Binary Relations Defined by Semilattices of the Class $\Sigma_2(X,4)$. *Applied Mathematics*, **9**, 17-27. https://doi.org/10.4236/am.2018.91002

Received: December 11, 2017 Accepted: January 16, 2018 Published: January 19, 2018

Copyright © 2018 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

Abstract

In this paper, we have studied generating sets of the complete semigroups defined by *X*-semilattices of the class $\Sigma_2(X, 4)$.

Keywords

Semigroup, Semilattice, Binary Relations, Idempotent Elements

1. Introduction

Let *X* be an arbitrary nonempty set and *D* be a nonempty set of subsets of the set *X*. If *D* is closed under the union, then *D* is called a *complete X-semilattice of unions*. The union of all elements of the set *D* is denoted by the symbol D.

Let B_X be the set of all binary relations on X. It is well known that B_X is a semigroup.

Let *f* be an arbitrary mapping from *X* into *D*. Then we denote a binary relation $\alpha_f = \bigcup_{x \in X} (\{x\} \times f(x))$ for each *f*. The set of all such binary relations is denoted

by $B_X(D)$. It is easy to prove that $B_X(D)$ is a semigroup with respect to the product operation of binary relations. This semigroup $B_X(D)$ is called a complete semigroup of binary relations defined by an X-semilattice of unions D. This structure was comprehensively investigated in Diasamidze [1] and [2]. We assume that $t, y \in X$, $Y \subseteq X$, $\alpha \in B_X$, $T \in D$ and $\emptyset \neq D' \subseteq D$. Then we denote following sets

$$y\alpha = \{x \in X \mid y\alpha x\}, \ Y\alpha = \bigcup_{y \in Y} y\alpha,$$

$$V(D,\alpha) = \{Y\alpha \mid Y \in D\}, X^* = \{Y \mid \emptyset \neq Y \subseteq X\}$$
$$Y_T^{\alpha} = \{y \in X \mid y\alpha = T\}, V(X^*,\alpha) = \{Y\alpha \mid \emptyset \neq Y \subseteq X\}$$
$$D_t = \{Z' \in D \mid t \in Z'\}, B_0 = \{\alpha \in B_X(D) \mid V(X^*,\alpha) = D\}$$

Let $D = \{ \breve{D}, Z_1, Z_2, \dots, Z_{m-1} \}$ be finite *X*-semilattice of unions and $C(D) = \{ P_0, P_1, P_2, \dots, P_{m-1} \}$ be the family of pairwise nonintersecting subsets of *X*. If $\varphi = \begin{pmatrix} \breve{D} & Z_1 & \dots & Z_{m-1} \\ P_0 & P_1 & \dots & P_{m-1} \end{pmatrix}$ is a mapping from *D* on C(D), then the equalities $\breve{D} = P_0 \bigcup P_1 \bigcup P_2 \bigcup \dots \bigcup P_{m-1}$ and $Z_i = P_0 \bigcup \bigcup_{T \in D \setminus D_Z} \varphi(T)$ are valid. These

equalities are called formal.

Let *D* be a complete *X*-semilattice of unions $\alpha \in B_X$. Then a representation of a binary relation α of the form $\alpha = \bigcup_{T \in V(X^*, \alpha)} (Y_T^{\alpha} \times T)$ is called quasinormal.

Let $P_0, P_1, P_2, \dots, P_{m-1}$ be parameters in the formal equalities, $\beta \in B_X(D)$, $\overline{\beta}_2$ be mapping from $X \setminus \overline{D}$ to D. Then $\overline{\beta} = \bigcup_{i=0}^{m-1} \left(P_i \times \bigcup_{t \in P_i} t\beta \right) \bigcup \bigcup_{t' \in X \setminus \overline{D}} \left(\{t'\} \times \overline{\beta}_2(t') \right)$

is called subquasinormal representation of $~\beta$. It can be easily seen that the following statements are true.

a) $\overline{\beta} \in B_X(D)$. b) $\bigcup_{i=0}^{m-1} \left(P_i \times \bigcup_{t \in P_i} t\beta \right) \subseteq \beta$ and $\beta = \overline{\beta}$ for some $\overline{\beta}_2$.

c) Subquasinormal representation of β is quasinormal.

d) $\overline{\beta}_1 = \begin{pmatrix} P_0 & P_1 & \cdots & P_{m-1} \\ P_0 \overline{\beta} & P_1 \overline{\beta} & \cdots & P_{m-1} \overline{\beta} \end{pmatrix}$ is mapping from C(D) on $D \cup \{\emptyset\}$.

 $\overline{\beta}_1$ and $\overline{\beta}_2$ are respectively called normal and complement mappings for β .

Let $\alpha \in B_X(D)$. If $\alpha \neq \delta \circ \beta$ for all $\delta, \beta \in B_X(D) \setminus \{\alpha\}$ then α is called external element. Every element of the set $B_0 = \{\alpha \in B_X(D) | V(X^*, \alpha) = D\}$ is an external element of $B_X(D)$.

Theorem 1. [1] Let X be a finite set and $\alpha, \beta \in B_X(D)$. If $\overline{\beta}$ is subquasinormal representation of β then $\alpha \circ \beta = \alpha \circ \overline{\beta}$.

Corollary 1. [1] Let $\tilde{B}' \subseteq \tilde{B} \subseteq B_X(D)$. If $\alpha \neq \delta \circ \overline{\beta}$ for $\alpha \in \tilde{B}'$, $\delta \in \tilde{B} \setminus \{\alpha\}$, $\overline{\beta} \in \tilde{B} \setminus \{\alpha\}$ and subquasinormal representation of $\beta \in \tilde{B} \setminus \{\alpha\}$ then $\alpha \neq \delta \circ \beta$.

It is known that the set of all external elements is subset of any generating set of $B_X(D)$ in [3].

2. Results

In this work by symbol $\Sigma_{2,2}(X,4)$ we denote all semilattices $D = \{Z_3, Z_2, Z_1, \vec{D}\}$ of the class $\Sigma_2(X,4)$ which the intersection of minimal elements $Z_3 \cap Z_2 = \emptyset$. This semilattices graphic is given in **Figure 1**. By using formal equalities, we have $Z_3 \cap Z_2 = P_0 = \emptyset$. So, the formal equalities of the semilattice *D* has a form

Figure 1. Graphic of semilattice $D = \{Z_3, Z_2, Z_1, D\}$ which the intersection of minimal elements $Z_3 \cap Z_2 = \emptyset$.

$$\vec{D} = P_1 \bigcup P_2 \bigcup P_3$$

$$Z_1 = P_2 \bigcup P_3
 Z_2 = P_1 \bigcup P_3
 Z_3 = P_2$$
(1)

Let $\delta, \overline{\beta} \in B_X(D)$. If quasinormal representation of binary relation δ has a form $\delta = (Y_3^{\delta} \times Z_3) \cup (Y_2^{\delta} \times Z_2) \cup (Y_1^{\delta} \times Z_1) \cup (Y_0^{\delta} \times D)$ then

$$\mathfrak{H} \circ \overline{\beta} = \left(Y_3^{\delta} \times Z_3 \overline{\beta}\right) \cup \left(Y_2^{\delta} \times Z_2 \overline{\beta}\right) \cup \left(Y_1^{\delta} \times Z_1 \overline{\beta}\right) \cup \left(Y_0^{\delta} \times \overline{D} \overline{\beta}\right)$$

