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Abstract 
In this paper, we have studied generating sets of the complete semigroups de-
fined by X-semilattices of the class ( )2 , 4XΣ . 
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1. Introduction 

Let X be an arbitrary nonempty set and D be a nonempty set of subsets of the set 
X. If D is closed under the union, then D is called a complete X-semilattice of 
unions. The union of all elements of the set D is denoted by the symbol D

�
. 

Let XB  be the set of all binary relations on X. It is well known that XB  is a 
semigroup. 

Let f be an arbitrary mapping from X into D. Then we denote a binary relation 
{ } ( )( )f

x X
x f xα

∈

= ×∪  for each f. The set of all such binary relations is denoted  

by ( )XB D . It is easy to prove that ( )XB D  is a semigroup with respect to the 
product operation of binary relations. This semigroup ( )XB D  is called a com-
plete semigroup of binary relations defined by an X-semilattice of unions D. 
This structure was comprehensively investigated in Diasamidze [1] and [2]. We 
assume that ,t y X∈ , Y X⊆ , XBα ∈ , T D∈  and D D′∅ ≠ ⊆ . Then we 
denote following sets 

{ }| , ,
y Y

y x X y x Y yα α α α
∈

= ∈ = ∪  

How to cite this paper: Albayrak, B., Gi-
vradze, O. and Partenadze, G. (2018) Ge-
nerating Sets of the Complete Semigroups 
of Binary Relations Defined by Semilattices 

of the Class ( )2 , 4XΣ . Applied Mathe-

matics, 9, 17-27. 
https://doi.org/10.4236/am.2018.91002 
 
Received: December 11, 2017 
Accepted: January 16, 2018 
Published: January 19, 2018 
 
Copyright © 2018 by authors and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

  
Open Access

http://www.scirp.org/journal/am
https://doi.org/10.4236/am.2018.91002
http://www.scirp.org
https://doi.org/10.4236/am.2018.91002
http://creativecommons.org/licenses/by/4.0/


B. Albayrak et al. 
 

 

DOI: 10.4236/am.2018.91002 18 Applied Mathematics 
 

( ) { } { }
{ } ( ) { }

{ } ( ) ( ){ }0

, | , |

| , , |

| , | ,

T

t X

V D Y Y D X Y Y X

Y y X y T V X Y Y X

D Z D t Z B B D V X D

α

α α

α α α

α α

∗

∗

∗

= ∈ = ∅ ≠ ⊆

= ∈ = = ∅ ≠ ⊆

′ ′= ∈ ∈ = ∈ =

 

Let { }1 2 1, , , , mD D Z Z Z −=
�

�  be finite X-semilattice of unions and 

( ) { }0 1 2 1, , , , mC D P P P P −= �  be the family of pairwise nonintersecting subsets of 

X. If 1 1

0 1 1

m

m

D Z Z
P P P

ϕ −

−

 
=  
 

�
�
�

 is a mapping from D on ( )C D , then the equali-

ties 0 1 2 1mD P P P P −=
�

∪ ∪ ∪�∪  and ( )0
\ Z

i
T D D

Z P Tϕ
∈

= ∪ ∪  are valid. These 

equalities are called formal. 
Let D be a complete X-semilattice of unions XBα ∈ . Then a representation 

of a binary relation α  of the form 
( )

( )
,

T
T V X

Y Tα

α

α
∗∈

= ×∪  is called quasinormal. 

Let 0 1 2 1, , , , mP P P P −�  be parameters in the formal equalities, ( )XB Dβ ∈ , 2β  

be mapping from \X D
�

 to D . Then { } ( )( )
1

2
0 \i

m

i
i t P t X D

P t t tβ β β
−

′= ∈ ∈

 
′ ′= × ×  

 
�

∪∪ ∪ ∪  

is called subquasinormal represantation of β . It can be easily seen that the fol-
lowing statements are true. 

a) ( ).XB Dβ ∈  

b) 
1

0 i

m

i
i t P

P tβ β
−

= ∈

 
× ⊆  

 
∪ ∪  and β β=  for some 2β . 

c) Subquasinormal represantation of β  is quasinormal. 

d) 0 1 1
1

0 1 1

m

m

P P P
P P P

β
β β β

−

−

 
=  
 

�
�

 is mapping from ( )C D  on { }D ∅∪ . 

1β  and 2β  are respectively called normal and complement mappings for 
β . 

Let ( )XB Dα ∈ . If α δ β≠ �  for all ( ) { }, \XB Dδ β α∈  then α  is called 

external element. Every element of the set ( ) ( ){ }0 | ,XB B D V X Dα α∗= ∈ =  is 

an external element of ( )XB D . 

Theorem 1. [1] Let X  be a finite set and ( ), XB Dα β ∈ . If β  is sub- 
quasinormal representation of β  then α β α β=� � . 

