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Abstract 
In this paper, the solutions of three dimensional incompressible magnetohy-
drodynamics (MHD) equations are obtained by using  

( ) ( ) ( )( )sin cos  , , , , 0k k x y z t kξ ξ ξ ξ− = ≥  method and Riccati auxiliary equ-

ation. This paper obtains the soliton solutions by the aid of software Mathe-
matica. 
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1. Introduction 

The word MHD is made up of three terms magneto indicating magnetic field, 
hydro referring liquid, and dynamics meaning movement. The field of MHD is a 
fascinatingly rich field of physics and applied mathematics that considers the 
behavior of an electrically conducting fluid in the presence of an external 
electromagnetic field. Although inspiring in its own right, MHD also has 
numerous engineering and science applications. These range from the pursuit of 
reliable energy sources such as nuclear fusion [1] to understanding near-earth 
plasmas such as the solar wind [2] and more exotic astrophysical objects such as 
stars [3], black holes [4], and the interstellar medium [5]. Virtually all of these 
areas experience the phenomenon of turbulence and the role turbulence places 
in engineering and science applications are certainly critical. As previously 
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mentioned, MHD is concerned with the behavior of fluids in the presence of 
an external electromagnetic field. Of course, if the fluid does not conduct 
electricity, then it will not influence, nor will it be influenced by, the external 
electromagnetic field. Although Faraday initiated the field of MHD, the 
mathematical formulation came later only after the discovery of Maxwell’s 
equations [6]. Since there are a vast amount of driving forces in the MHD 
equations, there is a possibility for different types of waves that would propagate 
through the plasma. In incompressible MHD, we touch on differences between 
ideal versus (visco-)resistive evolutions [7]. We point out kinematic and full 
MHD insights into magnetic field amplification. The Elsasser formulation of the 
governing equations allows to generalize insights from linear to nonlinear wave 
package behavior, which prominently appear in MHD turbulence theories. We 
again restrict ourselves to dimensional reasoning to introduce the various scaling 
laws predicted for the energy spectra. High resolution (pseudo-)spectral 
simulations have given important clues to the anisotropic nature of MHD 
turbulence. We also discuss numerical evidence for singular structure growth in 
incompressible MHD and for small-scale dynamo action, by summarizing 
selected simulation-based studies. We end this section with an introduction to 
compressible MHD, where the linear wave picture is richer and allows wave 
steepening, paving the way to shock-dominated plasma behavior [8]. 

The MHD description governs the large-scale dynamics of plasmas, and 
applies to many laboratory as well as astrophysical configurations. Incompressible 
MHD has traditionally focused on topics like MHD turbulence, dynamo aspects, 
and singular structure formation. We inspect what kind of waves that can exist 
through linearization of the MHD equations in parallel with applying Fourier 
transforms. As a reminder, the incompressible MHD equations are 

0,V B∇ ⋅ = ∇ ⋅ =                         (1) 

( ) ( ) ( )212tV V V B B P B+ ⋅∇ − ⋅∇ +∇ +                   (2) 

1 2 3 0,xx yy zzV V Vν ν ν− − − =  

( ) ( )tB V B B V+ ⋅∇ − ⋅∇                      (3) 

1 2 3 0,xx yy zzB B Bη η η− − − =  

where 

( ) ( ) ( )( )T
1 2 3, , , , , , , , , , ,V V x y z t V x y z t V x y z t= , 

( ) ( ) ( )( ) ( )T
1 2 3, , , , , , , , , , ,  and , , ,B B x y z t B x y z t B x y z t P P x y z t= =  

represent the unknown velocity field, the magnetic field and the pressure of the 
flow, respectively, and 1 2 3 1 2 3, , , ,  andν ν ν η η η  are the viscosity coefficients of the 
flow. The field of incompressible MHD is a particularly rich subset of physics 
and applied mathematics. The challenges inherent in the equations provide a 
plethora of research opportunities. Aside from purely academic pursuits, MHD 
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also plays an important role in the development of engineering technologies. 
Designing suitable engineering systems using electrically conducting fluids 
requires using computational techniques. 

