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This paper considers a mean-field type stochastic control problem where the
dynamics is governed by a forward and backward stochastic differential equa-
tion (SDE) driven by Lévy processes and the information available to the con-
troller is possibly less than the overall information. All the system coefficients
and the objective performance functional are allowed to be random, possibly
non-Markovian. Malliavin calculus is employed to derive a maximum prin-
ciple for the optimal control of such a system where the adjoint process is ex-
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1. Introduction

In contrast to the stochastic control problem (e.g. [1] [2]) which is studied in the

complete information case (and [1] with the Brownian motion case only), the

performance functional that we will investigate involves the mean of functionals

of the state variables (hence the name mean-field). Problems of this type occur in

many applications; for example in a continuous-time Markowitz’s mean-variance

portfolio selection model where the variance term involves a quadratic function

of the expectation. The inclusion of this mean term introduces some major

technical difficulties, which include among others the #/me inconsistencyleading
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to the failure of dynamic programming approach. Recently, there has been
increasing interest in the study of this type of stochastic control problems; see
for example [3] [4] and [5].

On the other hand, since we allow the coefficients (b,o,y,9,f and h, as
follows) to be the stochastic processes and also because our control must be
partial information adapted, this problem is not of Markovian type and hence
cannot be solved by dynamic programming even if the mean term were not
present. We instead investigate the maximum principle, and will derive an
explicit form for the adjoint process. The approach we employ is Malliavin
calculus which enables us to express the duality involved via the Malliavin
derivative. Our paper is related to the recent paper [6] and [7]. In [6], they
consider a mean-field type stochastic control problem where the dynamics is
governed by a controlled forward SDE with jumps and the information available
to the controller is possibly less than the overall information. Malliavin calculus
is employed to derive a maximum principle for the optimal control of such a
system where the adjoint process is explicitly expressed. [7] presents various
versions of the maximum principle for optimal control (not mean-field type) of
forward-backward stochastic differential equations with jumps and a Malliavin
calculus approach which allow us to handle non-Markovian system. The
motivation of [7] is risk minimization via g-expectation.

This paper can be considered as the continuation of [6] and [7]. We consider
a mean-field type stochastic control problem where the dynamics is governed by
a forward and backward stochastic differential equation (SDE) driven by Lévy
processes and the information available to the controller is possibly less than the
overall information. All the system coefficients and the objective performance
functional are allowed to be random, possibly non-Markovian. Malliavin
calculus will be employed to derive a maximum principle for the optimal control
of such a system where the adjoint process is explicitly expressed.

As in the paper [6], we emphasize that our problem should be distinguished
from the partial observation control problem, where it is assumed that the
controls are based on the noisy observation of the state process. For the latter
type of problems, there is a rich literature (see, e.g. [1] [8] [9] [10] [11] [12]).
Note that the methods and results in the partial observation case do not apply to
our situation. On the other hand, there are several existing works on stochastic
maximum principle (either completely or partially observed) where adjoint
processes are explicitly expressed (see, e.g. [8] [10] [12] [13]). However, these
works all essentially employ stochastic flow technique, over which the Malliavin
calculus has the advantage in terms of numerical computations (see, e.g. [14]).

Now let’s state our problem as follows:

Suppose the state process (A(t), X (t))z(A(u) (t,a)), X (t,a))); te[0,T],
e Q, of our system is described by the following coupled forward-backward
system of SDEs.

Forward system in the controlled process A(t):
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dA(t)=b(t, A(t),u(t))dt+o(t, A(t),u(t))dB(t)
I 7 (L A(t),u(t),z)N (dt,dz); te[0,T], (1.1)
A(O):aeR.

Backward system in the unknown processes X (t), Y (t), K(t z):

dX (t)=—-g(t, A( ) x( ).Y (t),u(t))dt+Y (t)dB(t)
+j N (dt,dz); te[0,T], (1.2)

X(T)=cA(T ) where ¢ € R, is a given constant.