Corollary 1. [1] Let ( )XB B B D′ ⊆ ⊆� � . If α δ β≠ �  for Bα ′∈ � , { }\Bδ α∈ � , 
{ }\Bβ α∈ �  and subquasinormal representation of { }\Bβ α∈ �  then α δ β≠ � . 

It is known that the set of all external elements is subset of any generating set 
of ( )XB D  in [3]. 

2. Results 

In this work by symbol ( )2.2 , 4XΣ  we denote all semilattices { }3 2 1, , ,D Z Z Z D=
�

 
of the class ( )2 , 4XΣ  which the intersection of minimal elements 3 2Z Z =∅∩ . 
This semilattices graphic is given in Figure 1. By using formal equalities, we 
have 3 2 0Z Z P= =∅∩ . So, the formal equalities of the semilattice D has a form 

https://doi.org/10.4236/am.2018.91002


B. Albayrak et al. 
 

 

DOI: 10.4236/am.2018.91002 19 Applied Mathematics 
 

 

Figure 1. Graphic of semilattice { }3 2 1, , ,D Z Z Z D=  which 

the intersection of minimal elements 3 2Z Z = ∅∩ . 

 

1 2 3

1 2 3

2 1 3

3 2

D P P P
Z P P
Z P P
Z P

=

=

=

=

�
∪ ∪
∪
∪

                         (1) 

Let ( ), XB Dδ β ∈ . If quasinormal representation of binary relation δ  has a 
form ( ) ( ) ( ) ( )3 3 2 2 1 1 0Y Z Y Z Y Z Y Dδ δ δ δδ = × × × ×

�
∪ ∪ ∪  then 

( ) ( ) ( ) ( )3 3 2 2 1 1 0Y Z Y Z Y Z Y Dδ δ δ δδ β β β β β= × × × ×
�

� ∪ ∪ ∪  

We denote the set 

( ) ( ) { }{ }
( ) ( ) { }{ }
( ) ( ) { }{ }

( ) ( ){ }
( ) ( ){ }

32 3 2

21 2 1

31 3 1

32 32 3 3 2 2 3 2 3 2

21 21 2 2 1 1 2 1 2 1

| , , ,

| , , ,

| , ,

| , ,

| , ,

X

X

X

B B D V X Z Z D

B B D V X Z Z D

B B D V X Z Z

B B Y Z Y Z Y Y X Y Y

B B Y Z Y Z Y Y X Y Y

α α α α α α

α α α α α α

α α

α α

α α

α α

α α

∗

∗

∗

= ∈ =

= ∈ =

= ∈ =

= ∈ = × × = =∅

= ∈ = × × = =∅

�

�

� ∪ ∪ ∩

� ∪ ∪ ∩

 

It is easy to see that 

0 32 0 21 0 31 21 32 31 32 21 31B B B B B B B B B B B B= = = = = =∅∩ ∩ ∩ ∩ ∩ ∩ . 

Lemma 2. Let { } ( )3 2 1 2.2, , , , 4D Z Z Z D X= ∈Σ
�

. Then following statements are 

true for the sets 0 32 32, ,B B B� . 
a) If ( ) ( ) ( )3 3 1 1 0Y Z Y Z Y Dα α αα = × × ×

�
∪ ∪  for some 3 1 0, ,Y Y Yα α α ∉∅ , then α  

is product of some elements of the set 0B . 

b) If ( ) ( )( )0 3 3 3 2\Z Z X Z Zβ = × ×∪ , then ( )0 0 32 32B B Bβ =�� ∪ . 
c) If ( ) ( )( )1 2 2 2 1\Z Z X Z Zσ = × ×∪ , then ( )0 1 21 21B B Bσ =�� ∪ . 

d) If ( ) ( )( )1 2 2 2 1\Z Z X Z Zσ = × ×∪ , then 32 1 21B Bσ =� . 
e) If ( ) ( )( )0 3 3 3 1\Z Z X Z Zσ = × ×∪ , then 32 0 31B Bσ =� . 

f) Every element of the set 32B  is product of elements of the set 0 32B B�∪ . 
g) Every element of the set 21B  is product of elements of the set 
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{ }0 32 1B B σ�∪ ∪ . 
Proof. It will be enough to show only a, b and g. The rest can be similarly seen. 
a. Let ( ) ( ) ( )3 3 1 1 0Y Z Y Z Y Dα α αα = × × ×

�
∪ ∪  for some { }3 1 0, ,Y Y Yα α α ∉ ∅ , 

0, Bδ β ∈ . Then quasinormal representation of δ  has a form 

( ) ( ) ( ) ( )3 3 2 2 1 1 0Y Z Y Z Y Z Y Dδ δ δ δδ = × × × ×
�

∪ ∪ ∪  

where { }3 1 0, ,Y Y Yδ δ δ ∉ ∅ . We suppose that 

( ) ( ) ( ) { } ( )( )2 3 1 2 3 1 2
\t X D

P Z P Z P Z t tβ β
′∈

′ ′= × × × ×
�

∪ ∪ ∪ ∪  

where 1 2 3
1

2 3 1

P P P
Z Z Z

β
∅ 

=  ∅ 
 is normal mapping for β  and 2β  is com-  

plement mapping of the set \X D
�

 on the set D� . So, 0Bβ ∈  since 

( ),V X Dβ∗ = . From the equalities (2.1) and definition of β  

( )
( )
( )

