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Abstract 
In this paper, we analyze the complexity and entropy of different methods of 
data compression algorithms: LZW, Huffman, Fixed-length code (FLC), and 
Huffman after using Fixed-length code (HFLC). We test those algorithms on 
different files of different sizes and then conclude that: LZW is the best one in 
all compression scales that we tested especially on the large files, then Huff-
man, HFLC, and FLC, respectively. Data compression still is an important 
topic for research these days, and has many applications and uses needed. 
Therefore, we suggest continuing searching in this field and trying to combine 
two techniques in order to reach a best one, or use another source mapping 
(Hamming) like embedding a linear array into a Hypercube with other good 
techniques like Huffman and trying to reach good results. 
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1. Introduction 

Data compression has important applications in the areas of data transmission 
and data storage despite of the large capacity storage devices that are available 
these days. Hence, we need an efficient way to store and transmit different types 
of data such as text, image, audio, and video to reduce execution time and 
memory size [1]. 

In 1977, Abraham Lempel and Jakob Ziv created the first of what we now call 
the LZ family of substitution compressors [2]. Lempel-Ziv-Welch (LZW) is a 
universal lossless data compression algorithm created by Abraham Lempel, Ja-

How to cite this paper: Btoush, M.H. and 
Dawahdeh, Z.E. (2018) A Complexity 
Analysis and Entropy for Different Data 
Compression Algorithms on Text Files. 
Journal of Computer and Communications, 
6, 301-315. 
https://doi.org/10.4236/jcc.2018.61029      
 
Received: November 21, 2017 
Accepted: January 9, 2018 
Published: January 12, 2018 
 
Copyright © 2018 by authors and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

  
Open Access

http://www.scirp.org/journal/jcc
https://doi.org/10.4236/jcc.2018.61029
http://www.scirp.org
https://doi.org/10.4236/jcc.2018.61029
http://creativecommons.org/licenses/by/4.0/


M. H. Btoush, Z. E. Dawahdeh 
 

  

DOI: 10.4236/jcc.2018.61029 302 Journal of Computer and Communications 
 

cob Ziv, and Terry Welch. LZW is a general compression algorithm capable of 
working on almost any type of data [3]. 

The general principle of data compression algorithms on text files is to trans-
form a string of characters into a new string, which contains the same informa-
tion, but with new length as small as possible. The efficient data compression 
algorithm is chosen according to some scales like compression size, compression 
ratio, processing time or speed, and entropy [4]. 

Data compression is very important in business and data processing, which 
reduces data volume and cost of saving it [5]. 

Data compression is necessary in many fields in application data processing 
and also it is very important in distributed systems and data transfer. Data com-
pression is a part of information theory helping in reducing data redundancy 
over network [6]. So it is very important to study different data compression al-
gorithms used on text files to find what the efficient algorithm is that reduces 
data volume with saving quality of data. 

1.1. Definition: Compression Size 

Is the size of the new file in bits after compression is complete? 

1.2. Definition 

Compression ratios a percentage that results from dividing the compression size 
in bits by the original file size in bits and then multiplying the result by 100%. 

1.3. Definition: Processing Time or Speed 

Is the time in millisecond that we need for each symbol or character in the orig-
inal file for compression? It results from dividing the time in millisecond that is 
needed for compressing the whole file by the number of symbols in the original 
file and scales as millisecond/symbol. 

1.4. Definition: Entropy 

Is the number that results from dividing the compression size in bits by the 
number of symbols in the original file and scales as bits/symbol? 

1.5. Definition: Symbol Probability 

A probability for each symbol in the original file is calculated by dividing the 
frequency of this symbol in the original file by the number of the whole symbols 
in this file. 