One of the most prominent reasons for this difficulty is the phenomenon of 
fluid turbulence which again rears its head in MHD [9] [10]. In addition to the 
velocity field displaying disordered behavior the external electromagnetic field 
quantities also display such behavior [11]. The main aim of this paper is to use 
the travelling wave method in the construction of exact soliton solutions for 
three dimensional incompressible MHD equations. 

 This paper is organized as follows. In Section 1 we review the main governing 
equations of incompressible MHD. In Section 2, the ( ) ( )sin cosk kξ ξ−  method 
and the exact solutions for the incompressible MHD problem are presented. 
Finally, Section 3 contains the conclusion. 

2. Travelling Wave Solutions 

The three dimensional incompressible MHD system (1)-(3) in the scalar form 

1, 2, 3, 1, 2, 3, 0,x y z x y zV V V B B B+ + = + + =                   (4) 

( )
( )

1, 1 1, 2 1, 3 1, 2 2, 1,

3 3, 1, 1 1, 2 1, 3 1, 0,
t x y z x x y

x z xx yy zz

V VV V V V V P B B B

B B B V V Vν ν ν

+ + + + + −

+ − − − − =
              (5) 

( )
( )

2, 1 2, 2 2, 3 2, 1 1, 2,

3 3, 2, 1 2, 2 2, 3 2, 0,

t x y z y y x

y z xx yy zz

V VV V V V V P B B B

B B B V V Vν ν ν

+ + + + + −

+ − − − − =
              (6) 

( )
( )

3, 1 3, 2 3, 3 3, 1 1, 3,

2 2, 3, 1 3, 2 3, 3 3, 0,

t x y z z z x

z y xx yy zz

V VV V V V V P B B B

B B B V V Vν ν ν

+ + + + + −

+ − − − − =
              (7) 

1, 1 1, 2 1, 3 1, 1 1, 2 1, 3 1,

1 1, 2 1, 3 1, 0,
t x y z x y z

xx yy zz

B V B V B V B BV B V B V

B B Bη η η

+ + + − − −

− − − =
             (8) 

2, 1 2, 2 2, 3 2, 1 2, 2 2, 3 2,

1 2, 2 2, 3 2, 0,
t x y z x y z

xx yy zz

B V B V B V B BV B V B V

B B Bη η η

+ + + − − −

− − − =
            (9) 

3, 1 3, 2 3, 3 3, 1 3, 2 3, 3 3,

1 3, 2 3, 3 3, 0.
t x y z x y z

xx yy zz

B V B V B V B BV B V B V

B B Bη η η

+ + + − − −

− − − =
           (10) 

To find the travelling wave solution for Equations (4)-(10), we take the 
transformation 

( ) ( ) ( ) ( ) ( ) ( ), , , ,  , , , ,  , , , ,  1, 2,3i i i iV x y z t v B x y z t b P x y z t p iξ ξ ξ= = = =  (11) 

where x y z tξ α β= + + + , and change the Equations (4)-(10) into the following 
ordinary differential equations 

1 2 3 1 2 3 0,v v v b b bα α′ ′ ′ ′ ′ ′+ + = + + =                    (12) 

( ) ( )
( ) ( )

1 2 3 1 2 2 1

2
3 3 1 1 2 3 1 0,

v v v v p b b b

b b b v

β α

α ν ν α ν

′ ′ ′ ′+ + + + + −

′ ′ ′′+ − − + + =
                 (13) 
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( ) ( )
( ) ( )

1 2 3 2 1 1 2

2
3 3 2 1 2 3 2 0,

'v v v v p b b b

b b b v

β α

α ν ν α ν

′ ′ ′+ + + + + −

′ ′ ′′+ − − + + =
                 (14) 

( ) ( )
( ) ( )

1 2 3 3 1 1 3

2
2 2 3 1 2 3 3 0,

v v v v p b b b

b b b v

β α α α

α ν ν α ν

′ ′ ′ ′+ + + + + −

′ ′ ′′+ − − + + =
                (15) 

( ) ( ) ( )2
1 2 3 1 1 2 3 1 1 2 3 1 0,v v v b b b b v bβ α α η η α η′ ′ ′′+ + + − + + − + + =     (16) 