3 2 3

2 1 3 1 3 2 1

1 2 3 2 3 3 1 1

1 2 3 1 2 3 2 1

Z P Z

Z P P P P Z Z D

Z P P P P Z Z Z

D P P P P P P Z D Z D

β β

β β β β

β β β β

β β β β β

= =

= = = =

= = = =

= = = =

�
∪ ∪ ∪

∪ ∪ ∪
� � �

∪ ∪ ∪ ∪ ∪ ∪

 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( )( )

3 3 2 2 1 1 0

3 2 1 0

3 1 2 0 .

Y Z Y Z Y Z Y D

Y D Y D Y D Y D

Y D Y D Y Y D

δ δ δ δ

δ δ δ δ

δ δ δ δ

δ β β β β β

α

= × × × ×

= × × × ×

= × × × =

�
� ∪ ∪ ∪

� � � �
∪ ∪ ∪

� � �
∪ ∪ ∪

 

b. Let 0 0 32B Bα β∈ �� ∪ . Then 0 0Bα β∈ �  or 32Bα ∈ � . If 0 0Bα β∈ �  then 

0α δ β= �  for some 0Bδ ∈ . In this case we have 

( ) ( ) ( ) ( )3 3 2 2 1 1 0Y Z Y Z Y Z Y Dδ δ δ δδ = × × × ×
�

∪ ∪ ∪  

where { }3 1 0, ,Y Y Yδ δ δ ∉ ∅ . Also 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( )( )

0 3 3 0 2 2 0 1 1 0 0 0

3 3 2 2 1 1 0

3 3 2 2 1 0 32 32\

Y Z Y Z Y Z Y D

Y Z Y Z Y Z Y D

Y Z Y Z Y Y D B B

δ δ δ δ

δ δ δ δ

δ δ δ δ

α δ β β β β β= = × × × ×

= × × × ×

= × × × ∈

�
� ∪ ∪ ∪

�
∪ ∪ ∪

� �∪ ∪ ∪

 

is satisfied. So, we have ( )0 0 32 32B B Bβ ⊆�� ∪ . On the other hand, if 

32 32B Bα ∈ ⊆�  then ( )0 0 32 32B B Bβ ⊆�� ∪  is satisfied. Conversely, if 32Bα ∈  
then quasinormal representation of α  has a form 

( ) ( ) ( )3 3 2 2 0Y Z Y Z Y Dα α αα = × × ×
�

∪ ∪  

where { }3 2 0, ,Y Y Yα α α ∉ ∅  or { }3 2,Y Yα α ∉ ∅  and 0Yα = ∅ . We suppose that 
{ }3 2,Y Yα α ∉ ∅ . In this case, we have 

( ) ( ) ( )
( ) ( )( )

0 3 3 0 2 2 0 0 1 0

3 3 2 2 0

Y Z Y Z Y Z

Y Z Y Z Y D

δ δ δ

δ δ δ

δ β β β β

α

= × × ×

= × × × =

� ∪ ∪
�

∪
 

for ( ) ( ) ( )3 3 2 2 0 1 0Y Z Y Z Y Z Bα α αδ = × × × ∈∪ ∪ . So, we have ( )32 0 0 32B B Bβ⊆ �� ∪ . 
Now suppose that { }3 2,Y Yα α ∉ ∅  and 0Yα = ∅ . In this case, we have 
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( )32 0 0 32B B Bα β∈ ⊆� �� ∪ . So, ( )0 0 32 32B B Bβ =�� ∪ . 
g. From the statement c, we have that ( )0 0 32 32B B Bβ =�� ∪  where 0 32Bβ ∈ �  

by definition of 0β . Thus, every element of the set 32B  is product of elements 
of the set 0 32B B�∪ . 

Lemma 3. Let { } ( )3 2 1 2.2, , , , 4D Z Z Z D X= ∈Σ
�

. If \ 1X D ≥
�

 then the 
following statements are true. 

a) If X Dα = ×
�

 then α  is product of elements of the set 0B . 
b) If 1X Zα = ×  then α  is product of elements of the set 0B . 
c) If ( ) ( )3 3 1 1Y Z Y Zα αα = × ×∪  for some 3 1,Y Yα α ∉∅ , then α  is product of 

elements of the 0B . 
d) If ( ) ( )3 3 0Y Z Y Dα αα = × ×

�
∪  for some 3 0,Y Yα α ∉∅ , then α  is product of 

elements of the 0B . 
e) If ( ) ( )2 2 0Y Z Y Dα αα = × ×

�
∪  for some 2 0,Y Yα α ∉∅ , then α  is product of 

elements of the 0B . 
f) If ( ) ( )1 1 0Y Z Y Dα αα = × ×

�
∪  for some 1 0,Y Yα α ∉∅ , then α  is product of 

elements of the 0B . 
Proof. c. Let quasinormal representation of α  has a form 

( ) ( )3 3 1 1Y Z Y Zα αα = × ×∪  where { }3 1,Y Yδ δ ∉ ∅ . By definition of the semilattice 
D, 3X ≥ . We suppose that 3 1Yα ≥  and 1 2Yα ≥ . In this case, we suppose 
that 