Here R,=R\{0}, B(t)=B(t,w) and 75(t)=n(t,@), given by
:JJR 2N (ds,dz); t20,weQ, (1.3)
0

are a 1-dimension Brownian motion (see [15] Theorem 13.5) and an independent
pure jump Lévy martingale, respectively, on a given filtered probability space
(Q, e P). Thus

N (dt,dz):= N (dt,dz)—v(dz)dt (1.4)

is the compensated jump measure of 77() , where N (dt,dz) is the jump
measureand v(dz) is the Lévy measure of the Lévy process 7(-). The process
u (t) is our control process, assumed to be ./ -adapted and have values in a
given open convex set U c R . The coefficients b:[O,T]xRxU xQ >R,
O':[O,T]X]RXU xQ >R, }/:[O,T]XRXU xR, xQ and
9:[0,T]xRxRxRxUxQ—>R aregiven ./ -predictable processes.

Let T >0 bea given constant. For simplicity, we assume that

IROZZV(dZ)<w. (1.5)

Suppose in addition that we are given a subfiltration

e 4 tel0,T]

representing the information available to the controller at time ¢ and satisfying

the usual conditions. For example, we could have

/i=./ ., te[0,T],5>0isaconstant,
(t-6)

meaning that the controller gets a delayed information compared to .4 .

Let .©/ =.7/ denote a given family of controls, contained in the set of { -
predictable controls u() such that the system (1.1)-(1.2) has a unique strong
solution. If ue.”/, then we call u an admissible control. Let U R be a
given convex set such that u (t) eU forall te [O,T] a.s.,forall ue./ .

Suppose we are given a performance functional of the form

J(u)
_ EUOTf (tAE) E[ £ (A®)] X (). E[h (X (£)) Y (1), K (t).u(t), o)t
(X (0)+h, (A(T). E[go(AT))]:00) |; ue. v,

(1.6)
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where E denotes expectation with respect to P, f;:R—>R, hj:R—>R
and g,:R —> R are given functions such that E U fy (A(t))u <o,

E[|ny (X (1)) ] <= forall rand E[|gs (A(T))| <, and
f:[O,T]XRXRXRXRXRXRXUXQ—)R and h,:RxRxQ-—>R are given

4 -predictable processes and h, is a given function with
E[OT (t,A(t),E[fO(A(t))],X(t),E[ho(X(t))],Y(t),K(t,-),u(t))‘dt
+|n (X (0)) +[h, (A(T). E[ g5 (X (T))])H<oo, forall ue. /.

The control problem we consider is the following:

(1.7)

Problem 1.1 (Partial information optimal control). Find ®, eR and
u"e./ (ifit exists) such that

®, =supJ(u)=J(u"). (1.8)

ue. "/

2. A Brief Review of Malliavin Calculus for Lévy Processes

In this section, we recall the basic definitions and properties of Malliavin
calculus for Brownian motion B(-) and N(ds,dz) related to this paper, for
reader’s convenience.

Let L?(.4,P) be the space of all R -valued .4 -measurable, and
square-integrable random variables. Let L’ (ﬂ,”) be the space of deterministic

real functions fsuch that
12
|f||Lz ) (j[m ,~--,tn)dt1dt2--~dtn) <o, (2.1)
where A(dt) denotes the Lebesgue measure on [O,T] .
Let L? ((/1 x ,u)”) be the space of deterministic real functions fsuch that

[

12
=(.[([OT]><]R )”fz(ti’zl’tZ’ZZ’ T n’ n)dtl,u(dZ )dtzﬂ(dz ) "dtnﬂ(dzn) (2.2)

< 00,

L?(AxP) can be similarly denoted.
A general reference for this presentation is [16] [17] and [18]. See also the
book [19].

2.1. Malliavin Calculus for B ()

A natural starting point is the Wiener-It6 chaos expansion theorem (See [18]

Theorem 1.1.2), which states thatany F e L*(.7,P) can be written as
F=>1.(f). (2.3)

for a unique sequence of symmetric deterministic functions f, e L (l” ) , where

A is Lebesgue measure on [O,T] and
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Y=ntf [ [, (o t, ) dB(4)--dB(t, ) (2.4)

(the n-times iterated integral of f with respect to B(-)) for n=12,--- and
ly(f,)=f, when f; isa constant.