We denote the set

$$B_{32} = \left\{ \alpha \in B_X(D) | V(X^*, \alpha) = \left\{ Z_3, Z_2, \overline{D} \right\} \right\}$$

$$B_{21} = \left\{ \alpha \in B_X(D) | V(X^*, \alpha) = \left\{ Z_2, Z_1, \overline{D} \right\} \right\}$$

$$B_{31} = \left\{ \alpha \in B_X(D) | V(X^*, \alpha) = \left\{ Z_3, Z_1 \right\} \right\}$$

$$\tilde{B}_{32} = \left\{ \alpha \in B_{32} | \alpha = \left(Y_3^{\alpha} \times Z_3 \right) \cup \left(Y_2^{\alpha} \times Z_2 \right), Y_3^{\alpha} \cup Y_2^{\alpha} = X, Y_3^{\alpha} \cap Y_2^{\alpha} = \emptyset \right\}$$

$$\tilde{B}_{21} = \left\{ \alpha \in B_{21} | \alpha = \left(Y_2^{\alpha} \times Z_2 \right) \cup \left(Y_1^{\alpha} \times Z_1 \right), Y_2^{\alpha} \cup Y_1^{\alpha} = X, Y_2^{\alpha} \cap Y_1^{\alpha} = \emptyset \right\}$$

It is easy to see that

$$B_0 \cap B_{32} = B_0 \cap B_{21} = B_0 \cap B_{31} = B_{21} \cap B_{32} = B_{31} \cap B_{32} = B_{21} \cap B_{31} = \emptyset.$$

Lemma 2. Let $D = \{Z_3, Z_2, Z_1, \breve{D}\} \in \Sigma_{2,2}(X, 4)$. Then following statements are true for the sets $B_0, B_{32}, \tilde{B}_{32}$.

a) If $\alpha = (Y_3^{\alpha} \times Z_3) \cup (Y_1^{\alpha} \times Z_1) \cup (Y_0^{\alpha} \times \breve{D})$ for some $Y_3^{\alpha}, Y_1^{\alpha}, Y_0^{\alpha} \notin \emptyset$, then α is product of some elements of the set B_0 .

b) If
$$\beta_0 = (Z_3 \times Z_3) \cup ((X \setminus Z_3) \times Z_2)$$
, then $(B_0 \circ \beta_0) \cup \tilde{B}_{32} = B_{32}$.
c) If $\sigma_1 = (Z_2 \times Z_2) \cup ((X \setminus Z_2) \times Z_1)$, then $(B_0 \circ \sigma_1) \cup \tilde{B}_{21} = B_{21}$.
d) If $\sigma_1 = (Z_2 \times Z_2) \cup ((X \setminus Z_2) \times Z_1)$, then $B_{32} \circ \sigma_1 = B_{21}$.
e) If $\sigma_0 = (Z_3 \times Z_3) \cup ((X \setminus Z_3) \times Z_1)$, then $B_{32} \circ \sigma_0 = B_{31}$.

f) Every element of the set B_{32} is product of elements of the set $B_0 \cup \tilde{B}_{32}$. g) Every element of the set B_{21} is product of elements of the set $B_0 \cup \tilde{B}_{32} \cup \{\sigma_1\}.$

Proof. It will be enough to show only *a*, *b* and *g*. The rest can be similarly seen. a. Let $\alpha = (Y_3^{\alpha} \times Z_3) \cup (Y_1^{\alpha} \times Z_1) \cup (Y_0^{\alpha} \times \overline{D})$ for some $Y_3^{\alpha}, Y_1^{\alpha}, Y_0^{\alpha} \notin \{\emptyset\}$, $\delta, \overline{\beta} \in B_0$. Then quasinormal representation of δ has a form

$$\delta = \left(Y_3^{\delta} \times Z_3\right) \bigcup \left(Y_2^{\delta} \times Z_2\right) \bigcup \left(Y_1^{\delta} \times Z_1\right) \bigcup \left(Y_0^{\delta} \times \breve{D}\right)$$

where $Y_3^{\delta}, Y_1^{\delta}, Y_0^{\delta} \notin \{\emptyset\}$. We suppose that

$$\overline{\beta} = (P_2 \times Z_3) \cup (P_1 \times Z_2) \cup (P_3 \times Z_1) \cup \bigcup_{t' \in X \setminus \overline{D}} (\{t'\} \times \overline{\beta}_2(t'))$$

where $\overline{\beta}_1 = \begin{pmatrix} \emptyset & P_1 & P_2 & P_3 \\ \emptyset & Z_2 & Z_3 & Z_1 \end{pmatrix}$ is normal mapping for $\overline{\beta}$ and $\overline{\beta}_2$ is com-

plement mapping of the set $X \setminus \overline{D}$ on the set \overline{D} . So, $\overline{\beta} \in B_0$ since $V(X^*, \overline{\beta}) = D$. From the equalities (2.1) and definition of $\overline{\beta}$

$$Z_{3}\overline{\beta} = P_{2}\overline{\beta} = Z_{3}$$

$$Z_{2}\overline{\beta} = (P_{1} \cup P_{3})\overline{\beta} = P_{1}\overline{\beta} \cup P_{3}\overline{\beta} = Z_{2} \cup Z_{1} = \overline{D}$$

$$Z_{1}\overline{\beta} = (P_{2} \cup P_{3})\overline{\beta} = P_{2}\overline{\beta} \cup P_{3}\overline{\beta} = Z_{3} \cup Z_{1} = Z_{1}$$

$$\overline{D}\overline{\beta} = (P_{1} \cup P_{2} \cup P_{3})\overline{\beta} = P_{1}\overline{\beta} \cup P_{2}\overline{\beta} \cup P_{3}\overline{\beta} = Z_{2} \cup \overline{D} \cup Z_{1} = \overline{D}$$

$$\delta \circ \overline{\beta} = (Y_{3}^{\delta} \times Z_{3}\overline{\beta}) \cup (Y_{2}^{\delta} \times Z_{2}\overline{\beta}) \cup (Y_{1}^{\delta} \times Z_{1}\overline{\beta}) \cup (Y_{0}^{\delta} \times \overline{D}\overline{\beta})$$

$$= (Y_{3}^{\delta} \times \overline{D}) \cup (Y_{2}^{\delta} \times \overline{D}) \cup (Y_{1}^{\delta} \times \overline{D}) \cup (Y_{0}^{\delta} \times \overline{D})$$

$$= (Y_{3}^{\delta} \times \overline{D}) \cup (Y_{1}^{\delta} \times \overline{D}) \cup ((Y_{2}^{\delta} \cup Y_{0}^{\delta}) \times \overline{D}) = \alpha.$$

b. Let $\alpha \in B_0 \circ \beta_0 \bigcup \tilde{B}_{32}$. Then $\alpha \in B_0 \circ \beta_0$ or $\alpha \in \tilde{B}_{32}$. If $\alpha \in B_0 \circ \beta_0$ then $\alpha = \delta \circ \beta_0$ for some $\delta \in B_0$. In this case we have

