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Abstract 
Let M be a matroid defined on a finite set E and L E⊂ . L is locked in M if 

|M L  and ( )* | \M E L  are 2-connected, and ( ) ( ){ }*min , \ 2r L r E L ≥ . In 

this paper, we prove that the nontrivial facets of the bases polytope of M are 
described by the locked subsets. We deduce that finding the maximum-weight 
basis of M is a polynomial time problem for matroids with a polynomial 
number of locked subsets. This class of matroids is closed under 2-sums and 
contains the class of uniform matroids, the Vámos matroid and all the ex-
cluded minors of 2-sums of uniform matroids. We deduce also a matroid 
oracle for testing uniformity of matroids after one call of this oracle. 
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1. Introduction 

Sets and their characterisitic vectors will not be distinguished. We refer to Oxley 
[1] and Schrijver [2] about, respectively, matroids and polyhedra terminolgy and 
facts. 

Let M be a matroid defined on a finite set E. ( )M , ( )M  and the 
function r are, respectively, the class of independent sets, bases and the rank 
function of M. *M , ( )* M  and the function *r  are, respectively, the dual 
matroid, the class of cobases and the dual rank function of M. For any X E⊂ , 
( )X  and ( )* X  are, respectively the class of bases of |M X  and cobases 

of * |M X . The polyhedra ( )Q M  and ( )P M  are, respectively, the convex 
hulls of the independent sets and the bases of M. Suppose that M (and *M ) is 
2-connected. A subset L E⊂  is called a locked subset of M if |M L  and 
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( )* | \M E L  are 2-connected, and their corresponding ranks are at least 2, i.e., 
( ) ( ){ }*min , \ 2r L r E L ≥ . It is not difficult to see that if L is locked then both L 

and \E L  are closed, respectively, in M and *M  (That is why we call it 
locked). We denote by ( )M  and ( )M , respectively, the class of locked 
subsets of M and its cardinality, which is called the locked number of M. Given a 
positive integer k (k does not depend on M or E ), the class of k-locked 
matroids, denoted by k , is the class of matroids M such that ( ) ( )kM O E∈ . 

0  is the class of matroids M such that ( )M =∅ , i.e., ( ) 0M = . For a given 
nonegative integer k, k  is called also a polynomially locked class of matroids 
and its members are called k-locked or polynomially locked matroids. It is not 
difficult to see that the class of lockeds subsets of a matroid M is the union of 
lockeds subsets of the 2-connected components of M. The locked structure of M 
is the quadruple ( ( )M , ( )M , ( )M , ρ ), where ( )M  and ( )M  
are, respectively, the class of parallel and coparallel closures, and ρ  is the rank 
function restricted to ( ) ( ) ( ) { },M M M E∅     .  

Given a weight function Ec R∈ , the maximum-weight basis problem 
(MWBP) is the following optimization problem:  

Maximize{ ( )c B  such that ( )B M∈ } 

The corresponding maximum-weight independent problem is clearly 
(polynomially time) equivalent to MWBP. MWBP is polynomial on E  and 
θ , where θ  is the complexity of the used matroid oracle [3]. Even if we use the 
approach introduced by Mayhew [4] by giving the list of bases (for example) in 
the input, MWBP is polynomial on the size of the input. However, as Robinson 
and Welsh [5] note, no matter which of the ways to specify a matroid, the size of 
the input for a matroid problem on an n-element set is ( )2nO . It follows that 
MWBP is not polynomial in its strict sense, that is on E . We prove that 
MWBP is polynomial on E  for polynomially locked classes of matroids, i.e., 
for any matroid kM ∈  (for a fixed k). This class of polynomially locked 
matroids is closed under 2-sums and contains the class of uniform matroids, the 
Vámos matroid and all the excluded minors of 2-sums of uniform matroids. 
These excluded minors are ( )4M K , 3W , 6Q  and 6P  [6]. It follows that this 
class is larger than 2-sums of uniform matroids.  

Testing Uniformity of matroids (TUM) is to provide an algorithm in which 
the matroid is represented by an oracle and which decides whether the given 
matroid is uniform or not after a number of calls on the oracle which is bounded 
by a polynomial in the size of the ground set. Jensen and Korte [7] proved that 
there exists no such algorithm in which the matroid is represented by an 
independence test oracle (or an oracle polynomially related to an independence 
test oracle). In this paper, we give a matroid oracle which answers this question.  

The remainder of the paper is organized as follows: in Section 2, we give all 
facets of the bases polytope, then, in Section 3, we deduce two consequences of 
this characterization. The first one is that MWBP is polynomial (time) for 
polynomially locked classes of matroids, and the second one is a polynomial 
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time algorithm via a new matroid oracle for testing if a given matroid is uniform 
or not. In Section 4, we describe some polynomially locked classes of matroids, 
and we conclude in Section 5. 

