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Abstract 
 
The object of the present paper is to study the transient magneto-thermo-visco-elastic stresses in a non-ho- 
mogeneous anisotropic solid under initial stress. The system of fundamental equations is solved by means of 
a dual reciprocity boundary element method (DRBEM). In the case of plane deformation, a numerical 
scheme for the implementation of the method is presented and the numerical computations are presented 
graphically to show the effects of initial stress and inhomogeneity on the displacement components and 
thermal stress components. 
 
Keywords: Magneto-Thermoviscoelastic Stresses, Initial Stress, Inhomogeneity, Anisotropic, Dual  
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1. Introduction 
 
An increasing attention is being devoted to the interac-
tion between magnetic field and strain field in an initially 
stressed anisotropic viscoelastic solid due to its many 
applications in modern aeronautics, astronautics, earth-
quake engineering, soil dynamics, nuclear reactors and 
high-energy particle accelerators. In recent years, an im-
portant number of engineering and mathematical papers 
devoted to the numerical solution have studied the over-
all behavior of such materials. El-Naggar, et al. [1,2] 
proposed explicit finite difference scheme to obtain ther- 
mal stresses in a non-homogeneous media. The boundary 
element method is well known for its accuracy and effi-
ciency in stress analysis (see, for example, Brebbia and 
Nardini [3], Wrobel and Brebbia [4], Partridge, et al. [5], 
Divo and Kassab [6], Gaul, et al. [7], Matsumoto, et al. 
[8], Fahmy [9-11], Davi and Milazzo [12]). 

The idea of the present paper is to study the transient 
magneto-thermo-visco-elastic stresses in a non-homo- 
geneous anisotropic initially stressed solid. The formula-
tion is tested through its application to the problem of a 
solid placed in a constant primary magnetic field acting 
in the direction of the z-axis. The governing equations 
are solved by means of a dual reciprocity boundary ele-
ment method (DRBEM) and then numerical calculations 

are made for the temperature, displacement components 
and thermal stress components. The validity of DRBEM 
is examined by considering a magneto-thermo-visco- 
elastic solid occupies a rectangular region and good 
agreement is obtained with existent results. The results 
indicate that the effects of initial stress and inhomogene-
ity are very pronounced. 
 
2. Formulation of the Problem 
 
Here, we present the basic equations of the theory of 
magneto-thermoviscoelasticity, which will be used for 
the solution of the problem described above. With refer-
ence to a Cartesian frame denoted by 0xyz, consider an 
initially stressed anisotropic solid is placed in a constant 
primary magnetic field H0, acting in the direction of the 
z-axis. Here we address the generalized two-dimensional 
deformation problem in xy-plane only, therefore all the 
variables are constant along the z-axis. In the 0xy plane, 
the solid occupies the region  

  , : 0 1,0 1R x y x y      which is bounded by a  

simple closed curve C.  
In non-dimensional form the governing equations of 

magneto-thermo-viscoelasticity for an anisotropic solid 
can be written as follows (see Fahmy and El-Shahat [13]) 
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, , Γpj j pj j pj pu                    (1) 

, , ,pj pjkl k l pjC u T x y                  (2) 

  
  

,pj p j j p jp k k

p p

h H h H h H

h

    

  u H
        (3) 

Γ P j p
pj

p j

u u

x x

  
    

                 (4) 

,pj pjk T c T r    



                 (5) 

The initial and boundary conditions for the current 
problem are assumed to be written as 

     , ,0 , ,0 0 for ,k ku x y u x y x y R C       (6) 

     k 3, , , , τ  for ,ku x y Ψ x y x y  C

 

        (7) 

      4, , , ,  for ,k kt x y x y x y C             (8) 

     , ,0 ,  for ,T x y f x y x y R C          (9) 

      1, , Η , ,  for , ,  0T x y x y x y C          (10) 