( ) ( )( ) { } ( )( )2 3 1 3 1 2
\t X D

P Z P P Z t tβ β
′∈

′ ′= × × ×
�

∪ ∪ ∪ ∪  

where 1 2 3
1

1 3 1

P P P
Z Z Z

β
∅ 

=  ∅ 
 is normal mapping for β  and 2β  is comple-  

ment mapping of the set X D×
�

 on the set { } { }3 1 2\ ,D Z Z Z=�  (by suppose 
\ 1X D ≥
�

). So, 0Bβ ∈  since ( ),V X Dβ∗ = . Also, 3 3Y Yδ α=  and 

2 1 0 1Y Y Y Yδ δ δ δ=∪ ∪  since 3 2 1 01, 1, 1, 0Y Y Y Yδ δ δ δ≥ ≥ ≥ ≥ . From the equalities 
(2.1) and definition of β  we obtain that 

( )
( )
( )

3 2 3

2 1 3 1 3 1 1 1

1 2 3 2 3 3 1 1

1 2 3 1 2 3 1 3 1 1

Z P Z

Z P P P P Z Z Z

Z P P P P Z Z Z

D P P P P P P Z Z Z Z

β β

β β β β

β β β β

β β β β β

= =

= = = =

= = = =

= = = =

∪ ∪ ∪

∪ ∪ ∪
�

∪ ∪ ∪ ∪ ∪ ∪

 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( )( )

3 3 2 2 1 1 0

3 3 2 1 1 1 0 1

3 3 2 1 0 1

Y Z Y Z Y Z Y D

Y Z Y Z Y Z Y Z

Y Z Y Y Y Z

δ δ δ δ

δ δ δ δ

δ δ δ δ

δ β β β β β

α

= × × × ×

= × × × ×

= × × =

�
� ∪ ∪ ∪

∪ ∪ ∪

∪ ∪ ∪

 

Now, we suppose that 3 2Yα ≥  and 1 1Yα ≥ . In this case, we suppose that 

( )( ) ( ) { } ( )( )2 3 3 1 1 2
\t X D

P P Z P Z t tβ β
′∈

′ ′= ∪ × × ×
�

∪ ∪ ∪  

where 1 2 3
1

1 3 3

P P P
Z Z Z

β
∅ 

=  ∅ 
 is normal mapping for β  and 2β  is com-  

plement mapping of the set X D×
�

 on the set { } { }3 1 2\ ,D Z Z Z=�  (by suppose 
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\ 1X D ≥
�

). So, 0Bβ ∈  since ( ),V X Dβ∗ = . Also, 3 1 3Y Y Yδ δ α=∪  and 

2 0 1Y Y Yδ δ α=∪  since 3 2 1 01, 1, 1, 0Y Y Y Yδ δ δ δ≥ ≥ ≥ ≥ . From the equalities (2.1) 
and definition of β  we obtain that 

( )
( )
( )

3 2 3

2 1 3 1 3 1 3 1

1 2 3 2 3 3 3 3

1 2 3 1 2 3 1 3 3 1

Z P Z

Z P P P P Z Z Z

Z P P P P Z Z Z

D P P P P P P Z Z Z Z

β β

β β β β

β β β β

β β β β β

= =

= = = =

= = = =

= = = =

∪ ∪ ∪

∪ ∪ ∪
�

∪ ∪ ∪ ∪ ∪ ∪

 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( )( ) ( )( )

3 3 2 2 1 1 0

3 3 2 1 1 3 0 1

3 1 3 2 0 1

Y Z Y Z Y Z Y D

Y Z Y Z Y Z Y Z

Y Y Z Y Y Z

δ δ δ δ

δ δ δ δ

δ δ δ δ

δ β β β β β

α

= × × × ×

= × × × ×

= × × =

�
� ∪ ∪ ∪

∪ ∪ ∪

∪ ∪ ∪

 

Lemma 4. Let { } ( )3 2 1 2.2, , , , 4D Z Z Z D X= ∈Σ
�

,  
( ) ( )( )0 3 3 3 1\Z Z X Z Zσ = × ×∪  and ( ) ( )( )1 2 2 2 1\Z Z X Z Zσ = × ×∪ . If X D=

�
 

then the following statements are true 
a) If ( ) ( )3 3 0Y Z Y Dα αα = × ×

�
∪  for some { }3 0,Y Yα α ∉ ∅ , then α  is product 

of elements of the 0 32B B∪ . 

b) If ( ) ( )2 2 0Y Z Y Dα αα = × ×
�

∪  for some { }2 0,Y Yα α ∉ ∅ , then α  is product 

of elements of the { }32 1B σ∪ . 

c) If ( ) ( )1 1 0Y Z Y Dα αα = × ×
�

∪  for some { }1 0,Y Yα α ∉ ∅ , then α  is product of 

elements of the { }32 0 1,B σ σ∪ . 