Moreover, we have the isometry
E|:F2j|=||F||i2(P) =§n!|| fn"iZ(ln)' (2.5)

Definition 2.1 (Malliavin derivative D,). Let Dl(s) be the space of all
Fel? (./4.P) such that its chaos expansion (11) satisfies

|F ||;l<g> = nZ; nn!||f, ||i2(4n) <. (2.6)

For FeD3 and te[0,T], we define the Malliavin derivative of F at t
(with respectto B(-)), D,F,by

DF =30l (f,(-1)), 2.7)

where the notation I, (f,(~t)) means that we apply the (n-1) -times
iterated integral to the first n—1 variables t,---,t,, of f (t,t,,--,t;) and
keep the last variable t, =t asa parameter.

One can easily check that
T ®
| [y (OF Y dt|= 3oty <[y @9

so (t,@) > D,F(w) belongsto L*(AxP).
Some other basic properties of the Malliavin derivative D, are the following:
1) Chain rule ([18], page 29)
Suppose F,---,F, € ij) and that y:R™ >R is C' with bounded
partial derivatives. Then

v (F,F,)eD? and

''m

D (Fu1Fy) = 3 (R ) DIF. (2.9)

m

2) Integration by parts/duality formula ([18], page 35)
Suppose h(t) is ./ -adapted with E[J‘OTU2 (t)dt] < and let FeDy.
Then

E[Fj;h( dB(tJ U h(t) Dth} (2.10)

2.2. Malliavin Calculus for N ()

The construction of a stochastic derivative/Malliavin derivative in the pure jump
martingale case follows the same lines as in the Brownian motion case. In this
case, the corresponding Wiener-Itd6 chaos expansion theorem states that any
Fel?( 4,P) (where in this case ‘/?:./TN is the o-algebra generated by

n(s):= ISIR ZN (dr,dz);0<s<t) can be written as
0
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F=11,(f): fe((10)), (2.11)

n=0

where I:Z((ﬂxv)") is the space of functions f (t,z,-t,,2,);t€[0,T],
z; € R, such that f el? ((ﬁxv)n) and f, is symmetric with respect to the
pairs of variables (t,,z,),--,(t,,2,).

It is important to note that in this case the n-times iterated integral 1 (f,) is
taken with respect to N(dt,dz) and not with respect to dn(t). Thus, we

define

(f”): n!IJJROJJnIRD...ISZJRO f” (ti’ Zl’m’tn’zn)N (dtl’dzl)"' N (dtn’dzn)’ (2.12)

for f el’ ((ﬂxv)n).
Then It6 isometry for stochastic integrals with respect to N (dt,dz) gives the

following isometry for the chaos expansion:
[Pl =S 213

As in the Brownian motion case, we use the chaos expansion to define the
Malliavin derivative. Note that in this case there are two parameters t,z, where
trepresents time and z=0 represents a generic jump size.

Definition 2.2 (Malliavin derivative D,,) ([16] [17]) Let Dl(g) be the space
ofall Fel?(F,P) such thatits chaos expansion (2.11) satisfies

IFE = 30 ) < n

For Fe Dl(g) , we define the Malliavin derivative of Fat (t,z) (with respect
to N()), D,F,by

Dt,zF :znln—l(fn (',t,Z)), (2.15)
n=1
where IH( f, (',t, Z)) means that we perform the (n —1) -times iterated

n?*=n

integral with respect to N to the first n—1 variable pairs (t,2), - (t,.2,),
keeping (t,,z,)=(t,z) asa parameter.

In this case we get the isometry.
Uj (D, F) v(dz dt} Znn If, ||Lz pop) = (N}. (2.16)

(Compare with (2.8)).

The properties of D, corresponding to the properties (2.9) and (2.10) of
D, are the following:

1) Chain rule ([17] [20])

Suppose F,---,F, € D1(,§) and that ¢:R"™ - R is continuous and bounded.

Then ¢( ,',Fm)eDl(s) and

tz'' m

D.#(F.-Fy)=¢(F +D, R, F, + D, ,F,)-4(F.-.F,).  (217)
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2) Integration by parts/duality formula ([17])
Suppose W(t,z) is ./ -adapted and E UOTIR P (t, Z)v(dz)dt} <o and

let Fe D(N) . Then

E [FIOT[RO\P(L 2)N (dt,dz)} —E UOT]RO\P(L 7) Dt,ZFv(dz)dt] (2.18)

We let D, denote the set of all random variables which are Malliavin
differentiable with respect to both B(-) and N(-).