      2, , , ,  for , ,  0q x y h x y x y C           (11) 

where 1x  and 2x  are the same expressions x  and  
respectively, 

y

pj  is the mechanical stress tensor, pj  
Maxwell’s electromagnetic stress tensor, k  is the dis-
placement, T is the temperature,  is the initial stress 
in the solid, 

u
P

 pjklC C


pjkl klpj jpkl  and  C    C
pj pj jp       are respectively, the constant elastic 

moduli and stress-temperature coefficients of the anisot-
ropic medium,  is the viscoelastic material constant, 
  is the magnetic permeability,  is the perturbed 
magnetic field, 

h

pj  are the thermal conductivity coeffi-
cients satisfying the symmetry relation 

k 
pj jpk  k   and 

the strict inequality  2

12k k k11 22  0   holds at all 
points in the medium,   is the density,  is the spe-
cific heat capacity of the solid and 

c
  is the dimen-

sionless time, r  is the heat source density and  is 
the Euclidean distance between the field point 

r
x  and 

the load point  . Also, k , Ψ ,Ηk  and h  are suita-
bly prescribed functions of  , ,x y  , f  is suitably 
prescribed function of  ,x y ,  and  are non- 
intersecting curves such that 1 2 ,  and 4C  
are non-intersecting curves such that  and 

 are the tractions defined by 

1C
C C 

2

3C

3 

C

C C C
C

t n
4

kt k kj j . 
A superposed dot denotes differentiation with respect 

to the time and a comma followed by a subscript denotes 
partial differentiation with respect to the corresponding 
coordinates. 

We focus our attention to the case of inhomogeneity 
along x-axis, so we characterize the elastic constants 

pjklC , magnetic permeability  , initial stress P , ther- 

mal conductivity coefficients pjk   and density   of 
non-homogeneous material by  

   
 

1 , 1 ,

1 , P P

m m

pjkl pjkl pj

m m

C C x x

x x 

   

     1

pj 



m  

      (12) 

   1 , 1 .pj pjk k x x    m
        (13) 

where pjk , lC  , , P pj  and k   are constants (the 
values of pjklC ,  , P , pj  and k     in homogene-
ous matter) and m is a rational numbers. 

In terms of the definitions (12) and (13), Equations (1) 
and (5) can be written as follows 

 

   1 1

, ,

2

P 1
m j p

pj j pj j
p j

p p

u u
x

m m

x x

x x u

 

 

  
      

   x





r

       (14) 

,pj pjk T c T                 (15) 

With the heat flux vector pq  given by Fourier’s law 

,p pj jq k T                   (16) 

where pj

It is usually difficult to find out the analytical solutions 
of such state equations except for some special cases.  

k and  are taken to be constant in . c R

 
3. Numerical Implementation 
 
The main objective of the numerical implementation is to 
describe the implementation of the DRBEM formulation 
for the solution of the Equations (14) and (15). A more 
extensive historical review and applications of dual re-
ciprocity boundary element method may be found in 
Brebbia, et al. [14], Partridge and Wrobel [15], Nardini 
and Brebbia [16], Albuquerque, et al. [17]. 
 
3.1. Temperature Field  
 
Weighting (15) with a test function  yields *T

 * *
,R R

dR= dRpj pjk T T c r T  T         (17) 

Applying Gauss’s theorem, integration by parts, 
Green’s second identity and sifting property of the Dirac 
distribution, we obtain the representation formula 

     * * *

C R
C dT q T T q d c T r     R T    (18) 

According to the DRBEM, the surface of the solid has 
to be discretized into boundary elements. In order to 
make the implementation easy to compute, we use  
collocation points on the boundary  and another i  
in the interior of  so that the total number of interpo-
lation points is 

bN
NC

R
N Nb iN  . 
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According to Cho, et al. [18], a function of the form 

   
1

N

j k w
k

f a Φ x x p


   x  

where  is a continuous function in the Φ xy

f

1

-plane and 

w  is a polynomial of degree  is called a radial basis 
function (RBF). The importance of splines is that they 
can provide interpolatory approximations to  for very 
general sets of interpolation points  

p w

N

kx
k

 in the xy- 
plane. 

In the xy -plane a spline is of the form 

   2 log ,  1n nΦ r r n            (19) 

where r x    is the Euclidean distance between the 
field point x  and the load point  . and w  is a 
polynomial of degree . For  these are the 
thin plate splines (TPS) 

p
w n 1n 

   1 2 logΦ r r  and  1p ax by c  

Thus, the particular solution of the temperature can be 
approximated as 

   
1

Χ
N

q
k k w

k

T a Ψ x x


            (20) 

where 

     2Δ ,  k k k kΨ Ψ Φ x Φ x Φ kx x     

and 
2ΔΧ Χw w p  w



 

Consequently, the dual reciprocity representation for-
mula can be written as follows 

   
   

* *

C

N
* *

C
q 1

dC

dCq q q

T T q q T

T T q q T



q 


 

  



 
     (21) 

In which all domain integrals have been transformed 
to the boundary. 