Proof. First, remark that 3 0 3Z Zσ = , 2 0 0 1Z D Zσ σ= =
�

, 3 1 1Z Zσ = , 2 1 2Z Zσ = , 

1D Dσ =
� �

. 
a. Let ( ) ( )3 3 0Y Z Y Dα αα = × ×

�
∪  for some 3 0,Y Yα α ∉∅ . In this case, we 

suppose that 

( ) ( ) ( )3 3 2 2 0Y Z Y Z Y Dδ δ δδ = × × ×
�

∪ ∪  

and 

( ) ( )( ) ( )( )1 3 3 1 3 1 1\ \Z Z Z Z Z X Z Dβ = × × ×
�

∪ ∪  

where { }3 2,Y Yδ δ ∉ ∅ . It is easy to see that 32Bδ ∈  and 1β  is generating by 
elements of the 0B  by statement b of Lemma 2. Also, 3 3Y Yδ α=  and 

2 0 0Y Y Yδ δ α=∪  since 3 3Z Zβ = , 2Z D Dβ β= =
� �

 and 3 2 01, 1, 0Y Y Yδ δ δ≥ ≥ ≥ . 
So, α  is product of elements of the 0 32B B∪ .                         □ 

Lemma 5. Let 

{ } ( )3 2 1 2.2, , , , 4D Z Z Z D X= ∈Σ
�

 

and 

( ) ( )( )1 2 2 2 1\Z Z X Z Zσ = × ×∪ . 

If \ 1X D ≥
�

 then { }1 0 32 1S B B σ= �∪ ∪  is an irreducible generating set for the 

semigroup ( )XB D . 

Proof. First, we must prove that every element of ( )XB D  is product of ele-
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ments of 1S . Let ( )XB Dα ∈  and 

( ) ( ) ( ) ( )3 3 2 2 1 1 0Y Z Y Z Y Z Y Dα α α αα = × × × ×
�

∪ ∪ ∪  

where 3 2 1 0Y Y Y Y Xα α α α =∪ ∪ ∪  and 3 2Y Yα α = ∅∩ , ( )0 3i j≤ ≠ ≤ . We suppose  

that ( ), 1V X α∗ = . Then we have ( ) { } { } { } { }{ }3 2 1, , , ,V X Z Z Z Dα∗ ∈
�

. If 

( ) { } { } { }{ }3 2 1, , ,V X Z Z Zα∗ ∈  then 3X Zα = ×  or 2X Zα = ×  or 1X Zα = × . 
Quasinormal representations of 1 2, ,δ β β  and 3β  has form 

( ) ( ) ( ) ( )
( ) ( )( )
( ) ( )( )
( ) ( )( )

3 3 2 2 1 1 0

1 3 2

2 2 1

3 1 2

\

\

\

Y Z Y Z Y Z Y D

D Z X D Z

D Z X D Z

D Z X D Z

δ δ δ δδ

β

β

β

= × × × ×

= × ×

= × ×

= × ×

�
∪ ∪ ∪

� �
∪

� �
∪

� �
∪

 

where { }3 2 1, ,Y Y Yδ δ δ ∉ ∅ . So, 0Bδ ∈ , 1 32Bβ ∈ �  and 2 3 21, Bβ β ∈  since 
\ 1X D ≥
�

. From the definition of 1 2, ,δ β β  and 3β  we obtain that 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( )

1 3 3 1 2 2 1 1 1 1 0 1

3 3 2 3 1 3 0 3

3 2 1 0 3 3

Y Z Y Z Y Z Y D

Y Z Y Z Y Z Y Z

Y Y Y Y Z X Z

δ δ δ δ

δ δ δ δ

δ δ δ δ

δ β β β β β= × × × ×

= × × × ×

= × = ×

�
� ∪ ∪ ∪

∪ ∪ ∪

∪ ∪ ∪

 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( )

2 3 3 2 2 2 2 1 1 2 0 2

3 2 2 2 1 2 0 2

3 2 1 0 2 2

Y Z Y Z Y Z Y D

Y Z Y Z Y Z Y Z

Y Y Y Y Z X Z

δ δ δ δ

δ δ δ δ

δ δ δ δ

δ β β β β β= × × × ×

= × × × ×

= × = ×

�
� ∪ ∪ ∪

∪ ∪ ∪

∪ ∪ ∪

 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( )