$$\delta = (Y_3^{\delta} \times Z_3) \bigcup (Y_2^{\delta} \times Z_2) \bigcup (Y_1^{\delta} \times Z_1) \bigcup (Y_0^{\delta} \times \breve{D})$$

where $Y_3^{\delta}, Y_1^{\delta}, Y_0^{\delta} \notin \{\emptyset\}$. Also

$$\begin{aligned} \alpha &= \delta \circ \beta_0 = \left(Y_3^{\delta} \times Z_3 \beta_0\right) \cup \left(Y_2^{\delta} \times Z_2 \beta_0\right) \cup \left(Y_1^{\delta} \times Z_1 \beta_0\right) \cup \left(Y_0^{\delta} \times \breve{D} \beta_0\right) \\ &= \left(Y_3^{\delta} \times Z_3\right) \cup \left(Y_2^{\delta} \times Z_2\right) \cup \left(Y_1^{\delta} \times Z_1\right) \cup \left(Y_0^{\delta} \times \breve{D}\right) \\ &= \left(Y_3^{\delta} \times Z_3\right) \cup \left(Y_2^{\delta} \times Z_2\right) \cup \left(\left(Y_1^{\delta} \cup Y_0^{\delta}\right) \times \breve{D}\right) \in B_{32} \setminus \tilde{B}_{32} \end{aligned}$$

is satisfied. So, we have $(B_0 \circ \beta_0) \cup \tilde{B}_{32} \subseteq B_{32}$. On the other hand, if $\alpha \in \tilde{B}_{32} \subseteq B_{32}$ then $(B_0 \circ \beta_0) \cup \tilde{B}_{32} \subseteq B_{32}$ is satisfied. Conversely, if $\alpha \in B_{32}$ then quasinormal representation of α has a form

$$\alpha = \left(Y_3^{\alpha} \times Z_3\right) \cup \left(Y_2^{\alpha} \times Z_2\right) \cup \left(Y_0^{\alpha} \times \breve{D}\right)$$

where $Y_3^{\alpha}, Y_2^{\alpha}, Y_0^{\alpha} \notin \{\emptyset\}$ or $Y_3^{\alpha}, Y_2^{\alpha} \notin \{\emptyset\}$ and $Y_0^{\alpha} = \emptyset$. We suppose that $Y_3^{\alpha}, Y_2^{\alpha} \notin \{\emptyset\}$. In this case, we have

$$\delta \circ \beta_0 = \left(Y_3^{\delta} \times Z_3 \beta_0\right) \cup \left(Y_2^{\delta} \times Z_2 \beta_0\right) \cup \left(Y_0^{\delta} \times Z_1 \beta_0\right)$$
$$= \left(Y_3^{\delta} \times Z_3\right) \cup \left(Y_2^{\delta} \times Z_2\right) \left(Y_0^{\delta} \times \overline{D}\right) = \alpha$$

for $\delta = (Y_3^{\alpha} \times Z_3) \cup (Y_2^{\alpha} \times Z_2) \cup (Y_0^{\alpha} \times Z_1) \in B_0$. So, we have $B_{32} \subseteq (B_0 \circ \beta_0) \cup \tilde{B}_{32}$. Now suppose that $Y_3^{\alpha}, Y_2^{\alpha} \notin \{\emptyset\}$ and $Y_0^{\alpha} = \emptyset$. In this case, we have $\alpha \in \tilde{B}_{32} \subseteq (B_0 \circ \beta_0) \cup \tilde{B}_{32}.$ So, $(B_0 \circ \beta_0) \cup \tilde{B}_{32} = B_{32}.$

g. From the statement *c*, we have that $(B_0 \circ \beta_0) \bigcup \tilde{B}_{32} = B_{32}$ where $\beta_0 \in \tilde{B}_{32}$ by definition of β_0 . Thus, every element of the set B_{32} is product of elements of the set $B_0 \bigcup \tilde{B}_{32}$.

Lemma 3. Let $D = \{Z_3, Z_2, Z_1, \breve{D}\} \in \Sigma_{2,2}(X, 4)$. If $|X \setminus \breve{D}| \ge 1$ then the following statements are true.

a) If $\alpha = X \times \breve{D}$ then α is product of elements of the set B_0 .

b) If $\alpha = X \times Z_1$ then α is product of elements of the set B_0 .

c) If $\alpha = (Y_3^{\alpha} \times Z_3) \cup (Y_1^{\alpha} \times Z_1)$ for some $Y_3^{\alpha}, Y_1^{\alpha} \notin \emptyset$, then α is product of elements of the B_0 .

d) If $\alpha = (Y_3^{\alpha} \times Z_3) \cup (Y_0^{\alpha} \times \breve{D})$ for some $Y_3^{\alpha}, Y_0^{\alpha} \notin \emptyset$, then α is product of elements of the B_0 .

e) If $\alpha = (Y_2^{\alpha} \times Z_2) \cup (Y_0^{\alpha} \times \breve{D})$ for some $Y_2^{\alpha}, Y_0^{\alpha} \notin \emptyset$, then α is product of elements of the B_0 .

f) If $\alpha = (Y_1^{\alpha} \times Z_1) \cup (Y_0^{\alpha} \times \breve{D})$ for some $Y_1^{\alpha}, Y_0^{\alpha} \notin \emptyset$, then α is product of elements of the B_0 .

Proof. c. Let quasinormal representation of α has a form $\alpha = (Y_3^{\alpha} \times Z_3) \cup (Y_1^{\alpha} \times Z_1)$ where $Y_3^{\delta}, Y_1^{\delta} \notin \{\emptyset\}$. By definition of the semilattice D, $|X| \ge 3$. We suppose that $|Y_3^{\alpha}| \ge 1$ and $|Y_1^{\alpha}| \ge 2$. In this case, we suppose that

$$\overline{\beta} = (P_2 \times Z_3) \cup ((P_1 \cup P_3) \times Z_1) \cup \bigcup_{t' \in X \setminus \overline{D}} (\{t'\} \times \overline{\beta}_2(t'))$$

where $\overline{\beta}_1 = \begin{pmatrix} \emptyset & P_1 & P_2 & P_3 \\ \emptyset & Z_1 & Z_3 & Z_1 \end{pmatrix}$ is normal mapping for $\overline{\beta}$ and $\overline{\beta}_2$ is comple-

ment mapping of the set $X \times \overline{D}$ on the set $\overline{D} \setminus \{Z_3, Z_1\} = \{Z_2\}$ (by suppose $|X \setminus \overline{D}| \ge 1$). So, $\overline{\beta} \in B_0$ since $V(X^*, \overline{\beta}) = D$. Also, $Y_3^{\delta} = Y_3^{\alpha}$ and $Y_2^{\delta} \cup Y_1^{\delta} \cup Y_0^{\delta} = Y_1^{\delta}$ since $|Y_3^{\delta}| \ge 1, |Y_2^{\delta}| \ge 1, |Y_1^{\delta}| \ge 1, |Y_0^{\delta}| \ge 0$. From the equalities (2.1) and definition of $\overline{\beta}$ we obtain that