1.6. Definition: Hamming Weight 

Is the number of ones in the N-bits (fixed-length) code word [7]?  
In Section 2, four different data compression techniques (LZW, Huffman, 

Fixed-length code (FLC), and Huffman after using Fixed-length code (HFLC)) 
are reviewed and explained. In Section 3, these techniques are tested on different 
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text files with different sizes and the results are tabulated and analyzed. Finally, 
Section 4 presents the conclusions and future work. 

2. Data Compression Techniques 

In this section, we will give a short review and explanation with an example for 
each one of the four techniques that we check in this paper. We use, as an exam-
ple, the following string of characters as input string  
S = “/WED/WE/WEE/WEB/WET” in all techniques and see the compress file 
that results [8] [9]. Note that the results on this example do not represent stan-
dard results and not scale the efficient of those techniques but only as an exam-
ple because the size of the string (file) is very small. 

2.1. LZW 

In 1977, Abraham Lempel and Jakob Ziv created the first of what we now call 
the LZ family of substitutional compressors. In 1984, Terry Welch modified the 
LZ78 compressor for implementation in high-performance disk controllers. The 
result was LZW algorithm that is commonly found today [2]. 

LZW is a general compression algorithm capable of working on almost any 
type of data [3]. LZW compression creates a table of strings commonly occur-
ring in the data being compressed, and replaces the actual data with references 
into the table. The table is formed during compression at the same time at which 
the data is encoded and during decompression at the same time as the data is 
decoded [10]. 

The algorithm is surprisingly simple. LZW compression replaces strings of 
characters with single codes. It does not do any analysis of the incoming text. In-
stead, it just adds every new string of characters it sees to a table of strings. 
Compression occurs when a single code is output instead of a string of charac-
ters. It starts with a “dictionary” of all the single character with indexes 0.255. It 
then starts to expand the dictionary as information gets sent through. Pretty 
soon, redundant strings will be coded as a single bit, and compression has occurred 
[11]. This means codes 0 - 255 refer to individual bytes, while codes 256 - 4095 refer 
to substrings [11]. By applying LZW algorithm on the example S, we get the fol-
lowing see Table 1. 

The compression ratio = 144/152 × 100% = 94.73% from the original size, it 
means that it saves 5.27% in space or storage of the new file. And entropy = 
144/19 = 7.578 bits/symbol instead of 8 bits/symbol in ASCII (where 19 is the 
number of symbols in the file or string). 

The string table fills up rapidly, since a new string is added to the table each 
time a code is output. In this highly redundant input, 5 code substitutions were 
output, along with 7 characters. If we were using 9 bit codes for output, the 19 
character input string would be reduced to a 13.5 byte output string. Of course, 
this example was carefully chosen to demonstrate code substitution. In real 
world examples, compression usually doesn’t begin until a sizable table has been 
built, usually after at least one hundred or so bytes have been read in. 
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Table 1. The compression process of LZW (S = /WED/WE/WEE/WEB/WET). 

Character Code output New code New string 

/W / 256 /W 

E W 257 WE 

D E 258 ED 

/ D 259 D/ 

WE 256 260 /WE 

/ E 261 E/ 

WEE 260 262 /WEE 

/W 261 263 E/W 

EB 257 264 WEB 

/ B 265 B/ 

WET 260 266 /WET 

EOF T 2 /W 

Total = 152 
byte 

Compressed 
size= 12 string 

*12 byte = 
  

2.2. Huffman Algorithm 

Huffman algorithm is the oldest and most widespread technique for data 
compression. It was developed by David A. Huffman in 1952 and used in 
compression of many type of data such as text, image, audio, and video. It is 
based on building a full binary tree for the different symbols that are in the 
original file after calculating the probability for each symbol and put them in 
descending order. After that, we derive the code words for each symbol from the 
binary tree, giving short code words for symbols with large probabilities and 
longer code words for symbols with small probabilities [1]. By applying Huff-
man algorithm on the example above, we get the descending probabilities shown 
in Table 2. 