3 3 3 3 2 2 3 1 1 3 0 3

3 1 2 1 1 1 0 1

3 2 1 0 1 1

Y Z Y Z Y Z Y D

Y Z Y Z Y Z Y Z

Y Y Y Y Z X Z

δ δ δ δ

δ δ δ δ

δ δ δ δ

δ β β β β β= × × × ×

= × × × ×

= × = ×

�
� ∪ ∪ ∪

∪ ∪ ∪

∪ ∪ ∪

 

That means, 1 2,X Z X Z× ×  and 3X Z×  are generated by 0 32 ,B B�∪  

0 21B B∪  and 0 21B B∪  respectively. By using statement g and h of Lemma 3, 
we have 1 2,X Z X Z× ×  and 3X Z×  are generated by { }0 32 1B B σ�∪ ∪ . On the 
other hand, if ( ) { },V X Dα∗ =

�
 then X Dα = ×

�
 By using statement a of 

Lemma 3, we have α  is product of some elemets of 0B . 
So, 1S  is generating set for the semigroup ( )XB D . Now, we must prove that 

{ }1 0 32 1S B B σ= �∪ ∪  is irreducible. Let 1Sα ∈ . 
If 0Bα ∈  then α σ τ≠ �  for all ( ) { }, \XB Dσ τ α∈  from Lemma 2. So, 

α σ τ≠ �  for all { }1, \Sσ τ α∈ . That means, 0Bα ∉ . 
If 32Bα ∈ �  then the quasinormal representation of α  has form 

( ) ( )3 3 2 2Y Z Y Zα αα = × ×∪  for some 3 2,Y Yα α ∉∅ . Let α δ β= �  for some 
{ }1, \Sδ β α∈ . 

We suppose that { }0 \Bδ α∈  and { }1 \Sβ α∈ . By definition of 0B , quasi-
normal representation of δ  has form 

( ) ( ) ( ) ( )3 3 2 2 1 1 0Y Z Y Z Y Z Y Dδ δ δ δδ = × × × ×
�

∪ ∪ ∪  
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where { }3 2 1, ,Y Y Yδ δ δ ∉ ∅ . By using 3 1Z Z D⊂ ⊂
�

 and 2Z D⊂
�

 we have 3Z β  
and 2Z β  are minimal elements of the semilattice { }3 2 1, , ,Z Z Z Dβ β β β

�
. Also, 

we have 

( ) ( )
( ) ( ) ( ) ( )
3 3 2 2

3 3 2 2 1 1 0

Y Z Y Z

Y Z Y Z Y Z Y D

α α

δ δ δ δ

α δ β

β β β β

× × = =

= × × × ×

∪ �
�

∪ ∪ ∪
 

Since 3Z  and 2Z  are minimal elements of the semilattice { }3 2, ,Z Z D
�

, this 
equality is possible only if 3 3Z Z β= , 2 2Z Z β=  or 3 2Z Z β= , 2 3Z Z β= . By 
using formal equalities and 3 2 1, ,P P P Dβ β β ∈ , we obtain 

3 3 2 2 2 1 3

2 3 2 3 2 1 3

and
and

Z Z P Z Z P P
Z Z P Z Z P P

β β β β β
β β β β β

= = = = =
= = = = =

 

respectively. Let 3 2Z P β=  and 2 1 3Z P Pβ β= = . If β  is sub-quasinormal re-
presentation of β  then δ β δ β=� �  and 

( )( ) ( ) { } ( )( )1 3 2 2 3 2
\t X D

P P Z P Z t tβ β
′∈

′ ′= × × ×
�

∪ ∪ ∪ ∪  

where 1 2 3
1

2 3 2

P P P
Z Z Z

β
∅ 

=  ∅ 
 is normal mapping for β  and 2β  is com-  

plement mapping of the set X D×
�

 on the set { }3 2 1, ,D Z Z Z=� . From formal 
equalities, we obtain 

( ) ( ) { } ( )( ) { }2 2 3 3 2 1
\

\
t X D

Z Z Z Z t t Sβ β α
′∈

′ ′= × × × ∈
�

∪ ∪ ∪  

and by using 1 2 3 2,Z Z Z Z D≠ ∅ =∩ ∪  and 1 0 1Y Yδ δ ≥∪ , we have 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( )( )

3 3 2 2 1 1 0

3 3 2 2 1 0

3 3 2 2 1 0

Y Z Y Z Y Z Y D

Y Z Y Z Y D Y D

Y Z Y Z Y Y D

δ δ δ δ

δ δ δ δ

δ δ δ δ

δ β β β β β

α

= × × × ×

= × × × ×

= × × × ≠

�
� ∪ ∪ ∪

� �
∪ ∪ ∪

�
∪ ∪ ∪

 