$$\begin{aligned} Z_{3}\overline{\beta} &= P_{2}\overline{\beta} = Z_{3} \\ Z_{2}\overline{\beta} &= \left(P_{1} \cup P_{3}\right)\overline{\beta} = P_{1}\overline{\beta} \cup P_{3}\overline{\beta} = Z_{1} \cup Z_{1} = Z_{1} \\ Z_{1}\overline{\beta} &= \left(P_{2} \cup P_{3}\right)\overline{\beta} = P_{2}\overline{\beta} \cup P_{3}\overline{\beta} = Z_{3} \cup Z_{1} = Z_{1} \\ \overline{D}\overline{\beta} &= \left(P_{1} \cup P_{2} \cup P_{3}\right)\overline{\beta} = P_{1}\overline{\beta} \cup P_{2}\overline{\beta} \cup P_{3}\overline{\beta} = Z_{1} \cup Z_{3} \cup Z_{1} = Z_{1} \\ \delta \circ \overline{\beta} &= \left(Y_{3}^{\delta} \times Z_{3}\overline{\beta}\right) \cup \left(Y_{2}^{\delta} \times Z_{2}\overline{\beta}\right) \cup \left(Y_{1}^{\delta} \times Z_{1}\overline{\beta}\right) \cup \left(Y_{0}^{\delta} \times \overline{D}\overline{\beta}\right) \\ &= \left(Y_{3}^{\delta} \times Z_{3}\right) \cup \left(Y_{2}^{\delta} \times Z_{1}\right) \cup \left(Y_{1}^{\delta} \times Z_{1}\right) \cup \left(Y_{0}^{\delta} \times Z_{1}\right) \\ &= \left(Y_{3}^{\delta} \times Z_{3}\right) \cup \left(\left(Y_{2}^{\delta} \cup Y_{1}^{\delta} \cup Y_{0}^{\delta}\right) \times Z_{1}\right) = \alpha \end{aligned}$$

Now, we suppose that $|Y_3^{\alpha}| \ge 2$ and $|Y_1^{\alpha}| \ge 1$. In this case, we suppose that

$$\overline{\beta} = \left(\left(P_2 \cup P_3 \right) \times Z_3 \right) \cup \left(P_1 \times Z_1 \right) \cup \bigcup_{t' \in Y \setminus \overline{D}} \left(\{ t' \} \times \overline{\beta}_2 \left(t' \right) \right)$$

where $\overline{\beta}_1 = \begin{pmatrix} \emptyset & P_1 & P_2 & P_3 \\ \emptyset & Z_1 & Z_3 & Z_3 \end{pmatrix}$ is normal mapping for $\overline{\beta}$ and $\overline{\beta}_2$ is complement mapping of the set $X \times \overline{D}$ on the set $\overline{D} \setminus \{Z_3, Z_1\} = \{Z_2\}$ (by suppose

 $|X \setminus \overrightarrow{D}| \ge 1$). So, $\overrightarrow{\beta} \in B_0$ since $V(X^*, \overrightarrow{\beta}) = D$. Also, $Y_3^{\delta} \cup Y_1^{\delta} = Y_3^{\alpha}$ and $Y_2^{\delta} \cup Y_0^{\delta} = Y_1^{\alpha}$ since $|Y_3^{\delta}| \ge 1, |Y_2^{\delta}| \ge 1, |Y_1^{\delta}| \ge 1, |Y_0^{\delta}| \ge 0$. From the equalities (2.1) and definition of $\overrightarrow{\beta}$ we obtain that

$$Z_{3}\overline{\beta} = P_{2}\overline{\beta} = Z_{3}$$

$$Z_{2}\overline{\beta} = (P_{1} \cup P_{3})\overline{\beta} = P_{1}\overline{\beta} \cup P_{3}\overline{\beta} = Z_{1} \cup Z_{3} = Z_{1}$$

$$Z_{1}\overline{\beta} = (P_{2} \cup P_{3})\overline{\beta} = P_{2}\overline{\beta} \cup P_{3}\overline{\beta} = Z_{3} \cup Z_{3} = Z_{3}$$

$$\overline{D}\overline{\beta} = (P_{1} \cup P_{2} \cup P_{3})\overline{\beta} = P_{1}\overline{\beta} \cup P_{2}\overline{\beta} \cup P_{3}\overline{\beta} = Z_{1} \cup Z_{3} \cup Z_{3} = Z_{1}$$

$$\delta \circ \overline{\beta} = (Y_{3}^{\delta} \times Z_{3}\overline{\beta}) \cup (Y_{2}^{\delta} \times Z_{2}\overline{\beta}) \cup (Y_{1}^{\delta} \times Z_{1}\overline{\beta}) \cup (Y_{0}^{\delta} \times \overline{D}\overline{\beta})$$

$$= (Y_{3}^{\delta} \times Z_{3}) \cup (Y_{2}^{\delta} \times Z_{1}) \cup (Y_{1}^{\delta} \times Z_{3}) \cup (Y_{0}^{\delta} \times Z_{1})$$

$$= ((Y_{3}^{\delta} \cup Y_{1}^{\delta}) \times Z_{3}) \cup ((Y_{2}^{\delta} \cup Y_{0}^{\delta}) \times Z_{1}) = \alpha$$

Lemma 4. Let $D = \{Z_3, Z_2, Z_1, \breve{D}\} \in \Sigma_{2,2}(X, 4),$

 $\sigma_0 = (Z_3 \times Z_3) \cup ((X \setminus Z_3) \times Z_1)$ and $\sigma_1 = (Z_2 \times Z_2) \cup ((X \setminus Z_2) \times Z_1)$. If $X = \breve{D}$ then the following statements are true

a) If $\alpha = (Y_3^{\alpha} \times Z_3) \cup (Y_0^{\alpha} \times \breve{D})$ for some $Y_3^{\alpha}, Y_0^{\alpha} \notin \{\varnothing\}$, then α is product of elements of the $B_0 \cup B_{32}$.

b) If $\alpha = (Y_2^{\alpha} \times Z_2) \cup (Y_0^{\alpha} \times \breve{D})$ for some $Y_2^{\alpha}, Y_0^{\alpha} \notin \{\varnothing\}$, then α is product of elements of the $B_{32} \cup \{\sigma_1\}$.

c) If $\alpha = (Y_1^{\alpha} \times Z_1) \cup (Y_0^{\alpha} \times \breve{D})$ for some $Y_1^{\alpha}, Y_0^{\alpha} \notin \{\varnothing\}$, then α is product of elements of the $B_{32} \cup \{\sigma_0, \sigma_1\}$.