3. The Stochastic Maximum Principle

We now return to Problem 1.1 given in the introduction. We make the following
assumptions:

Assumptions 3.1. (3.1) The functions b(t,x,u,a)):[O,T]xRxU xQ >R,
a(t,x,u,a)):[O,T]xRxeQ%R, }/(t,X,U,Z,a)):[O,T]XRXUXROXQ—)R,
g(t.a,x y,uo):[0T]xRxRxRxUxQ >R,
f(t,a,a,,X X, Y,k U0):[0T]xRxRxRxRxRxRxUxQ >R,
fo(a) R>R, hy(%):R>R, gy(%):R->R, h(x):R->R,
hz(a,ao,a)):IR{xRxQ%R are all continuously differentiable (C') with
respect to the arguments (if depending on them) xeR, x,eR, aeR,
a,eR and ueU foreach te[0,T] andaa weQ.

(3.2) For all t,re[O,T], t<r, and all bounded /{ -measurable random
variables 6=6(w) the control

Pi(8)=0() 74, () s€[0.T]

belongsto .7/ .
(3.3) Forall u,fe.7/ with £ bounded, there exists §>0 such that

u+ype. foral ye(-6,6).

Furthermore, if we define

f(0)= 1 (L AWE] o (AD)] X (), E[hy (X )Y (0K (t.).u(1))

(3.1)

—
N
—_
—
~
Il
Nl
—_—
o~
—~~
—
~—
m
|
-+
o
—_
P
—
~
~—
L1
>
—~
—
~—
m
1
=
S
—_
x
—
—
~
~—
1
<
P
—
~
~
P
—
-~
c
—~
—
~—
~——

(3.2)

DOI: 10.4236/jamp.2018.61014 144 Journal of Applied Mathematics and Physics


https://doi.org/10.4236/jamp.2018.61014

Q. Zhou, Y. Ren

h(AT).E[go(A(T))])
= A1), E oo (AT))) | 22 (). E (AT s AT),
then the family
{fl(t,A“*y” (8), E[ fo (A7 ()], X7 (1), E[ 0y (X7 (1)) ]
YK (1) (1) + Y (0) A ()4 2 (A (1),
E[fO(AW (t))],xw’ (t),E[ 0(xu+yﬂ( ))],
Y (), K (), u(t) + Y () = A(1)]

(3.3)

(3.4)

ye(=5.,6)

and

{f(t A (1), E [ 1, (A7 ()], X2 (1), [y (X (1)

y uvs (t) KUty (t ) (t)+ yﬂ t)) :y XU+yﬁ( )+ 2: (t, X (t), )

(
E|:f (AU+yﬁ( :| x“*yﬂ t) E|:h0 Xu+yﬂ :|,
YU (1), KU (8,1, ut) + yﬂ(t)) Bt )} (54)

are AxP -uniformly integrable and the family

(i o) el

u+yp
&y AT )} (3.6)

ye(ﬂ)‘,ﬁ)

is P-uniformly integrable.
(3.4) Forall u,fe.7/ ,with [ bounded, the processes

a) =g A 0] =X ] =S

y=0 dy

¢(t2) :dd—yK“”ﬁ (t.2)

XU (t) and

y=0

exist and satisfy the equations

y=0

ob ob

da(1) = 2a()+ O A0

+{§—j<t>a(t> % 1) <>} B (1) 67)
+IRO{27(t 2)a( } N (dt,dz),

0= - 20e- 2wz Lon0 - L sw)a

oa
+n(t)dB(t)+ jRog(t,z (dt,dz),

(3.8)

where we used the simplified notation

Z—Z(t) =2—Z(t, A(t),u(t)) etc. (3.9)

(3.5) Forall ue."/ ,with definition (3.1), (3.2) and (3.3), the following process:
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G(I'S)3=exp[fts{g—:(r)——(z:( j }dr+j 99 (r)dB(r)
+ﬂ In(l+2—£(r,z)jﬂ(dr,dz) (3.10)

+jj |:|n[l+— (r, z)j Z(r,z)}v(dz)dr),sx

exists and we now define the adjoint process p(t), q(t), r(t,z), A(t) as

follows:
p(t):=r(t)+] G;O(S)G(t's)ds (3.11)
q(t)=D,p(t) (3.12)
r(t,z)=D,p(t), (3.13)
with
w()=h(A(T), E[ gy (A(T))])+ca(T)+ ], fi(s)ds (3.14)

Ho (s,a,x,u) = x(s)b(s,a,u)+ D (s)o(s,a,u)
+IR0DSVZK(S)7(S,6LU,Z)v(dz)+g(s,a,x,u)g(s)_ (3.15)

The above processes all exist for 0<t<s<T, zeR;. Above and in the
following, we use the shorthand notation H,(s)=H,(s, A(s), X (s),u(s)).