Moreover, the binary tree was built as in Figure 1. 
Then, we get the code word for each symbol from the binary tree as in Table 3. 
The compressed file for this string (file) will be: 

0110001110110000110000001100011000110001101 = 43 bits, instead of 19 8 = 
152 bits in ASCII. 

2.3. Fixed-Length Code (FLC) 

Most of compression text methods are done into an arbitrary fixed-length binary 
code 8-bit ASCII code, which is called a byte wise basis (character wise basis). 
Limited research has been done on a bitwise basis instead of the conventional 
byte wise basis [9]. The new technique: Fixed-length code (FLC) deals with more 
effective approach for English text source encoding, it is based on transforming 
the characters in the source text to be compressed onto a new weighted  
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Figure 1. Binary tree for S. 
 
Table 2. Descending probabilities for symbols in S. 

Symbol Probability 

E 6/19 = 0.316 

/ 5/19 = 0.263 

W 1.1 5/19 = 0.263 

D 1/19 = 0.053 

B 1/19 = 0.053 

T 1/19 = 0.053 

 
Table 3. Code words for each symbol in S. 

Symbol Probability Codewords 

E 0.316 00 

/ 0.263 01 

W 0.263 10 

D 0.053 111 

B 0.053 1100 

T 0.053 1101 

 
fixed-length binary code by using a bitwise basis (its length depends on the 
number of different symbols in the source text) rather than a byte wise basis 
(8-bits ASCII) [6] [10]. Now, we apply this new mapping technique on the ex-
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ample S .First, we calculate the probability for each symbol in the source text and 
put them in descending order. The length of the new N-bit code word is calcu-
lated from m = 2 N, where m is the number of the different symbols in the 
source text file and N is the number of bits (fixed-length) that we need for each 
character in this text (file) instead of 8-bits. Here m = 6 symbols, so we need 
3-bits (N = 3) for each symbol. The symbol with large probability (E) take a code 
word with large Hamming weight (N), the next (N

r) symbols take a code word 
with (Nr) Hamming weight, and so on (where r = 1, 2, ∙∙∙, N) [6] [10]. So, we get 
the results In Table 4. 

The compress file by this technique is:  
110101111011110101111110101111111110101111100110101111010 = 57 bits. 
The compression ratio = 57/152 × 100% = 37.5% from the original size, it saves 
62.5% in the space or storage. The entropy for this technique in this file is 3 
bits/symbol instead of 8 bits/symbol in ASCII. 

2.4. Huffman after Using Fixed-Length Code (HFLC) 

This technique is a complement to the previous approach. Here, we use Huff-
man Algorithm on the new fixed-length code (FLC) that we obtained before. 
First, we calculate the probability of the symbols one and zero from the com-
pressed file that results from the previous technique, then calculate the new 
probability for each fixed-length code by using the following equation: 

( )New probability 1 N uuq q −= −  

where u is the number of one’s in the given fixed-length code, (N − u) is the 
number of zero’s in this code, q is the probability of the symbol one, and (1 − q) 
is the probability of zero [1]. After that, we apply Huffman algorithm on the new 
probability that we get after sorting them in descending order and building the 
full binary tree as we done in Section 2.2. By applying this technique on the re-
sults that we get from S, the probability for symbol one = 42/57 = 0.737 and the 
probability for the symbol zero = 1 − 0.737 = 0.263. The new binary tree is 
represented by Figure 2. 

The new probability and Huffman code words are illustrated in Table 5. 
The compressed file that results from this technique is: 

00000110100000011000001110000011011000000110111 = 47 bits. The compres-
sion ratio = 47/152 × 100% = 30.92% from the original size, so it saves 69.08% of 
the storage. 
 
Table 4. Codeword for each symbol in FLC. 

Symbol Probability Codeword (FLC) 

E 0.316 111 

/ 0.263 110 

W 0.263 101 

D 0.053 011 

B 0.053 100 
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Figure 2. New binary tree. 

 
Table 5. New probability and Huffman code words. 