Proof. First, remark that $Z_3\sigma_0 = Z_3$, $Z_2\sigma_0 = D\sigma_0 = Z_1$, $Z_3\sigma_1 = Z_1$, $Z_2\sigma_1 = Z_2$, $D\sigma_1 = D$.

a. Let $\alpha = (Y_3^{\alpha} \times Z_3) \cup (Y_0^{\alpha} \times \breve{D})$ for some $Y_3^{\alpha}, Y_0^{\alpha} \notin \emptyset$. In this case, we suppose that

$$\delta = \left(Y_3^{\delta} \times Z_3\right) \bigcup \left(Y_2^{\delta} \times Z_2\right) \bigcup \left(Y_0^{\delta} \times \breve{D}\right)$$

and

$$\beta_1 = (Z_3 \times Z_3) \cup ((Z_1 \setminus Z_3) \times Z_1) \cup ((X \setminus Z_1) \times \breve{D})$$

where $Y_3^{\delta}, Y_2^{\delta} \notin \{\emptyset\}$. It is easy to see that $\delta \in B_{32}$ and β_1 is generating by elements of the B_0 by statement b of Lemma 2. Also, $Y_3^{\delta} = Y_3^{\alpha}$ and $Y_2^{\delta} \cup Y_0^{\delta} = Y_0^{\alpha}$ since $Z_3\overline{\beta} = Z_3$, $Z_2\overline{\beta} = \overline{D}\overline{\beta} = \overline{D}$ and $|Y_3^{\delta}| \ge 1, |Y_2^{\delta}| \ge 1, |Y_0^{\delta}| \ge 0$. So, α is product of elements of the $B_0 \cup B_{32}$.

Lemma 5. Let

$$D = \{Z_3, Z_2, Z_1, \breve{D}\} \in \Sigma_{2,2}(X, 4)$$

and

$$\sigma_1 = (Z_2 \times Z_2) \cup ((X \setminus Z_2) \times Z_1).$$

If $|X \setminus \breve{D}| \ge 1$ then $S_1 = B_0 \cup \tilde{B}_{32} \cup \{\sigma_1\}$ is an irreducible generating set for the semigroup $B_X(D)$.

Proof. First, we must prove that every element of $B_{\chi}(D)$ is product of ele-

ments of S_1 . Let $\alpha \in B_X(D)$ and $(x_1^{\alpha}, -\overline{\alpha}) \mapsto (x_1^{\alpha}, -\overline{\alpha})$

$$\alpha = (Y_3^{\alpha} \times Z_3) \cup (Y_2^{\alpha} \times Z_2) \cup (Y_1^{\alpha} \times Z_1) \cup (Y_0^{\alpha} \times \breve{D})$$

where $Y_3^{\alpha} \cup Y_2^{\alpha} \cup Y_1^{\alpha} \cup Y_0^{\alpha} = X$ and $Y_3^{\alpha} \cap Y_2^{\alpha} = \emptyset$, $(0 \le i \ne j \le 3)$. We suppose that $|V(X^*, \alpha)| = 1$. Then we have $V(X^*, \alpha) \in \{\{Z_3\}, \{Z_2\}, \{Z_1\}, \{\overline{D}\}\}$. If $V(X^*, \alpha) \in \{\{Z_3\}, \{Z_2\}, \{Z_1\}\}$ then $\alpha = X \times Z_3$ or $\alpha = X \times Z_2$ or $\alpha = X \times Z_1$.

Quasinormal representations of δ , β_1 , β_2 and β_3 has form

$$\delta = (Y_3^{\delta} \times Z_3) \cup (Y_2^{\delta} \times Z_2) \cup (Y_1^{\delta} \times Z_1) \cup (Y_0^{\delta} \times \breve{D})$$

$$\beta_1 = (\breve{D} \times Z_3) \cup ((X \setminus \breve{D}) \times Z_2)$$

$$\beta_2 = (\breve{D} \times Z_2) \cup ((X \setminus \breve{D}) \times Z_1)$$

$$\beta_3 = (\breve{D} \times Z_1) \cup ((X \setminus \breve{D}) \times Z_2)$$

where $Y_3^{\delta}, Y_2^{\delta}, Y_1^{\delta} \notin \{\emptyset\}$. So, $\delta \in B_0$, $\beta_1 \in \tilde{B}_{32}$ and $\beta_2, \beta_3 \in B_{21}$ since $|X \setminus \breve{D}| \ge 1$. From the definition of δ, β_1, β_2 and β_3 we obtain that

$$\begin{split} \delta \circ \beta_{1} &= \left(Y_{3}^{\delta} \times Z_{3}\beta_{1}\right) \bigcup \left(Y_{2}^{\delta} \times Z_{2}\beta_{1}\right) \bigcup \left(Y_{1}^{\delta} \times Z_{1}\beta_{1}\right) \bigcup \left(Y_{0}^{\delta} \times \breve{D}\beta_{1}\right) \\ &= \left(Y_{3}^{\delta} \times Z_{3}\right) \bigcup \left(Y_{2}^{\delta} \times Z_{3}\right) \bigcup \left(Y_{1}^{\delta} \times Z_{3}\right) \bigcup \left(Y_{0}^{\delta} \times Z_{3}\right) \\ &= \left(Y_{3}^{\delta} \bigcup Y_{2}^{\delta} \bigcup Y_{1}^{\delta} \bigcup Y_{0}^{\delta}\right) \times Z_{3} = X \times Z_{3} \\ \delta \circ \beta_{2} &= \left(Y_{3}^{\delta} \times Z_{3}\beta_{2}\right) \bigcup \left(Y_{2}^{\delta} \times Z_{2}\beta_{2}\right) \bigcup \left(Y_{1}^{\delta} \times Z_{1}\beta_{2}\right) \bigcup \left(Y_{0}^{\delta} \times \breve{D}\beta_{2}\right) \\ &= \left(Y_{3}^{\delta} \otimes Z_{2}\right) \bigcup \left(Y_{2}^{\delta} \times Z_{2}\right) \bigcup \left(Y_{1}^{\delta} \times Z_{2}\right) \bigcup \left(Y_{0}^{\delta} \times Z_{2}\right) \\ &= \left(Y_{3}^{\delta} \bigcup Y_{2}^{\delta} \bigcup Y_{1}^{\delta} \bigcup Y_{0}^{\delta}\right) \times Z_{2} = X \times Z_{2} \\ \delta \circ \beta_{3} &= \left(Y_{3}^{\delta} \times Z_{3}\beta_{3}\right) \bigcup \left(Y_{2}^{\delta} \times Z_{2}\beta_{3}\right) \bigcup \left(Y_{1}^{\delta} \times Z_{1}\beta_{3}\right) \bigcup \left(Y_{0}^{\delta} \times \breve{D}\beta_{3}\right) \\ &= \left(Y_{3}^{\delta} \otimes Z_{1}\right) \bigcup \left(Y_{2}^{\delta} \times Z_{1}\right) \bigcup \left(Y_{1}^{\delta} \times Z_{1}\right) \bigcup \left(Y_{0}^{\delta} \times Z_{1}\right) \\ &= \left(Y_{3}^{\delta} \bigcup Y_{2}^{\delta} \bigcup Y_{1}^{\delta} \bigcup Y_{0}^{\delta}\right) \times Z_{1} = X \times Z_{1} \end{split}$$

That means, $X \times Z_1, X \times Z_2$ and $X \times Z_3$ are generated by $B_0 \cup \tilde{B}_{32}$, $B_0 \cup B_{21}$ and $B_0 \cup B_{21}$ respectively. By using statement g and h of Lemma 3, we have $X \times Z_1, X \times Z_2$ and $X \times Z_3$ are generated by $B_0 \cup \tilde{B}_{32} \cup \{\sigma_1\}$. On the other hand, if $V(X^*, \alpha) = \{\tilde{D}\}$ then $\alpha = X \times \tilde{D}$ By using statement a of Lemma 3, we have α is product of some elemets of B_0 .