We now define the Hamiltonian for this problem:

H:[0,T]xRxRxRx Lz(v)xU x RxRxRx LZ(V)XQ—)R

is defined by
H(t.axy.kui par() o)
=f (t,a, E[ fO(A(t))],x, E[hO(X (t))] y,k,u,a))+ g(t,ax,y,uw)i (3.16)
+b(t,a,u,) p+o-(t,a,u,a))q+J'R0y(t,a,u,z,a))r(z)v(dz).

The process A(t) is given by the forward equation

= T (0 A®) X (0. (.K (1).0(2).A(0). P().a(1). (1))
{ (0] X )£ (X ()] (0K .000)
xhy (X (t))dt
LA X (Y (0. K (1).0(0).2(0), B0, 0(0). (1) 8B (1)
+JROVkH<t,A<t>,x<t>.v(t>,K(t.-),ua),z(t).p(tm(t),r(t,-)m(dt,dz)
2(0)-K(x(0) - SHx @) ]

di

(3.17)
for te [O,T] .
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We can now formulate our stochastic maximum principle:

Theorem 3.1 (Partial information equivalence principle) Suppose Ue.7/,
with corresponding solutions A(t), X(t), Y(t), K(t,z), A(t), of (1.1),
(1.2) and (3.17). Assume that the random variables

F(T):=h(A(T).E[ g (A(T))])+cA(T), (t,s):=2 °(s)G(ts) and

f,(t) belongto Dy, forall 0<t<s<T and that

ISR
+, {(Z(s Z)jzaz(s)+(%(s,z)jz}v(dz)}ds]«m,

EDOTIOT {( D, f, (1)) + o (Du( ](t)))2 v(dz)}dsdt} <o, (3.19)

[H { (D@ (t,s) +j (D,,@(t.s)) (dz)}drds}<oo. (3.20)

(3.18)

Then the following are equivalent:

i) ;_yj(u+yﬂ) ~0 forallbounded fe./ .

y=0

ii)

’}zO,for

E%H (& A, X (1).Y (1), K(t),u(t), (1), p (1), a(t). 1 (81)),

aa. (t, a)) e[0,TIxQ.
Proof. (i) = (ii): Assume that (i) holds and note that

(Jz(O)zdi

Au+yﬂ 0
A ()

(3.21)

y=0
and

ST X(T)

1
cdy _Eg(T). (3.22)

y=0

Then

d
O_EJ(uwﬁ)

y=0

- E{IOT {Zf—a(t)a(t)+%(t)E[fU'(A(t))a(t)]Jr&(t)g(t)

+(;ixo(t)E[h(,(X (t))g(t)}L%

+-[R0vk f (t'Z)é/(t, Z)V(dz)+ﬂ t
oh,

+h{(X (0))£(0) + Z2(A(T),E[ g (A(T))])(T)
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(t)B(t)dt (3.23)

By the duality formulae (2.10), (2.18) and with

F (T)=R(A(T). E[ g3 (A))]) +¢A(T), we g
e[F(T)a(r)]- () {2 (e 20}
L2 wat)- <>ﬂ<t>} B (1)
+[. {8—7 t)+— (t.2) A(t) }N (dt,dz) H
el {Fo 20 (0" ()ﬂm}
+DF (T)[ t)} (3.24)
+[,DuF T){?(t et Zﬁa )50 (enfer |

Similarly using the Fubini theorem in the following last equality, we have

FRACEIOLY
:ED;f;(t)(;;{g_g(s)a(s>+§—3<s>ﬂ(s>}ds
L)t +S2(5)pls)| (s

LI Z e L s N |
& ({180 2 2o
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oo 0o }