The field variables  and  are then approximated 
by means of shape functions 

T q

k  and nodal values kT


 
and  as follows kq



    
1

, ,
N

T
k k k

k

T q T q Φ T q


 
  ,


        (22) 

where ,  and T


q
 TΦ  are matrices 

We can also approximate the particular solutions  
and  on the boundary as the unknown field variables 
by means of nodal values  and  as follows 

qT
qq

q
kT


q
kT


    
1

, ,
N

q q q q T q q
k k k

k

T q T q Φ T q


 
  ,





     (23) 

where  and  are matrices qT qq


Using (22) and (23) and applying the point collocation 
procedure to (21), we have the following system of equa-
tions 

 
1

N
q q

q

T q T q q    


  
  

         (24) 

Let 
1 2 1 2

1 2

  ,     ,  

   

N N

TN

T T T q q q

   

       

   

Τ
      

 


  (25) 

Using (25) into (24) we have 

 T q       Τ
 

            (26) 

where the matrices Τ


 and 


 contain the particular 
solutions.  

The generalized source term in (18) is approximated 
with a series of given source source terms qf  and un-
known coefficients q  as follows 

1

N
q q

q

c T r f 


                (27) 

Then, by applying a point collocation procedure to 
Equation (27) we obtain 

 c T r F    
              (28) 

Which can be substituted into (27) producing 

       ΒT T q       
           (29) 

where 

  1, Β ,c Q T          


F
 

      (30) 

In order to solve the system (29), the nodal vectors are 
subdivided into known and unknown parts denoted by 
the superscripts  and u  k

   1, C , ,k u u kT q T q 2C
  

            (31) 

The following matrix equation is obtained from (29): 

 
 

 
 

 
 

 
 

11 12 11 12

21 22 21 22

111 12

221 22

k k

uu

k

u

T T

TT

q B

q B

  
 

  
  

                      
    

     
        

 











 

 
  (32) 

The unknown fluxes  uq t


 are obtained from the 
first row of matrix Equation (32) are expressed as fol-
lows 

         

     

112 11 12 11

12 11 1            

u k u

u k

q T T

T q B

kT     

    

   
   

 
  

 

 
(33) 
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Making use of (33) we can write the second row of 
matrix Equation (32) as follows 

     u u u u kT T Q   
 
         (34) 

where 

          ,k k k k k k k kQ B q T T         
 


 
  

  122 22 22 12 ,u  


     

  122 22 22 12 ,u    


   

       
12 22 12 1 ,kB B B    


 


 

  121 22 12 11,k    


   

  121 22 12 11,k  


     

  121 22 12 11.k    


   

At a time step , Equation (34) can be written in 
the following form 

1n 

1 1
u u u u k

n nT T Q  
 
 1n             (35) 

where 

         1 1 1 1 1
k k k k k k k k
n n n n nQ B q T T             

 
  

We take the finite difference grids with   as the 
time step, and use the subscripts  to denote the nt  
discrete time. A mesh is defined by 

n h

n   , n    being the time step 
Using finite difference, we can approximate the tem-

perature as follows 

1
1

n
n

T T
T n












 
              (36) 

Hence, we can write 

1
u u k

n nT  
  1             (37) 

where 

1 1

u
k k
n nQ T

  


 u
n  

u
u u 


 



 

Thus, with  determined, the remaining task 
is to solve (14) subject to (6), (7) and (8). 

 , ,T x y t 

 
3.2. Displacement Field 
 
Making use of (2)-(4), (12) and (13), we can write (14) 
as follows 

  1Λ P

         

pk k p pl p k k p jp

p p p

L u u D D u D T D

u b b



  

    

  




  (38) 

where 

1

,  ,

,  
m

Λ Λ
1

,

pk pjk pjk pjkl
j l

p pj j
j

L D D C
x x

D
x x

 

 
  

 

 
       

 

2
0 1Λ ,  .j p

pl p jp
p l p

u u
D H D

x x x
 

     
             jx





 

When the temperature field is known, the displace-
ment field is obtained by solving (38), where the inertia 
term pu  , the magnetic term pl , the viscosity term 

1

kD u
Λ p k kuD , the temperature gradient p  and the initial 
stress term 

D T
P jpD  are treated as the body forces. 