So, S_1 is generating set for the semigroup $B_X(D)$. Now, we must prove that $S_1 = B_0 \bigcup \tilde{B}_{32} \bigcup \{\sigma_1\}$ is irreducible. Let $\alpha \in S_1$.

If $\alpha \in B_0$ then $\alpha \neq \sigma \circ \tau$ for all $\sigma, \tau \in B_X(D) \setminus \{\alpha\}$ from Lemma 2. So, $\alpha \neq \sigma \circ \tau$ for all $\sigma, \tau \in S_1 \setminus \{\alpha\}$. That means, $\alpha \notin B_0$.

If $\alpha \in \tilde{B}_{32}$ then the quasinormal representation of α has form $\alpha = (Y_3^{\alpha} \times Z_3) \cup (Y_2^{\alpha} \times Z_2)$ for some $Y_3^{\alpha}, Y_2^{\alpha} \notin \emptyset$. Let $\alpha = \delta \circ \beta$ for some $\delta, \beta \in S_1 \setminus \{\alpha\}$.

We suppose that $\delta \in B_0 \setminus \{\alpha\}$ and $\beta \in S_1 \setminus \{\alpha\}$. By definition of B_0 , quasinormal representation of δ has form

$$\delta = \left(Y_3^{\delta} \times Z_3\right) \cup \left(Y_2^{\delta} \times Z_2\right) \cup \left(Y_1^{\delta} \times Z_1\right) \cup \left(Y_0^{\delta} \times \breve{D}\right)$$

where $Y_3^{\delta}, Y_2^{\delta}, Y_1^{\delta} \notin \{\emptyset\}$. By using $Z_3 \subset Z_1 \subset \breve{D}$ and $Z_2 \subset \breve{D}$ we have $Z_3\beta$ and $Z_2\beta$ are minimal elements of the semilattice $\{Z_3\beta, Z_2\beta, Z_1\beta, \breve{D}\beta\}$. Also, we have

$$\begin{pmatrix} Y_3^{\alpha} \times Z_3 \end{pmatrix} \bigcup \begin{pmatrix} Y_2^{\alpha} \times Z_2 \end{pmatrix} = \alpha = \delta \circ \beta$$

= $\begin{pmatrix} Y_3^{\delta} \times Z_3 \beta \end{pmatrix} \bigcup \begin{pmatrix} Y_2^{\delta} \times Z_2 \beta \end{pmatrix} \bigcup \begin{pmatrix} Y_1^{\delta} \times Z_1 \beta \end{pmatrix} \bigcup \begin{pmatrix} Y_0^{\delta} \times \breve{D}\beta \end{pmatrix}$

Since Z_3 and Z_2 are minimal elements of the semilattice $\{Z_3, Z_2, \vec{D}\}$, this equality is possible only if $Z_3 = Z_3\beta$, $Z_2 = Z_2\beta$ or $Z_3 = Z_2\beta$, $Z_2 = Z_3\beta$. By using formal equalities and $P_3\beta$, $P_2\beta$, $P_1\beta \in D$, we obtain

$$Z_3 = Z_3\beta = P_2\beta \quad \text{and} \quad Z_2 = Z_2\beta = P_1\beta = P_3\beta$$
$$Z_2 = Z_3\beta = P_2\beta \quad \text{and} \quad Z_3 = Z_2\beta = P_1\beta = P_3\beta$$

respectively. Let $Z_3 = P_2\beta$ and $Z_2 = P_1\beta = P_3\beta$. If $\overline{\beta}$ is sub-quasinormal representation of β then $\delta \circ \beta = \delta \circ \overline{\beta}$ and

$$\overline{\beta} = \left(\left(P_1 \cup P_3 \right) \times Z_2 \right) \cup \left(P_2 \times Z_3 \right) \cup \bigcup_{t' \in X \setminus \overline{D}} \left(\{ t' \} \times \overline{\beta}_2 \left(t' \right) \right)$$

where $\overline{\beta}_1 = \begin{pmatrix} \emptyset & P_1 & P_2 & P_3 \\ \emptyset & Z_2 & Z_3 & Z_2 \end{pmatrix}$ is normal mapping for $\overline{\beta}$ and $\overline{\beta}_2$ is com-

plement mapping of the set $X \times \overline{D}$ on the set $\overline{D} = \{Z_3, Z_2, Z_1\}$. From formal equalities, we obtain

$$\overline{\beta} = (Z_2 \times Z_2) \bigcup (Z_3 \times Z_3) \bigcup \bigcup_{t' \in X \setminus \overline{D}} (\{t'\} \times \overline{\beta}_2(t')) \in S_1 \setminus \{\alpha\}$$

and by using $Z_1 \cap Z_2 \neq \emptyset, Z_3 \cup Z_2 = D$ and $|Y_1^{\delta} \cup Y_0^{\delta}| \ge 1$, we have

$$\begin{split} \delta \circ \overline{\beta} &= \left(Y_3^{\delta} \times Z_3 \overline{\beta}\right) \bigcup \left(Y_2^{\delta} \times Z_2 \overline{\beta}\right) \bigcup \left(Y_1^{\delta} \times Z_1 \overline{\beta}\right) \bigcup \left(Y_0^{\delta} \times \overline{D} \overline{\beta}\right) \\ &= \left(Y_3^{\delta} \times Z_3\right) \bigcup \left(Y_2^{\delta} \times Z_2\right) \bigcup \left(Y_1^{\delta} \times \overline{D}\right) \bigcup \left(Y_0^{\delta} \times \overline{D}\right) \\ &= \left(Y_3^{\delta} \times Z_3\right) \bigcup \left(Y_2^{\delta} \times Z_2\right) \bigcup \left(\left(Y_1^{\delta} \bigcup Y_0^{\delta}\right) \times \overline{D}\right) \neq \alpha \end{split}$$

This contradicts with $\alpha = \delta \circ \beta$. So, $\delta \notin B_0 \setminus \{\alpha\}$.

Now, we suppose that $\delta \in \tilde{B}_{32} \setminus \{\alpha\}$ and $\beta \in S_1 \setminus \{\alpha\}$. Similar operations are applied as above, we obtain $\delta \notin \tilde{B}_{32} \setminus \{\alpha\}$.

Now, we suppose that $\delta = \sigma_1$ and $\beta \in S_1 \setminus \{\alpha\}$. Similar operations are applied as above, we obtain $\delta \neq \sigma_1$.

That means $\alpha \neq \delta \circ \beta$ for any $\alpha \in \tilde{B}_{32}$ and $\delta, \beta \in S_1 \setminus \{\alpha\}$.

If $\alpha = \sigma_1$, then by the definition of σ_1 , quasinormal representation of α has a form $\alpha = (Z_2 \times Z_2) \cup ((X \setminus Z_2) \times Z_1)$. Let $\alpha = \delta \circ \beta$ for some $\delta, \beta \in S_1 \setminus \{\sigma_1\}$.