( ) ( ) ( )2
1 2 3 2 1 2 3 2 1 2 3 2 0,v v v b b b b v bβ α α η η α η′ ′ ′′+ + + − + + − + + =     (17) 

( ) ( ) ( )2
1 2 3 3 1 2 3 3 1 2 3 3 0,v v v b b b b v bβ α α η η α η′ ′ ′′+ + + − + + − + + =     (18) 

where 
d

d
'

ξ
=  balancing the highest order of linear terms with nonlinear 

terms in the system (12)-(18) suggests the following ansatz 

1 1 2 2 3 4 3 5 6,  ,  ,v v vγ γ ψ γ γ ψ γ γ ψ= + = + = +              (19) 

1 1 2 2 3 4 3 5 6,  ,  ,b b bδ δ ψ δ δ ψ δ δ ψ= + = + = +              (20) 
2

1 2 3 ,p ρ ρ ψ ρ ψ= + +                      (21) 

where , , , 1, 2,3,  and i i i iγ δ ρ α β=  are constants to be determined, and the 
function ψ  satisfying a Riccati equation 

 2 2 2 4 ,   0,  1k k kψ ε ψ′ + = ≥ = ±                  (22) 

then we obtain three kinds of general solutions [12]-[16] 
sin or cos ,  when  1,k k k kψ ξ ψ ξ= = =               (23) 

constant,  when 0,kψ = =                    (24) 

cosh ,  when 1.k kψ ξ= = −                    (25) 

Substituting (19)-(21) into system (12)-(18) and using the Riccati equation 
(22), we obtain [17] 

( ) ( )2 4 6 2 4 6 0,γ γ αγ ψ δ δ αδ ψ′ ′+ + = + + =              (26) 

( ) ( )( ) ( )( )
( )( ) ( ) ( ) ( )( )

( )( ) ( )( )

2 1 2 2 3 4 2

5 6 2 2 3 3 4 4 2

2
5 6 6 2 1 2 3 2

2

0,

γ β ψ γ γ ψ γ ψ γ γ ψ γ ψ

α γ γ ψ γ ψ ρ ψ ρ ψψ δ δ ψ δ δ ψ

δ δ ψ δ αδ ψ ν ν α ν γ ψ

′ ′ ′+ + + +

′ ′ ′ ′+ + + + + + −

′ ′′+ + − − + + =

    (27) 

( )( )
( ) ( ) ( )( )
( )( ) ( )( )

1 2 3 4 5 6 4

2 3 1 2 2 4

2
5 6 6 4 1 2 3 4

2

0,

β γ γ ψ γ γ ψ αγ αγ ψ γ ψ

ρ ψ ρ ψψ δ δ ψ δ δ ψ

δ δ ψ δ αδ ψ ν ν α ν γ ψ

′+ + + + + +

′ ′ ′+ + + + −

′ ′′+ + − − + + =

         (28) 

( )( )
( ) ( ) ( )( )
( )( ) ( )( )

1 2 3 4 5 6 6

2 3 1 2 2 6

2
3 4 4 6 1 2 3 6

2

0,

β γ γ ψ γ γ ψ αγ αγ ψ γ ψ

αρ ψ αρ ψψ δ δ ψ αδ δ ψ

δ δ ψ αδ δ ψ ν ν α ν γ ψ

′+ + + + + +

′ ′ ′+ + + + −

′ ′′+ + − − + + =

         (29) 

( )( )
( )( )
( )( )

1 2 3 4 5 6 2

1 2 3 4 5 6 2

2
1 2 3 2 0,

β γ γ ψ γ γ ψ αγ αγ ψ δ ψ

δ δ ψ δ δ ψ αδ αδ ψ γ ψ

η η α η δ ψ

′+ + + + + +

′− + + + + +

′′− + + =

            (30) 

https://doi.org/10.4236/jamp.2018.61011


M. Aldhabani, S. M. Sayed 
 

 

DOI: 10.4236/jamp.2018.61011 118 Journal of Applied Mathematics and Physics 
 

( )( )
( )( )
( )( )

1 2 3 4 5 6 4

1 2 3 4 5 6 4

2
1 2 3 4 0,

β γ γ ψ γ γ ψ αγ αγ ψ δ ψ

δ δ ψ δ δ ψ αδ αδ ψ γ ψ

η η α η δ ψ

′+ + + + + +

′− + + + + +

′′− + + =

            (31) 

( )( )
( )( )
( )( )

1 2 3 4 5 6 6

1 2 3 4 5 6 6

2
1 2 3 6 0.