B0 Z(5)a(9)+2(5)(5)
A )[Z;(s 2)a (s)+2—y(s,z)ﬂ(s)}v(dz)}ds]dt:l

u

=E{j;{(fﬂ t dt)[a—b (s)er(s)+ s ),B(s)} (3.25)
A dt){ s )a(s)+aa—j(s)ﬂ(s)}
o[ (1o f (t)dt)[g(s, 2)er(s)+ L (s, z)ﬁ(s)}v(dz)}ds}.

u

Changing the notation S <> t, this becomes

€| L{{F s 200 00

oo

+(LTD1 fl(s)ds)[Z—Z(t)a(t)+E(t)ﬁ(t)} (3.26)
+IR0(LTDt,z ﬁ(S)dS)[Z—;(L Z)a(t)+Z—Z(t, Z)ﬂ(t)}v(dz)}dt}_

Combing (3.24) and (3.26) and using (3.14) we get

EDOT{ﬂ(t)a(t)+gf—u(t)ﬂ(t)}dt+ﬁ(A(T), E[gO(A(T))])a(T)}
_ E{ j;{x(t){g—:l(t)a(tﬁg—S(t) ﬁ(t)}
+ DtK(t)[z—Z(t)a(t)+a—a(t)ﬂ(t)} (3.27)

ou

+ J‘RODtYZK(t){%(t, Da(t)+Z(12) ﬂ(t)}v(dz)+2f—u(t) ﬂ(t)}dt}
—E[A(T)&(T)] using that ca (T)=&(T).
Then by the It6 formula and (3.17),
E[h(X(0))5(0)]=E[2(0)¢(0)]
—E[ A(T)&(T)-[;A(1)d£()- [ £())ar()

-JJ%(t)n(t)dt—IJIROVkH (t,2)¢ (t,2)v(dz)dt
=E |:1(T)§(T)—J.OTﬂ,(t){—a—g(t)a(t)_a_g(t)é(t)

oa X
~B (-2 p0)a- (02 e
(3.28)
e [ @ e(x )
—j t)dt- H VH tz)g’(t,z)v(dz)dt}.
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Now by (3.16) we have
oH

=21+ 21)20)

of

x OX
oH _ﬂ og
E( )= ay(t) —(1)A(1) (3.29)
V H(t, )=Vf( )

a9

Hence, we conclude

E| [{ R (0 (0)dt+ (X (0))£(0) |
= E{z(T)g(T)JrjOT {l(t){%(t)a(tﬁi—g(t)ﬂ(t)} (3.30)

_%(t)q(t)—.[ROVk f (t,z)g(t,z)v(dz)}dt}.

Combining (3.23), (3.27) and (3.30) we get

d
O_@J(u+yﬂ)

y=0

-5 [ fot0] 20at0+ 200500
Ow(0] Z)a()+ A0
+].D, [ (t2)a(t)+ g—z(t,z)ﬁ(t)}v(dz)
+2—L(t)ﬁ(t)+ﬂ(t){%(t)a(t)+2—3(t)ﬁ(t)}}dt}
-5 [ <020 20210
PO L () + 202 (0) el
(t)+], D (L (t2)v ()

(3.31)
0

ob o
t)—(t)+ Dk (t)—
of ag
—(t)+A(t)=(t t) pdt.
2020200
This holds for all £ .7/ . In particular, if we apply this to
By =By (S) = H(Q)l(t,uh] (S)'

where 6(w) is /{ -measurableand 0<t<t+h<T, we get, by (3.7)

aza(ﬁ")(s) for 0<s<t

and (3.31) can be written

L (h)+L,(h)=0, (3.32)

where
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L )= {61 206) (22 )
(3.33)
IRO 5.2 (5)%( z)v(dz)+A(s )Z—g( )}a(s)ds}
and
L, (h)= {9]““{ s)—( )+sz(s)a—”(s)
(3.34)

[, D) (s.2)v(2)+ s )+A(s)g—3(s)}ds}.