This contradicts with α δ β= � . So, { }0 \Bδ α∉ . 
Now, we suppose that { }32 \Bδ α∈ �  and { }1 \Sβ α∈ . Similar operations are 

applied as above, we obtain { }32 \Bδ α∉ � . 
Now, we suppose that 1δ σ=  and { }1 \Sβ α∈ . Similar operations are ap-

plied as above, we obtain 1δ σ≠ . 
That means α δ β≠ �  for any 32Bα ∈ �  and { }1, \Sδ β α∈ . 
If 1α σ= , then by the definition of 1σ , quasinormal representation of α  has 

a form ( ) ( )( )2 2 2 1\Z Z X Z Zα = × ×∪ . Let α δ β= �  for some { }1 1, \Sδ β σ∈ . 
We suppose that { }0 1\Bδ σ∈  and { }1 1\Sβ σ∈ . By definition of 0B , qua-

sinormal representation of δ  has form 

( ) ( ) ( ) ( )3 3 2 2 1 1 0Y Z Y Z Y Z Y Dδ δ δ δδ = × × × ×
�

∪ ∪ ∪  

where { }3 2 1, ,Y Y Yδ δ δ ∉ ∅ . By using 3 1Z Z D⊂ ⊂
�

 and 2Z D⊂
�

 we have 3Z β  
and 2Z β  are minimal elements of the semilattice { }3 2 1, , ,Z Z Z Dβ β β β

�
. Also, 
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we have 

( ) ( )( )
( ) ( ) ( ) ( )
2 2 2 1

3 3 2 2 1 1 0

\Z Z X Z Z

Y Z Y Z Y Z Y Dδ δ δ δ

α δ β

β β β β

× × = =

= × × × ×

∪ �
�

∪ ∪ ∪
 

From 2Z  and 1Z  are minimal elements of the semilattice { }2 1, ,Z Z D
�

, this 
equality is possible only if 2 3Z Z β= , 1 2Z Z β=  or 2 2Z Z β= , 1 3Z Z β= . By 
using formal equalities, we obtain 

2 3 2 1 2 1 3

1 3 2 2 2 1 3

and
and

Z Z P Z Z P P
Z Z P Z Z P P

β β β β β
β β β β β

= = = =
= = = = =

∪
 

respectively. Let 2 2Z P β=  and 1 1 3Z P Pβ β= ∪  where { }1 3 3 1, ,P P Z Zβ β ∈ . 
Then subquasinormal representation of β  has one of the form 

( ) ( ) ( ) { } ( )( )1
1 3 2 2 3 1 2

\t X D
P Z P Z P Z t tβ β

′∈

′ ′= × × × ×
�

∪ ∪ ∪ ∪  

( ) ( ) ( ) { } ( )( )2
3 3 2 2 1 1 2

\t X D
P Z P Z P Z t tβ β

′∈

′ ′= × × × ×
�

∪ ∪ ∪ ∪  

( ) ( )( ) { } ( )( )3
2 2 1 3 1 2

\t X D
P Z P P Z t tβ β

′∈

′ ′= × × ×
�

∪ ∪ ∪ ∪  

where 

1 2 31
1

3 2 1

P P P
Z Z Z

β
∅ 

=  ∅ 
, 1 2 32

1
1 2 3

P P P
Z Z Z

β
∅ 

=  ∅ 
, 1 2 33

1
1 2 1

P P P
Z Z Z

β
∅ 

=  ∅ 
 

are normal mapping for β , 2β  is complement mapping of the set X D×
�

 on 
the set { }3 2 1, ,D Z Z Z=�  and iδ β δ β=� � . From formal equalities, we obtain 

( )( ) ( )( ) ( )( ) { } ( )( )1
2 1 3 1 2 2 2 1 1 2

\
\ \ \

t X D
Z Z Z Z Z Z Z Z Z t tβ β

′∈

′ ′= × × × ×
�

∪ ∪ ∪ ∪  

( )( ) ( )( ) ( )( ) { } ( )( )2
2 1 3 1 2 2 2 1 1 2

\
\ \

t X D
Z Z Z Z Z Z Z Z Z t tβ β

′∈

′ ′= × × × ×
�

∩ ∪ ∪ ∪ ∪  

( )( ) ( ) { } ( )( )3
1 2 2 2 1 2

\
\

t X D
Z Z Z Z Z t tβ β

′∈

′ ′= × × ×
�

∪ ∪ ∪  

and by using 1 0 1Y Yδ δ ≥∪ , we have 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( )( )

1 2 3

1 1 1 1
3 3 2 2 1 1 0

3 2 2 1 1 0

3 2 2 1 1 0

Y Z Y Z Y Z Y D

Y Z Y Z Y D Y D

Y Z Y Z Y Y D

δ δ δ δ

δ δ δ δ

δ δ δ δ

δ β δ β δ β

β β β β

α

= =

= × × × ×

= × × × ×

= × × × ≠

� � �
�

∪ ∪ ∪
� �

∪ ∪ ∪
�

∪ ∪ ∪

 

This contradicts with α δ β= � . So, { }0 1\Bδ σ∉ . 
Now, we suppose that { }32 1\Bδ σ∈ �  and { }1 1\Sβ σ∈ . Similar operations 

are applied as above, we obtain { }32 1\Bδ σ∉ � . 
That means α δ β≠ �  for any 32Bα ∈ �  and { }1, \Sδ β α∈ .           □ 