2. Facets of the Bases Polytope 

A description of ( )Q M  was given by Edmonds [3] as follows.  
Theorem 2.1. ( )Q M  is the set of all Ex R∈  such that  

( ) 0 for anyx e e E≥ ∈                      (1) 

( ) ( ) for anyx A r A A E≤ ⊆                    (2) 

Later, a minimal description of ( )Q M  was given also by Edmonds [8] as 
follows.  

Theorem 2.2. The inequality (2) is a facet of ( )Q M  if and only if A is closed 
and 2-connected.  

It is not difficult to see that ( )P M  is the set of all Ex R∈  satisfying the 
inequalities (1), (2) and  

( ) ( )x E r E=                          (3) 

It seems natural to think that the inequality (2) is a facet of ( )P M  if and 
only if A is closed and 2-connected. This is not true because:  

Lemma 2.3. If the inequality (2) is a facet of ( )P M  then A is a locked subset 
of M.  

Proof. It suffices to prove that if X is closed and 2-connected but LE \  is 
not 2-connected in the dual then the inequality (2) is not a facet. In fact, there 
exist A and B two disjoint subsets of E such that \E X A B=   and 

( ) ( ) ( )* * *\r E X r A r B= + , that is, ( ) ( ) ( ) ( )\ \E X r E r X A r E r E A− + = − +

( ) ( )\B r E r E B+ − + . It follows that: ( ) ( ) ( ) ( )\ \r E r X r E A r E B+ = + ≥

( ) ( ) ( ) ( )\ \x E A x E B x E x X+ = + , which implies the inequality (2). So the 
inequality (2) is redundant and cannot be a facet.  

We give now a minimal description of ( )P M . A part of the proof is inspired 
from a proof given by Pulleyblank [9] to describe the nontrivial facets of ( )Q M . 
Independently, Fujishige [10], and Feichtner and Sturmfels [11], gave a 
characterization of nontrivial facets of ( )P M . We give here below a new and 
complete formulation with a new proof.  

Theorem 2.4. A minimal description of ( )P M  is the set of all Ex R∈  
satisfying the equality (3) and the following inequalities:  

( ) 1 for any parallel closurex P P E≤ ⊆               (4) 

( ) 1 for any coparallel closurex S S S E≥ − ⊆             (5) 

( ) ( ) for any locked subsetx L r L L E≤ ⊆               (6) 

Proof. Without loss of generality, we can suppose that M is without parallel or 
coparallel elements so the inequalities (5) become as (1) and the inequalities (4) 
become the following:  
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( ) 1 for anyx e e E≤ ∈                       (7) 

Let ( )C M  be the cone generated by the incidence vectors of the bases of M. 
It suffices to prove that the minimal description of ( )C M  is given by (1) and 
the following inequalities:  

( ) ( ) ( ) for anyx e x E r E e E≤ ∈                  (8) 

( ) ( ) ( ) ( ) for any locked subsetx L r L x E r E L E≤ ⊆          (9) 

It is not difficult to see via induction and operations of deletion and 
contraction that the inequalities (1) and (8) are facets of ( )C M . It remains to 
prove that the inequality (9) is a facet of ( )C M  if and only if L is a locked 
subset of M. According to Lemma 2.3, it suffices to prove the inverse way. Note 
that (9) is equivalent to the following inequality:  

( ) ( )( ) ( ) ( ) ( )\ 0 for any locked subsetr L r E x L r L x E L L E− + ≥ ⊆
  

 (10) 

Let 0ax ≥  be a valid inequality for ( )C M  which is tight for all ( )B L∈ .  
Claim 1: j ka a=  for all j and k of L.  
Suppose this is not true. Let { }such that takes minimum overjX j L a L= ∈ , 

\Y L X=  and ( ) ( )B L Y∈   . Since L is 2-connected in M, and since, by 
assumption, X is a strict subset of L, then ( )r X B X>  . Thus there exists 

\e X B∈  such that ( )B X e   is an independent set of M. It follows that 
there exists f B Y∈   such that ( ) ( )\B B f e L= ∈

  . But: ( ) ( )a B a B=

( ) ( ) ( )a f a e a B− + < , a contradiction.  
Claim 2: For any X E⊆ , ( )B X∈  if and only if ( )*\ \E B E X∈ .  
It suffices to prove one way and use duality for the other way.  
Let ( )B X∈  then  

( ) ( ) ( )
( ) ( )

( ) ( )

* *

* *

*

\

\ \

\ \ .

B X r X X r E r E X

E E X r E r E X

r E E X r E X

= = − +

= − − +

= − +



 

Thus,  

( ) ( ) ( )

( ) ( )
( )

*

*

\ \ \ \

\

\ \ \

\ .

E B E X E X B E X

E X B B X

E X B r E E X r E X

r E X

= −

= − +

= − + − +

=

 



 

Since \E B  is a basis in the dual, then ( )*\ \E B E X∈ .  
Claim 3: j ka a=  for all j and k of \E L .  
Using claim 2, \E L  being 2-connected and a similar argument on \E B  

as in claim 1, we conclude.  
Claim 4: 0ax ≥  is a multiple of inequality (10).  
By claims 1 and 3, 0ax ≥  becomes: ( ) ( )\ \ 0L E La x L a x E L+ ≥ . Thus, for 

( )B L∈ , we have:  

( )\ \ 0,L E La B L a B E L+ =   
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that is,  

( ) ( ) ( )( )\ 0.L E La r L a r E r L+ =  

But ( ) ( )La r L r E=  and ( )\E La r L=  is a solution of this equation, so we 
conclude.  