β γ γ ψ γ γ ψ αγ αγ ψ δ ψ

δ δ ψ δ δ ψ αδ αδ ψ γ ψ

η η α η δ ψ

′+ + + + + +

′− + + + + +

′′− + + =

            (32) 

Then setting the coefficients of all powers of , andψ ψ ψψ′ ′  to zero, we will 
get a set of algebraic system with respect to variables , , , 1, 2,3,  and i i i iγ δ ρ α β=  

( ) ( )2 4 6 2 4 60,    0,γ γ αγ δ δ αδ+ + = + + =                (33) 

( )( )2 2
1 2 3 2 0,kν ν α ν γ+ + =                     (34) 

2 1 2 3 2 5 2 2 3 4 3 2 5 6 5 2 0,γ β γ γ γ γ αγ γ ρ δ δ δ δ δ δ αδ δ+ + + + + − + − =     (35) 

2 2 2
2 2 4 6 2 3 4 4 2 6 6 22 0,γ γ γ αγ γ ρ δ δ δ δ αδ δ+ + + + − + − =          (36) 

( )( )2 2
1 2 3 4 0,kν ν α ν γ+ + =                    (37) 

4 1 4 3 4 5 4 2 1 2 1 4 5 6 5 4 0,γ β γ γ γ γ αγ γ ρ δ δ δ δ δ δ αδ δ+ + + + + − + − =     (38) 

2 2 2
4 2 4 4 6 3 2 4 2 6 6 42 0,γ γ γ αγ γ ρ δ δ δ δ αδ δ+ + + + − + − =         (39) 

( )( )2 2
1 2 3 6 0,kν ν α ν γ+ + =                    (40) 

6 1 6 3 6 5 6 2 1 2 1 6 3 4 3 6 0,γ β γ γ γ γ αγ γ αρ αδ δ δ δ αδ δ δ δ+ + + + + − + − =    (41) 
2 2 2
6 2 6 4 6 3 2 6 2 4 6 42 0,αγ γ γ γ γ αρ αδ δ δ αδ δ δ+ + + + − + − =       (42) 

( )( )2 2
1 2 3 2 0,kη η α η δ+ + =                   (43) 

2 1 2 3 2 5 2 2 1 2 3 5 2 0,δ β γ δ γ δ αγ δ γ δ γ δ αδ γ+ + + − − − =          (44) 

2 2 4 2 6 2 2 2 4 2 6 2 0,γ δ γ δ αγ δ γ δ δ γ αδ γ+ + − − − =           (45) 

( )( )2 2
1 2 3 4 0,kη η α η δ+ + =                    (46) 

4 1 4 3 4 5 4 4 1 4 3 5 4 0,δ β γ δ γ δ αγ δ γ δ γ δ αδ γ+ + + − − − =         (47) 

2 4 4 4 6 4 4 2 4 4 6 4 0,γ δ γ δ αγ δ γ δ δ γ αδ γ+ + − − − =           (48) 

( )( )2 2
1 2 3 6 0,kη η α η δ+ + =                  (49) 

6 1 6 3 6 5 6 6 1 6 3 5 6 0,δ β γ δ γ δ αγ δ γ δ γ δ αδ γ+ + + − − − =         (50) 

2 6 4 6 6 6 6 2 4 6 6 6 0.γ δ γ δ αγ δ γ δ δ γ αδ γ+ + − − − =           (51) 

From the output of symbolic computation software Mathematica, we obtain a 
solution, namely, 

( )