Lemma 6. Let { } ( )3 2 1 2.2, , , , 4D Z Z Z D X= ∈Σ
�

, ( ) ( )( )0 3 3 3 1\Z Z X Z Zσ = × ×∪  

and ( ) ( )( )1 2 2 2 1\Z Z X Z Zσ = × ×∪ . If X D=
�

 then { }2 0 32 0 1,S B B σ σ= �∪ ∪  

is irreducible generating set for the semigroup ( )XB D . 
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Theorem 7. Let { } ( )3 2 1 2.2, , , , 4D Z Z Z D X= ∈Σ
�

, 

( ) ( )( )0 3 3 3 1\Z Z X Z Zσ = × ×∪  and ( ) ( )( )1 2 2 2 1\Z Z X Z Zσ = × ×∪ . If X  is a 

finite set and X n=  then the following statements are true 

a) If \ 1X D ≥
�

 then { } 1 2
0 32 1 4 3 2 2n n nB B σ + += − + −�∪ ∪  

b) If X D=
�

 then { } 1 2
0 32 0 1, 4 3 2 1n n nB B σ σ + += − + −�∪ ∪  

Proof. Let 

{ } { }{ }| : 1, 2, , 1, 2, , ,one to one mappingn i iS M n M nϕ ϕ= = → =� �  

be a group, 
1 2
, , ,

mi i i nSϕ ϕ ϕ ∈�  ( )m n≤  and 
1 2
, , ,

m
Y Y Yϕ ϕ ϕ�  be partitioning of 

X. It is well known that { } ( )
( ) ( )1 2

1

1
, , ,

1 ! !m

m im
m
n

i
k Y Y Y

i m iϕ ϕ ϕ

+

=

−
= =

− −∑� . If 2,3,4m =  

then we have 
2 1

3 1 1

4 1 1 1

2 1
1 13 2
2 2
1 1 1 14 3 2
6 2 2 6

n
n

n n
n

n n n
n

k

k

k

−

− −

− − −

= −

= ⋅ − +

= ⋅ − ⋅ + ⋅ −

 

If 
1 2
,Y Yϕ ϕ  are any two elements of partitioning of X and 

( ) ( )1 21 2Y T Y Tϕ ϕβ = × ×∪  where 1 2,T T D∈  and 1 2T T≠ , then the number of 
different binary relations β  of semigroup ( )XB D  is equal to 

22 2 2n
nk⋅ = −                           (2) 

If 
1 2 3
, ,Y Y Yϕ ϕ ϕ  are any three elements of partitioning of X and 

( ) ( ) ( )1 2 31 2 3Y T Y T Y Tϕ ϕ ϕβ = × × ×∪ ∪  where 1 2 3, ,T T T  are pairwise different ele-
ments of D, then the number of different binary relations β  of semigroup 

( )XB D  is equal to 
36 3 3 2 3n n
nk⋅ = − ⋅ +                        (3) 

If 
1 2 3 4
, , ,Y Y Y Yϕ ϕ ϕ ϕ  are any four elements of partitioning of X and 

( ) ( ) ( ) ( )1 2 3 41 2 3 4Y T Y T Y T Y Tϕ ϕ ϕ ϕβ = × × × ×∪ ∪ ∪  where 1 2 3 4, , ,T T T T  are pairwise 
different elements of D, then the number of different binary relations β  of se-
migroup ( )XB D  is equal to 

424 4 4 3 3 2 4n n n
nk⋅ = − ⋅ + ⋅ −                    (4) 

Let 0Bα ∈ . Quasinormal represantation of α  has form 

( ) ( ) ( ) ( )3 3 2 2 1 1 0Y Z Y Z Y Z Y Dα α α αα = × × × ×
�

∪ ∪ ∪  

where { }3 2 1, ,Y Y Yα α α ∉ ∅ . Also, 3 2 1, ,Y Y Yα α α  or 3 2 1 0, , ,Y Y Y Yα α α α  are partitioning 
of X for 4X ≥ . By using Equations (2.3) and (2.4) we obtain 

1
0 4 3 3 2 1n n nB += − + ⋅ −  

Let 32Bα ∈ � . Quasinormal represantation of α  has form 

( ) ( )3 3 2 2Y Z Y Zα αα = × ×∪  where { }3 2,Y Yα α ∉ ∅ . Also, 3 2,Y Yα α  are partitioning 
of X. By using (2.2) we obtain 
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32 2 2nB = −�  

So, we have 

{ }
{ }

1 2
0 32 1

1 2
0 32 0 1

4 3 2 2

, 4 3 2 1

n n n

n n n

B B

B B

σ

σ σ

+ +

+ +

= − + −

= − + −

�∪ ∪

�∪ ∪
 

since { } { }0 32 0 0 1 32 0 1, ,B B B Bσ σ σ σ= = =∅� �∩ ∩ ∩ .                      □ 
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