On the basis of the method of weighted residuals, the 
differential Equation (38) can be transformed to the inte-
gral equation in the following form 

  *

R
dR 0pk k p pL u b u             (39) 

where *
pu  is a weighting function and  is the ap-

proximate solution. 
ku

Integration by parts twice using the divergence theo-
rem of Gauss as in Fahmy [11] yields 

 
 

* * *

R

* * *

C

dR

dC

pk k p pk k p

pk k p pk k p

L u u L u u

G u u G u u

  

   




        (40) 

where the traction vectors on the boundary are 

,

* * * *
,

 and

 

p pjkl k l j pk k

p pjkl k j l pk k

t C u n G u

t C u n G u

  

  
        (41) 

Using the symmetric elasticity tensor  pjkl kjplC C  
Therefore, it follows that 

2 2
*

pk pjkl kjpl pk
l j j l

L C C L
x x x x

 
    

   
     (42) 

*
pk pjkl j kjpl l p

l j

G C n C n G
x x

 
    

  k       (43) 

Using Equations (41), (42) and (43), the Equation (40) 
can now be rewritten in the form 

 
 

* *
, ,R

* *

C

dR

dC

pjkl k lj p pjkl k lj p

p p p p

C u u C u u

t u t u

    

 




     (44) 

We define the fundamental solution  by the rela-
tion 

*
mku
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 * ,jl mk pmL u x    .             (45) 

If we replace the weighting functions  in (44) by 
, then we have 

 *k
 *mk


 
 

* *
, ,R

* *

C

dR

dC

pjkl k lj mp pjkl mk lj p

p mp mp p

C u u C u u

t u t u

    

 




    (46) 

From (38), (45) and (46), the representation formula 
may be written as 

         
   

* *

C

*

R

, ,

              , d R

m mp p mp p

mp p

u u x t x t x u x

u x b x

  

 

 






dC



 (47) 

Let  

 
 

1

N N

q 1 q 1

Λ P

      

p p pl p k k p j

q q q q
pn n pk kn n

b u D D u D T D

f α L u α

 

 

     

  

 p

  (48) 

Using the TPS as in Cho, et al. [18], we can write the 
particular solution of the displacement as follows 

   
2

04 2

4 4

4 log
log ,  0

4 4
log( ) ,  0

2

q
kn

r r
K r r r

u

r


 


 


       

       

4

4




  

(49) 

where 0K  is the Bessel function of the third kind of 
order zero and 0.5772156649015328  , which is 
known as Euler’s constant.  

Hence, the traction particular solution q
pnt  and source 

function q
pnf  can be obtained by evaluating  

, ,  q q q q
pn pjkl kn l j pk kn pt C u n L u f n

q

dC q

         (50) 

On the basis of these considerations, the integral do-
main can be approximated as 

  
N

* *

R R
q 1

dR dRq
mp p pk kn mp nu b L u u α



          (51) 

The use of (51) together with the dual reciprocity 

 
 

* *

R

* *

C

dR

dC

q q
pk kn mp pk mk pn

q q
mp pn mp pn

L u u L u u

u t t u



 




       (52) 

Gives rise to 

    

*

R

N
* * *

R C
q 1

dR

= dR

mp p

q q q
pk mk pn mp pn mp pn n

u b

L u u u t t u α







 



  
 (53) 

From (45), one may derive  

   *

R R
dR , dRq q

jl mk pn pm pn mnL u u x u uq         (54) 

Making use of (47), (53) and (54) we can write the 
dual reciprocity representation formula as follows 

   
    

* *

C

* *
nC

1

dC

            dC

m mp p mp p

N
q q q
mn mp pn mp pn

q

u u t t u

u u t t u α






 

  



  q
 (55) 

The representation formula (55) is only valid if   
lies inside the domain . To obtain an expression that 
contains only boundary variables, the load point 

R
  has 

to be moved to the boundary. Therefore, the boundary is 
deformed by a small circular region with radius   
around the load point C   as shown in Figure 1.  

According to references [11], [19] and [20], the dual 
reciprocity boundary integral equation can be expressed 
as  

 

  

* *

C C

N
* *

nC C
q 1

dΓ dΓ

Γ Γ

pj p p mp mp p

q q q
pj pn pn mp mp pn

c u u t u t

c u u t d u t d α






 

  

 

 

�

�

where  is the Cauchy principal value symbol. 

q
 (56) 

The unknown field variables and the particular solu-
tions are respectively approximated by means of nodal 
values  k

  and shape functions k  

    
1

, , Φ ,
N

T
k k k

k

u t u t u t


 
  

        (57) 

    
1

, , Φ ,
N

q q q q T q q
k k k

k

u t u t u t


 
         (58) 

where  k
  and Φ  are matrices. 