1 2 3 1 2 3

2 4 2 4 6 6 0

2
3 0 2 0 0 0 0

2 ,    2 ,
2, ,

3 ,   3 ,   ,
2

d

d d c c a

ν ν ν η η η
α γ γ δ δ γ δ

ρ ρ β

= = − = = −

= = = = = − = − =

−
= = − = −

            (52) 

where 
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0 1 3 5 0 1 3 52 ,   2 ,a cγ γ γ δ δ δ= + + = + +  

where 0 0 2 3, , , anda c kρ ρ  are arbitrary constants. Since k is a arbitrary 
parameter, according to (19)-(21), (23)-(25) and (52), we obtain three kinds of 
travelling wave solutions for the new coupled MHD system (1)-(3), namely 

1) a periodic solution with 1=  

1 1 0 2 3 0 3 5 0sin ,  sin ,  sin ,V kd k V kd k V kd kγ ξ γ ξ γ ξ= + = + = −       (53) 

1 1 0 2 3 0 3 5 0sin ,  sin ,  sin ,B kd k B kd k B kd kδ ξ δ ξ δ ξ= + = + = −       (54) 

( ) 2 2 2
1 0 0 0

33 sin sin ,
2

P kd c k d k kρ ξ ξ= + − −              (55) 

2) a soliton solution with 1= −  

1 1 0 2 3 0 3 5 0cosh ,  cosh ,  cosh ,V kd k V kd k V kd kγ ξ γ ξ γ ξ= + = + = −     (56) 

1 1 0 2 3 0 3 5 0cosh ,  cosh ,  cosh ,B kd k B kd k B kd kδ ξ δ ξ δ ξ= + = + = −     (57) 

( ) 2 2 2
1 0 0 0

33 cosh cosh ,
2

P kd c k d k kρ ξ ξ= + − −            (58) 

3) a constant solution with 0k =  

1 1 2 3 3 5,     ,     ,V V Vγ γ γ= = =                    (59) 

1 1 2 3 3 5,   ,    ,B B Bδ δ δ= = =                    (60) 

1,P ρ=                             (61) 

where ( )0 02x y z c a tξ = + + + − . The MHD equations govern the dynamics of 
the velocity and the magnetic field in electrically-conducting fluids and reflect 
the basic physics laws of conservation. These equations can be implemented to 
study various problems in plasma, liquid metals, saltwater as well as astrophysics. 
The MHD equations involve coupling between the incompressible Navier-Stokes 
equations (when the magnetic field B  is identically equal to 0) governing the 
fluid and incompressible Euler equations for 1 2 30, , , 0B ν ν ν= = . This paper 
examines the soliton solutions for the three-dimensional incompressible MHD 
equations with only magnetic diffusion (without velocity dissipation). MHD 
deals with the dynamics of an electrically conducting fluid under the influence of 
magnetic field. The magnetic field, which is present everywhere in the universe, 
generates magnetic force and this force influences the dynamics of moving fluid, 
potentially changing the geometry or strength of magnetic field itself. It has been 
found that the difference in the phase may occur between speed and fluctuations 
of the magnetic field when the kinetic and magnetic Reynolds numbers are very 
large. Since the speed and fluctuations of the magnetic field in a circular 
polarized, the phase difference makes them no longer parallel or anti-parallel 
like that in the incompressible MHD. 

3. Conclusion 

This paper presents stabilized exact soliton solutions for the incompressible 
MHD equations. These stabilized soliton solutions are focused at incompressible 
fluids and the main technological applications in mind are those related with 
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material processing techniques. The flow considered here is incompressible and 
parallel to the magnetic filed. Several classes of soliton solutions are obtained in 
three-dimensional Cartesian coordinates. Previously, Neukirch [18] obtained 
self-consistent three-dimensional exact solutions of the MHD equations and 
solved the basic nonlinear equation in terms of Jacobi elliptic functions. Petrie 
and Neukirch [19] used a transformation method to study equilibria of the 
MHD equations and solved the problem vanishing one component of the 
magnetic field. Petrie et al. [20] obtained two-dimensional exact solutions of 
MHD equations with application to solar prominences. Here, we have obtained 
three-dimensional exact solutions in the presence of mass flow and all the three 
components of the magnetic field. We can discuss the possible applications of 
some of the obtained solutions to flow phenomena of solar prominences. 
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