Note that with «(s)=a’ (s) wehave, for s>t+h,

(s 642 % (o N
da(s)=a(s ){6a(s)ds %9 (5)aa (s)-+ J'Roaa(s,z)N(ds,dz)}. (335)
Hence, by the It6 formula
a(s)=a(t+h)G(t+h,s); s>t+h, (3.36)

where Gis defined in (3.10). Note that G(t,s) does not depend on /. Then

L(h)= E{ ! 56'10 (s)a(s)ds}, (3.37)
where H, is defined in (3.15). Differentiating with respect to h at h=0
gives

d t+h6H d T (7H
'(0)=—E —L(s)a(s)ds —E O(s)a(s)ds| . (3.38
()| [T et | | [, Te(o)a(s)es]| . caw
Since a(t)=0 we see that
d t+h aH
—E —L d =0. 3.39
dh D‘ oa (S)a(S) S}h—o ( :
Therefore, by (3.36)
, d T oH
Ll(O):EE{ . aao(s)a(t+h)G(t+h,s)dsl0
Td oH
_ tEE[ s (s)a(t+h)G(t+h,s)}h_0 ds (3.40)

_ jdd_hEr:aO(s)G(t,s)a(Hh)} ds.

By (3.7) we have
a(t+h) aj”“{ab (r)ar % (r)da 1)+ jROZ_Z(r,z)N(dr,dz)}
+jtt+ha(r—){22( Jar+ 2 (r)dB () + ], L (r,2)N (cr, dz)}

Therefore, by (3.40) and (3.41)

(3.41)
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L(0)=T,+T,, (3.42)
where
1 e Peee ] [ 2o
+9%(1)dB(r) + | %(r,z)N(dr,dz)H ds o
ou Fo ou h=0
and
[ B )60l 2o
+ 2% (r)dB(r)+ [ Q(r,z)m(dr,dz)H ds. o
oa %o 0a h=0
oH,

Recall that ®(t,s)= p (s)G(t,s). By the duality formula (2.10) and (2.18),
a

we have

r, :LT%E|:9Lt+h{%(r)q)(t,s)+aa—j(r)qu)(tys)

+ a—7/(r 7)D, ,®(t, s)v(dz)}dr} ds

oo h=0 (3.45)

:LTE{Q{%(t)q)(t,s)Jra—u(t) D@ (t,s)
; Z—y(t,z)Dt'Zd)(t,s)v(dz)Hds_

Ro du
Since «a(t)=0, we see that
r,=0. (3.46)
We conclude from (3.42)-(3.46) that
L/(0)=T,. (3.47)
Moreover, we see directly that

L(0)-€| 0 () 20+ () 210
a9

s jRODMK(t)Z_Z(t,z)v(dz)+gﬂ(t)+z(t)_(t)H.

u ou

(3.48)

By differentiating (3.32) with respect to h at h=0, we thus obtain the
equation
z a{(,((m [ (1,5)d8) (1), () + [ (t.5)0s) 22 (1)
' ou t t ou
5 of o (3.49)
T
+[, Dy, (K('[)+J1d)(t,s)ds)a—Z(t,Z)v(dz)+a(t)+i(t)a(t)H:0_

Using (3.11), equation (3.49) can be written
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0

E[ea{ (6 A E[ fo(A®1)], X (1), E[h (X (1)) ].Y (1) K (t,7).u)
+p(t)b(t, A(t),u)+A(t)g(t A(t), X (t),Y (1),

#D,p() (1, A(1),) + ], Dy, b ()7 (LAM) b, z)v(dz)}u_u(l)} o,

ey

) (3.50)

Since this holds for all *{ -measurable 6§ we conclude that

0

E{EH (t A X (1), (1)K (t-) w2 (1), p(1).a (). r (t), |;;} ~0.(3.51)

(ii) = (i): Conversely, suppose (3.51) holds for some ue.”/ . Then we can
reverse the argument to get that (3.32) holds for all g = f,. Then (3.32) holds
for all linear combinations of such f,. Since all bounded fe.7/ can be
approximated by such linear combinations, it follows that (3.32) hold for all
bounded fe€.7/ . Hence, by reversing the remaining part of the argument

above, we conclude that (ii) = (i). O

4. Conclusion

In this paper, we consider a mean-field type stochastic control problem where
the dynamics is governed by a forward and backward stochastic differential
equation driven by Lévy processes and the information available to the
controller is possibly less than the overall information. All the system
coefficients and the objective performance functional are allowed to be random,
possibly non-Markovian. Malliavin calculus is employed to derive a maximum
principle for the optimal control of such a system where the adjoint process is

explicitly expressed.
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