We suppose that $\delta \in B_0 \setminus \{\sigma_1\}$ and $\beta \in S_1 \setminus \{\sigma_1\}$. By definition of B_0 , quasinormal representation of δ has form

$$\delta = (Y_3^{\delta} \times Z_3) \bigcup (Y_2^{\delta} \times Z_2) \bigcup (Y_1^{\delta} \times Z_1) \bigcup (Y_0^{\delta} \times \breve{D})$$

where $Y_3^{\delta}, Y_2^{\delta}, Y_1^{\delta} \notin \{\emptyset\}$. By using $Z_3 \subset Z_1 \subset \breve{D}$ and $Z_2 \subset \breve{D}$ we have $Z_3\beta$ and $Z_2\beta$ are minimal elements of the semilattice $\{Z_3\beta, Z_2\beta, Z_1\beta, \breve{D}\beta\}$. Also, we have

$$(Z_2 \times Z_2) \cup ((X \setminus Z_2) \times Z_1) = \alpha = \delta \circ \beta$$
$$= (Y_3^{\delta} \times Z_3 \beta) \cup (Y_2^{\delta} \times Z_2 \beta) \cup (Y_1^{\delta} \times Z_1 \beta) \cup (Y_0^{\delta} \times \breve{D}\beta)$$

From Z_2 and Z_1 are minimal elements of the semilattice $\{Z_2, Z_1, \breve{D}\}$, this equality is possible only if $Z_2 = Z_3\beta$, $Z_1 = Z_2\beta$ or $Z_2 = Z_2\beta$, $Z_1 = Z_3\beta$. By using formal equalities, we obtain

$$Z_2 = Z_3\beta = P_2\beta \quad \text{and} \quad Z_1 = Z_2\beta = P_1\beta \cup P_3\beta$$
$$Z_1 = Z_3\beta = P_2\beta \quad \text{and} \quad Z_2 = Z_2\beta = P_1\beta = P_3\beta$$

respectively. Let $Z_2 = P_2\beta$ and $Z_1 = P_1\beta \bigcup P_3\beta$ where $P_1\beta, P_3\beta \in \{Z_3, Z_1\}$. Then subquasinormal representation of β has one of the form

$$\overline{\beta}^{1} = (P_{1} \times Z_{3}) \cup (P_{2} \times Z_{2}) \cup (P_{3} \times Z_{1}) \cup \bigcup_{t' \in X \setminus \overline{D}} \left(\{t'\} \times \overline{\beta}_{2}(t')\right)$$
$$\overline{\beta}^{2} = (P_{3} \times Z_{3}) \cup (P_{2} \times Z_{2}) \cup (P_{1} \times Z_{1}) \cup \bigcup_{t' \in X \setminus \overline{D}} \left(\{t'\} \times \overline{\beta}_{2}(t')\right)$$
$$\overline{\beta}^{3} = (P_{2} \times Z_{2}) \cup \left((P_{1} \cup P_{3}) \times Z_{1}\right) \cup \bigcup_{t' \in X \setminus \overline{D}} \left(\{t'\} \times \overline{\beta}_{2}(t')\right)$$

where

$$\overline{\beta}_1^1 = \begin{pmatrix} \varnothing & P_1 & P_2 & P_3 \\ \varnothing & Z_3 & Z_2 & Z_1 \end{pmatrix}, \quad \overline{\beta}_1^2 = \begin{pmatrix} \varnothing & P_1 & P_2 & P_3 \\ \varnothing & Z_1 & Z_2 & Z_3 \end{pmatrix}, \quad \overline{\beta}_1^3 = \begin{pmatrix} \varnothing & P_1 & P_2 & P_3 \\ \varnothing & Z_1 & Z_2 & Z_1 \end{pmatrix}$$

are normal mapping for $\overline{\beta}$, $\overline{\beta}_2$ is complement mapping of the set $X \times \overline{D}$ on the set $\widetilde{D} = \{Z_3, Z_2, Z_1\}$ and $\delta \circ \beta = \delta \circ \overline{\beta}_i$. From formal equalities, we obtain

$$\overline{\beta}^{1} = ((Z_{2} \setminus Z_{1}) \times Z_{3}) \cup ((Z_{1} \setminus Z_{2}) \times Z_{2}) \cup ((Z_{2} \setminus Z_{1}) \times Z_{1}) \cup \bigcup_{t' \in X \setminus \overline{D}} (\{t'\} \times \overline{\beta}_{2}(t'))$$

$$\overline{\beta}^{2} = ((Z_{2} \cap Z_{1}) \times Z_{3}) \cup ((Z_{1} \setminus Z_{2}) \times Z_{2}) \cup ((Z_{2} \setminus Z_{1}) \times Z_{1}) \cup \bigcup_{t' \in X \setminus \overline{D}} (\{t'\} \times \overline{\beta}_{2}(t'))$$

$$\overline{\beta}^{3} = ((Z_{1} \setminus Z_{2}) \times Z_{2}) \cup (Z_{2} \times Z_{1}) \cup \bigcup_{t' \in X \setminus \overline{D}} (\{t'\} \times \overline{\beta}_{2}(t'))$$

and by using $\left|Y_1^{\delta} \cup Y_0^{\delta}\right| \ge 1$, we have

$$\begin{split} \delta \circ \overline{\beta}^{1} &= \delta \circ \overline{\beta}^{2} = \delta \circ \overline{\beta}^{3} \\ &= \left(Y_{3}^{\delta} \times Z_{3} \overline{\beta}^{1}\right) \bigcup \left(Y_{2}^{\delta} \times Z_{2} \overline{\beta}^{1}\right) \bigcup \left(Y_{1}^{\delta} \times Z_{1} \overline{\beta}^{1}\right) \bigcup \left(Y_{0}^{\delta} \times \overline{D} \overline{\beta}^{1}\right) \\ &= \left(Y_{3}^{\delta} \times Z_{2}\right) \bigcup \left(Y_{2}^{\delta} \times Z_{1}\right) \bigcup \left(Y_{1}^{\delta} \times \overline{D}\right) \bigcup \left(Y_{0}^{\delta} \times \overline{D}\right) \\ &= \left(Y_{3}^{\delta} \times Z_{2}\right) \bigcup \left(Y_{2}^{\delta} \times Z_{1}\right) \bigcup \left(\left(Y_{1}^{\delta} \bigcup Y_{0}^{\delta}\right) \times \overline{D}\right) \neq \alpha \end{split}$$

This contradicts with $\alpha = \delta \circ \beta$. So, $\delta \notin B_0 \setminus \{\sigma_1\}$.

Now, we suppose that $\delta \in \tilde{B}_{32} \setminus \{\sigma_1\}$ and $\beta \in S_1 \setminus \{\sigma_1\}$. Similar operations are applied as above, we obtain $\delta \notin \tilde{B}_{32} \setminus \{\sigma_1\}$.

That means $\alpha \neq \delta \circ \beta$ for any $\alpha \in \tilde{B}_{32}$ and $\delta, \beta \in S_1 \setminus \{\alpha\}$.