Symbol Fixed-length code New probability Huffman code words 

E 111 0.400 1 

/ 110 0.143 000 

W 101 0.143 001 

D 011 0.143 010 

B 100 0.051 0110 

T 010 0.051 0111 

 
The entropy for this technique on this file is = 47/19 = 2.474 bits/symbol. 

Thus, from the results that we got from applying the four techniques (LZW, 
Huffman, FLC, and HFLC) on the given example, we note that the compression 
ratios for them are: 94.73%, 28.28%, 37.5% and 30.92%, respectively. So, the best 
one on this example was Huffman, HFLC, FLC, and LZW respectively. We also 
note that the entropys for these techniques on this example were: 7.578, 2.263, 
3.0, and 2.474 bits/symbol, respectively. It is clear that, the best one on this ex-
ample was Huffman, then HFLC, FLC, and LZW. But we must note that, these 
results are not standard but only as an example on each one, because LZW gives 
best results on the big files but its results are worst on the small files see Table 
A1 (Appendix A), Figure 3 and Figure 4. 

Table A2 (Appendix B) shows the files and the compression ratio for each 
file in each technique, we note that it is high (worst) in LZW for the small files 
and low (best) in Huffman, but on the big size the best technique is LZW, then 
Huffman, HFLC, and FLC, respectively. 
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Figure 3. Compression size. 
 

 
Figure 4. Compression ratio. 

3. Analysis and Results  

In this Section, tests are made on the four types of techniques on different text 
files (21 files) from different sizes. Some of these files are taken from the Calgary 
Corpus; which is a set of traditionally files used to test data compression pro-
grams [5]. The results are tabulated and analyzed in order to reach to the best 
technique, advantage and disadvantage for each one, and when each one is best 
to use. Source code is written for each technique; in C++ for Huffman, FLC, and 
Huffman after using FLC, and in Java for LZW. The execution for these pro-
grams is done on Pentium 4 with 2.4 G, Ram 248 M, and full cache. The follow-
ing results are obtained: Table A1 shows tested files names, original size in bytes 
and bits, and the new size for each file after compression in the four techniques 
that we tested. It is clear that Huffman Algorithm is the best one on the small 
files, then HFLC, FLC, and LZW, but when the size of the files increase LZW 
will be the best one, then Huffman, HFLC, and FLC, respectively. 
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Table A2 (Appendix B) shows the files and the compression ratio for each 
file in each technique, we note that it is high (worst) in LZW for the small files 
and low (best) in Huffman, but on the big size the best technique is LZW, then 
Huffman, HFLC, and FLC, respectively. 

Table A3 (Appendix C) and Figure 5 represents the compression time in 
milliseconds that is needed for each character in the source files to complete 
compression in the four techniques. The best (smallest) time is in LZW, the time 
in Huffman and FLC is nearly the same, and in HFLC is the worst (long) time 
because as we saw in the example in Section 2.4, we need more calculations be-
fore building the binary tree and obtain the code words. 

Now, we illustrate all the results that we obtained from all tested files by tak-
ing the average for each of: the original size, the compression size, the compres-
sion ratio, the compression time, and the entropy in the four techniques. It is 
clear from Table A4 (Appendix D) and Table A5 (Appendix E), Figures 6-9 
that the average of: compression size, compression ratio, compression time, and 
entropy is the best in LZW, then in Huffman, HFLC, and FLC, respectively. 

From all of the above, LZW is the best technique in all of the compression 
scales that we tested especially on the files of big sizes, then Huffman, HFLC, and 
FLC, respectively. But we must note that, the performance of the data compres-
sion depends on: the characteristics of the files, the different symbols contained 
in it, and symbols frequencies. We also note that FLC is a good technique and 
give a good result when the file contained little different characters or symbols,  
 

 
Figure 5. Compression time. 
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Figure 6. Entropy. 
 