3. MWBP and TUM 

Since the bases polytope is completly described by the locked structure of the 
matroid, so a natural matroid oracle follows. 

The k-locked oracle  
Input: a nonegative integer k and a matroid M defined on E.  
Output: 1) No if kM ∉ , and 

2) ( ( )M , ( )M , ( )M , ρ ) if kM ∈ . 
Note that this oracle has time complexity ( )1kO E +  because we need to 

count at most 1kE +  members of ( )M  in order to know that M is not 
k-locked, even if the memory complexity can be ( )( )O E M+  . Actually this 
matroid oracle permits to recognize if a given matroid is k-locked or not for a 
given nonegative integer k (which does not depend on M or E ).  

The first consequence of Theorem 2.4 then follows.  
Corollary 3.1. Given a nonegative integer k, a matroid kM ∈ , the k-locked 

oracle to acess M and a weight function Ec R∈ . Then there exists a polynomial 
time algorithm on the size of ( )E M  for solving MWBP in M.  

Proof. Let M be a such matroid. Since kM ∈  then it can be described by its 
locked structure in the input of MWBP by using the k-locked oracle. MWBP is 
equivalent for optimizing on ( )P M , which is also equivalent to separating on 
( )P M . Since the number of facets of ( )P M  is ( )2 E M+   then separating 

can be done on ( )( )O E M+  . But M is polynomially locked, hence ( )M ∈

( )kO E  and separating on ( )P M  can be done on ( )kO E .  
The k-locked oracle is stronger than the rank and the independence oracles 

for polynomially locked matroids:  
We can get the rank of any subset X E⊆  by choosing the weight function c 

equal to the characteristic vector of X and optimizing on ( )P M , which can be 
done in polynomial time. The obtained optimum value of c is the requested 
rank.  

For the independence oracle, we can decide if a subset X E⊆  is independent 
or not by choosing the same previous weight function and decide that X is 
independent if it is included in the optimum basis, and not independent 
otherwise.  

For testing uniformity of matroids, we need the following result [6].  
Theorem 3.2. A 3-connected matroid M is uniform if and only if ( ) 0M = .  
We can see through the proof of this theorem that ( ) 0M =  if M is uniform 

whatever its connectivity. For disconnected matroids, we have the following 
result [1].  

Theorem 3.3. A disconnected matroid M is uniform if and only if ( )r M E=  
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or ( ) 0r M = .  
For 2-connected matroids, we can write:  
Proposition 3.4. A 2-connected matroid M is uniform if and only if one of 

the following properties holds:  
i) ( ) 0M =  and ( ) ( )M E M= =  ;  
ii) ( ) 1M = ;  
iii) ( ) 1M = .  
So we can now characterize uniform matroids as follows.  
Corollary 3.5. M is uniform if and only if one of the following properties 

holds:  
i) ( ) 0M =  and ( ) ( )M E M= =  ;  
ii) ( ) 1M = ;  
iii) ( ) 1M = ;  
iv) ( )r M E= ;  
v) ( ) 0r M = .  
A natural matroid oracle follows. 
The locked number oracle  
Input: a matroid M defined on E.  
Output: ( )M , ( )r M , ( )M , ( )M . 
Note that, except for ( )M , all other outputs of this oracle can be computed 

in a polynomial time given a locked structure of M. We can now give an 
algorithm which tests if a given matroid is uniform after one call of the locked 
number oracle. 

Testing Uniformity of Matroids  
Input: a matroid M defined on E.  
Output: a) M is uniform if one of the following properties holds: 

i) ( ) 0M =  and ( ) ( )M E M= =  ; 

ii) ( ) 1M = ; 
iii) ( ) 1M = ; 
iv) ( )r M E= ; 
v) ( ) 0r M = . 

b) Else, M is not uniform. 

4. Some Polynomially Locked Matroids 

Since 2-sums preserve k-lockdness for 1k ≥  [12], ( )( )4 4M K = , ( )3 3W = , 
( )6 2Q = , ( )6 1P = , ( )8 5V = , then we can say:  
Theorem 4.1. If 1k ≥  then k  is closed under 2-sums, contains all the 

excluded minors of 2-sums of uniform matroids and the Vámos matroid.  
In particular, 1  is closed under 2-sums and contains all the above matroids.  
It follows that 1  contains strictly 2-sums of uniform matroids. 

5. Conclusion 

We have given a complete description of all facets of the bases polytope of a 
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matroid and deduce two consequences. One about MWBP and the second about 
TUM. Future investigations can be characterizing some or all polynomially 
locked classes of matroids. 
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