Lemma 6. Let $D = \{Z_3, Z_2, Z_1, \breve{D}\} \in \Sigma_{2,2}(X, 4), \sigma_0 = (Z_3 \times Z_3) \cup ((X \setminus Z_3) \times Z_1)$ and $\sigma_1 = (Z_2 \times Z_2) \cup ((X \setminus Z_2) \times Z_1)$. If $X = \breve{D}$ then $S_2 = B_0 \cup \tilde{B}_{32} \cup \{\sigma_0, \sigma_1\}$ is irreducible generating set for the semigroup $B_X(D)$.

Theorem 7. Let
$$D = \{Z_3, Z_2, Z_1, \breve{D}\} \in \Sigma_{2,2}(X, 4)$$
,
 $\sigma_0 = (Z_3 \times Z_3) \cup ((X \setminus Z_3) \times Z_1)$ and $\sigma_1 = (Z_2 \times Z_2) \cup ((X \setminus Z_2) \times Z_1)$. If X is a finite set and $|X| = n$ then the following statements are true
a) If $|X \setminus \breve{D}| \ge 1$ then $|B_0 \cup \tilde{B}_{32} \cup \{\sigma_1\}| = 4^n - 3^{n+1} + 2^{n+2} - 2$
b) If $X = \breve{D}$ then $|B_0 \cup \tilde{B}_{32} \cup \{\sigma_0, \sigma_1\}| = 4^n - 3^{n+1} + 2^{n+2} - 1$
Proof. Let
 $S_n = \{\varphi_i \mid \varphi_i : M = \{1, 2, \dots, n\} \rightarrow M = \{1, 2, \dots, n\}$, one to one mapping $\}$

be a group, $\varphi_{i_1}, \varphi_{i_2}, \dots, \varphi_{i_m} \in S_n$ $(m \le n)$ and $Y_{\varphi_1}, Y_{\varphi_2}, \dots, Y_{\varphi_m}$ be partitioning of X. It is well known that $k_n^m = \left| \left\{ Y_{\varphi_1}, Y_{\varphi_2}, \dots, Y_{\varphi_m} \right\} \right| = \sum_{i=1}^m \frac{(-1)^{m+i}}{(i-1)!(m-i)!}$. If m = 2, 3, 4

then we have

1

$$k_n^2 = 2^{n-1} - 1$$

$$k_n^3 = \frac{1}{2} \cdot 3^{n-1} - 2^{n-1} + \frac{1}{2}$$

$$k_n^4 = \frac{1}{6} \cdot 4^{n-1} - \frac{1}{2} \cdot 3^{n-1} + \frac{1}{2} \cdot 2^{n-1} - \frac{1}{6}$$

If $Y_{\varphi_1}, Y_{\varphi_2}$ are any two elements of partitioning of X and

 $\overline{\beta} = (Y_{\varphi_1} \times T_1) \cup (Y_{\varphi_2} \times T_2)$ where $T_1, T_2 \in D$ and $T_1 \neq T_2$, then the number of different binary relations $\overline{\beta}$ of semigroup $B_X(D)$ is equal to

$$2 \cdot k_n^2 = 2^n - 2$$
 (2)

If $Y_{\varphi_1}, Y_{\varphi_2}, Y_{\varphi_3}$ are any three elements of partitioning of X and $\overline{\beta} = (Y_{\varphi_1} \times T_1) \bigcup (Y_{\varphi_2} \times T_2) \bigcup (Y_{\varphi_3} \times T_3)$ where T_1, T_2, T_3 are pairwise different elements of D, then the number of different binary relations $\overline{\beta}$ of semigroup $B_X(D)$ is equal to

$$6 \cdot k_n^3 = 3^n - 3 \cdot 2^n + 3 \tag{3}$$

If $Y_{\varphi_1}, Y_{\varphi_2}, Y_{\varphi_3}, Y_{\varphi_4}$ are any four elements of partitioning of X and $\overline{\beta} = (Y_{\varphi_1} \times T_1) \cup (Y_{\varphi_2} \times T_2) \cup (Y_{\varphi_3} \times T_3) \cup (Y_{\varphi_4} \times T_4)$ where T_1, T_2, T_3, T_4 are pairwise different elements of D, then the number of different binary relations $\overline{\beta}$ of semigroup $B_X(D)$ is equal to

$$24 \cdot k_n^4 = 4^n - 4 \cdot 3^n + 3 \cdot 2^n - 4 \tag{4}$$

Let $\alpha \in B_0$. Quasinormal representation of α has form

$$\alpha = (Y_3^{\alpha} \times Z_3) \cup (Y_2^{\alpha} \times Z_2) \cup (Y_1^{\alpha} \times Z_1) \cup (Y_0^{\alpha} \times \breve{D})$$

where $Y_3^{\alpha}, Y_2^{\alpha}, Y_1^{\alpha} \notin \{\emptyset\}$. Also, $Y_3^{\alpha}, Y_2^{\alpha}, Y_1^{\alpha}$ or $Y_3^{\alpha}, Y_2^{\alpha}, Y_1^{\alpha}, Y_0^{\alpha}$ are partitioning of *X* for $|X| \ge 4$. By using Equations (2.3) and (2.4) we obtain

$$|B_0| = 4^n - 3^{n+1} + 3 \cdot 2^n - 1$$

Let $\alpha \in \tilde{B}_{32}$. Quasinormal representation of α has form

 $\alpha = (Y_3^{\alpha} \times Z_3) \bigcup (Y_2^{\alpha} \times Z_2)$ where $Y_3^{\alpha}, Y_2^{\alpha} \notin \{\emptyset\}$. Also, $Y_3^{\alpha}, Y_2^{\alpha}$ are partitioning of *X*. By using (2.2) we obtain

$$\left|\tilde{B}_{32}\right| = 2^n - 2$$

So, we have

$$\begin{split} \left| B_0 \bigcup \tilde{B}_{32} \bigcup \{\sigma_1\} \right| &= 4^n - 3^{n+1} + 2^{n+2} - 2 \\ \left| B_0 \bigcup \tilde{B}_{32} \bigcup \{\sigma_0, \sigma_1\} \right| &= 4^n - 3^{n+1} + 2^{n+2} - 1 \\ \text{since} \quad B_0 \cap \tilde{B}_{32} &= B_0 \cap \{\sigma_0, \sigma_1\} = \tilde{B}_{32} \cap \{\sigma_0, \sigma_1\} = \emptyset \;. \end{split}$$

Acknowledgements

Sincere thanks to Prof. Dr. Neşet AYDIN for his valuable suggestions.

References

- [1] Diasamidze, Y. and Makharadze, S. (2013) Complete Semigroups of Binary Relations. Kriter Yay Nevi, Istanbul.
- [2] Diasamidze, Y., Ayd, N.N. and Erdoğan, A. (2016) Generating Set of the Complete Semigroups of Binary Relations. *Applied Mathematics*, 7, 98-107. <u>https://doi.org/10.4236/am.2016.71009</u>
- [3] Bakuridze, A., Diasamidze, Y. and Givradze, O. Generated Sets of the Complete Semigroups of Binary Relations Defined by Semilattices of the Class $\Sigma_1(X,2)$. (In Press)