 
Figure 7. Average ratio. 
 
for example less than 16 different symbols. The advantage of this technique is in 
the memory space because it deals with 4 bits instead of 8 bits in ASCII for each 
character. But in fact, we need data compression for large files that contains dif-
ferent characters in order to reduce its size, so this technique will not give a good 
results on it because if the number of different symbols in the file is more than 
64, we will need 7 or 8 bits for each character which is nearly the same as in 
ASCII, and in this case we need more time for the new calculations that we need 
in this technique. 
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Figure 8. Average compression ratio. 

 

 
Figure 9. Average entropy. 

 
Another advantage for LZW is that it does not need to pass the large string ta-

ble to the decompression code, the table can be built exactly as it was during 
compression [12]. Whereas, in Huffman we must transmit the frequency table 
for the characters in the source file in order to enable from building the binary 
tree, which will increase the size of the transmitted (compress) file [13]. 

4. Conclusions 

In this paper, we analyze the complexity and entropy of different methods of 
data compression algorithms: LZW, Huffman, Fixed-length code (FLC), and 
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Huffman after using Fixed-length code (HFLC). We test those algorithms on 
different files of different sizes and then conclude that: LZW is the best one in all 
compression scales that we tested especially on the large files, then Huffman, 
HFLC, and FLC, respectively. 

From all of the above, LZW is the best technique in all of the compression 
scales that we tested especially on the files of big sizes, then Huffman, HFLC, and 
FLC, respectively. But we must note that, the performance of the data compres-
sion depends on: the characteristics of the files, the different symbols contained 
in it, and symbols frequencies. 
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Appendix A 
Table A1. List of files before and after compression. 

File name 
Original 

size 
(bytes) 

Original 
size 

(bits) 

Huffman 
size 

(bits) 

FLC 
size 

(bits) 

HFLC 
size 

(bits) 

LZW 
size 

(bits) 

1) test 1.txt 1024 8192 5463 7168 5585 7576 

2) test 2.txt 2048 16,384 10,016 12,288 10,162 12,264 

3) test 3.txt 4096 32,768 21,031 28,672 21,407 23,488 

4) test 4.txt 8192 65,536 40,199 57,344 40,700 38,848 

5) paper 5.txt 11954 95,632 59,445 83,678 60,819 56,136 

6) test 5.txt 16384 131,072 84,815 114,688 87,073 86,800 

7) test 6.txt 32768 262,144 165,508 229,376 168,711 151,224 

8) paper 6.txt 38105 304,840 192,182 266,735 195,599 186,408 

9) paper 3.txt 46526 372,208 218,195 325,682 226,239 191,328 

10) paper 1.txt 53161 425,288 266,692 372,127 272,009 249,400 

11) test 7.txt 65536 524,288 304,480 458,752 314,980 262,344 

12) paper 2.txt 82199 657,592 380,918 575,393 397,497 333,312 

13) trans.txt 93695 749,560 507,249 641,438 517,973 396,528 

14) bib.txt 111,261 890,088 582,085 778,827 591,827 430,752 

15) test 8.txt 131,072 1,048,576 621,241 917,504 650,108 561,960 

16) test 9.txt 262,144 2,097,152 1,264,664 1,835,008 1,334,646 1,142,976 

17) news.txt 377,109 3,016,872 2,312,572 2,639,763 1,998,063 1,862,464 

18) test 10.txt 524,288 4,194,304 2,533,927 3,670,016 3,140,471 2,385,400 

19) book 2.txt 610,856 4,886,848 2,946,397 3,817,240 2,980,735 2,772,232 

20) book 1.txt 768,771 6,150,168 3,564,655 5,381,397 3,605,872 3,126,448 

21) test 11.txt 1,048,576 8,388,608 4,748,053 7,340,032 4,887,941 4,233,840 

Average 204,274.5238 1,634,196.1 991,894.62 1,407,291.8 1,024,210.33 881,510.857 

Appendix B 
Table A2. Compression ratio. 

File name 
Original  

size 
(bytes) 

Original  
size 

(bits) 

Huffman 
ratio 
(%) 

FLC 
ratio 
(%) 

HFLC 
ratio 
(%) 

LZW 
ratio 
(%) 

1) test 1.txt 1024 8192 66.6870 87.50 68.1762 92.4804 

2) test 2.txt 2048 16384 61.1328 75.00 62.0239 74.8535 

3) test 3.txt 4096 32768 64.1815 87.50 65.3289 71.6796 

4) test 4.txt 8192 65536 61.3388 87.50 62.1032 59.2773 

5) paper 5.txt 11,954 95632 62.1601 87.50 63.5969 58.7 

6) test 5.txt 16,384 131072 64.7087 87.50 66.4314 66.2231 

7) test 6.txt 32,768 262144 63.1362 87.50 64.3581 57.6873 
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Continued 

8) paper 6.txt 38,105 304840 63.0435 87.50 64.1644 61.1494 

9) paper 3.txt 46,526 372208 58.6217 87.50 60.7829 51.4035 

10) paper 1.txt 53,161 425288 62.7085 87.50 63.9587 58.6426 

11) test 7.txt 65,536 524288 58.0749 87.50 60.0776 50.0381 

12) paper 2.txt 82,199 657592 57.9261 87.50 60.4473 50.6867 

13) trans.txt 93,695 749560 69.1949 87.50 70.6578 52.9014 

14) bib.txt 111,261 890,088 65.3963 87.50 66.4908 48.3943 

15) test 8.txt 131,072 1,048,576 59.2461 87.50 61.9991 53.5926 

16) test 9.txt 262,144 2,097,152 60.3038 87.50 63.6408 54.5013 

17) news.txt 377,109 3,016,872 76.6546 87.50 66.2296 61.7349 

18) test 10.txt 524,288 4,194,304 60.4135 87.50 74.8746 56.8723 

19) book 2.txt 610,856 4,886,848 60.2923 87.50 68.3253 56.7284 

20) book 1.txt 768,771 6,150,168 57.9603 87.50 58.6304 50.8351 

21) test 11.txt 1,048,576 8,388,608 56.6012 87.50 58.2688 50.4713 

Appendix C 
Table A3. Compression time. 

File name 
Original 

size 
(bytes) 

Original  
size 

(bits) 

Huffman 
time 

(ms/char) 

FLC 
time 

(ms/char) 

HFLC 
time 

(ms/char) 

LZW 
time 

(ms/char) 

1) test 1.txt 1024 8192 0.9765 0.9765 0.9765 0.0585 

2) test 2.txt 2048 16,384 0.4882 0.4882 0.4882 0.0244 

3) test 3.txt 4096 32,768 0.2441 0.2441 0.2441 0.0122 

4) test 4.txt 8192 65,536 0.12207 0.12207 0.2441 0.0134 

5) paper 5.txt 11,954 95,632 0.0836 0.0836 0.0836 0.0092 

6) test 5.txt 16,384 131,072 0.06103 0.06103 0.12207 0.0067 

7) test 6.txt 32,768 262,144 0.0305 0.0305 0.0610 0.0067 

8) paper 6.txt 38,105 304,840 0.0262 0.0262 0.0524 0.0057 

9) paper 3.txt 46,526 372,208 0.0214 0.0214 0.0429 0.0058 

10) paper 1.txt 53,161 425,288 0.0188 0.0188 0.0376 0.0052 

11) test 7.txt 65,536 524,288 0.01525 0.01525 0.0305 0.005 

12) paper 2.txt 82,199 657,592 0.0121 0.0243 0.0364 0.0046 

13) trans.txt 93,695 749,560 0.0218 0.0218 0.0327 0.00469 

14) bib.txt 111,261 890,088 0.0179 0.0179 0.0269 0.00494 

15) test 8.txt 131,072 1,048,576 0.0076 0.0076 0.0152 0.0045 

16) test 9.txt 262,144 2,097,152 0.0038 0.0076 0.0114 0.0041 

17) news.txt 377,109 3,016,872 0.0079 0.0079 0.0132 0.00392 

18) test 10.txt 524,288 4,194,304 0.0019 0.00653 0.0076 0.00398 

19) book 2.txt 610,856 4,886,848 0.0065 0.0065 0.0110 0.00386 

20) book 1.txt 768,771 6,150,168 0.0230 0.0230 0.0345 0.00386 

21) test 11.txt 1,048,576 8,388,608 0.0019 0.0028 0.0038 0.00387 
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Appendix D 
Table A4. Entropy. 

File name 
Original 

size 
(bytes) 

Original  
size 

(bits) 

Huffman 
entropy 

(bits/char) 

FLC 
entropy 

(bits/char) 

HFLC  
entropy 

(bits/char) 

LZW 
entropy 

(bits/char) 

1) test 1.txt 1024 8192 5.3349 7.00 5.4541 7.3984 

2) test 2.txt 2048 16,384 4.8906 6.00 4.9619 5.9882 

3) test 3.txt 4096 32,768 5.1345 7.00 5.2263 5.7343 

4) test 4.txt 8192 65,536 4.9071 7.00 4.9682 4.7421 

5) paper 5.txt 11,954 95,632 4.9728 7.00 5.0877 4.696 

6) test 5.txt 16,384 131,072 5.1766 7.00 5.3145 5.2978 

7) test 6.txt 32,768 262,144 5.0509 7.00 5.1486 4.6149 

8) paper 6.txt 38,105 304,840 5.0434 7.00 5.1331 4.8919 

9) paper 3.txt 46,526 372,208 4.6897 7.00 4.8626 4.1122 

10) paper 1.txt 53,161 425,288 5.0166 7.00 5.1167 4.6914 

11) test 7.txt 65,536 524,288 4.6459 7.00 4.8062 4.003 

12) paper 2.txt 82,199 657,592 4.6341 7.00 4.8357 4.0549 

13) trans.txt 93,695 749,560 5.5355 7.00 5.6526 4.2321 

14) bib.txt 111,261 890,088 5.2317 7.00 5.3192 3.8715 

15) test 8.txt 131,072 1,048,576 4.7396 7.00 4.9599 4.2874 

16) test 9.txt 262,144 2,097,152 4.8243 7.00 5.0912 4.3601 

17) news.txt 377,109 3,016,872 6.1323 7.00 5.2983 4.9387 

18) test 10.txt 524,288 4,194,304 4.8330 7.00 5.9899 4.5497 

19) book 2.txt 610,856 4,886,848 4.8233 7.00 5.4660 4.5382 

20) book 1.txt 768,771 6,150,168 4.6368 7.00 4.6904 4.0668 

21) test 11.txt 1,048,576 8,388,608 4.5281 7.00 4.6615 4.0377 

Sum 4,289,765 34,318,120 104.7817 146 108.0446 99.1073 

avg. 204,274.52 1,634,196 4.9896048 6.952380952 5.144980952 4.719395238 

Appendix E 
Table A5. Average ratio. 

Algorithm 
name 

Average  
original 

size (bytes) 

Average 
original 

size (bits) 

Average 
compress 
size (bits) 

Average 
compress 
ratio (%) 

Average  
time 

(ms/char) 

Average 
entropy 

(bits/char) 

1) Huffman 204,274.5238 1,634,196.19 991,894.62 60.69618 0.10438 4.85569 

2) FLC   1,407,291.81 86.11523 0.105408 6.8892 

3) HFLC   1,024,210.33 62.67364 0.12265 5.01389 

4) LZW   881,510.857 58.9930047 0.00929429 4.719395238 
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