On the basis of these approximations, and using the 
point collocation procedure, the dual reciprocity bound-
ary integral Equation (56) results to the following system 
of equations 

   
1

N
q q q

q

u t u t     


  
  

        (59) 

 

 

Figure 1. Geometry of the deformed boundary. 
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

By letting 
1 2 1 2

1 2

        

 

,

 

,

 

N N

TN

U u u u t t t

   

     

   

     
 


  (60) 

We can write (59) as follows 

       u t U          
 

       (61) 

The coefficient vector     can be calculated from 
(48) using the point collocation procedure, which yields 

     u b F      


             (62) 

Thus, (61) yields the system  

   u u t     
 

              (63) 

where 

     1,  ,  .U F b        


� �  �

4C

 (64) 

By subdividing the nodal vectors into known and un-
known parts as follows 

   3, C , ,k u u ku t u t
  

           (65) 

where the superscripts  and  denote, respectively, 
the known and unknown parts 

k u

Hence we can write the system (63) in the following 
form  

 
 

 
 

 
 

 
 

11 12 11 12

21 22 21 22

111 12

221 22

k k

u u

k

u

u u

u u

t

t

  
  

  
  

      
      

        
   

     
        

 

 







 

 






   (66) 

The unknown fluxes  ut 


 can be obtained from the 
first row of (66) as follows 

         
     

112 11 12 11

12 11 1            

u k u

u k

t u u

u t

ku     

    


  

   

  



 



 


(67) 

With the aid of (67) into the second row of (66) we 
obtain 

    u u u u ku u Q    
 
         (68) 

where 

         k k k k k k k kQ t t u         
   
   

  122 22 12 12u  


     

  122 22 12 12u    


   

  121 22 12 11k  


     

  121 22 12 11k    


   

       
12 22 12 1k     


 

    

We can write (68) at time step  1n 

   1 1
u u u u k

n n nu u Q  1      
         (69) 

where 

         1 1 1 1 1
k k k k k k k k
n n n n nQ t u u             




  
   

Now, we consider an implicit backward finite differ-
ence scheme for solving the system of ordinary differen-
tial Equation (69), the so-called Houbolt’s algorithm is 
applied to reduce (69) to an algebraic system. To do this, 
the velocities 1nu   and accelerations  at time step 1nu 

1n   are approximated as follows  

 1 1 1

1
11 18 9 2

6n n n nu u u u
t     


   

 2nu       (70) 

 1 1 1

1
11 18 9 2

6n n n nu u u u
t     


   

 2nu      (71) 

Substituting (94) and (95) into (93) we have 

  1 1
u u k

n nu                   (72) 

where 

2

2 u
u u

t
  




 

 1 1 12
5 4

u
k k
n n n n nQ u u

t      


   2u  

We apply successive over-relaxation (SOR) as de-
scribed in Golub and Van Loan [21] to solve the system 
(96). For every time step  the values of 11n  u

nu 


 are 
established. Once these values have been obtained, the 
unknown 1

u
nu 


 and 1
u
nu 


  can be obtained from (70) and 

(71), respectively. For the case in which , the pro-
cedure described in Bathe [22] is used together with the 
initial conditions to derive 1  and 2 . Lastly, we 
compute the traction vector  using (67). 

0n 

u

1
u
nt 

u

 
4. Numerical Results and Discussion 
 
The present work should be applicable to any mag-
neto-thermo-viscoelastic deformation problem. The ap-
plication is for purpose of illustration; we do not intend 
to validate the results in a quantitative way because we 
have no experimental data at hand; this may be justified 
because our objective is to introduce a viable numerical 
technique for studying a model rather than to study any 
physical behaviors of it (see, for example, Ahmed [23], 
Kanaun [24] and Monsia [25]). Such a technique was 
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





discussed in Abd-Alla et al. [26-28] who solved the spe-
cial case from this study in the absence of viscosity and 
inertia. To achieve better efficiency than the technique 
described in Abd-Alla, et al. [26-28], we use thin plate 
splines into a code, which is proposed in the current 
study. We extend the study of Abd-Alla, et al. [26-28], to 
include the viscosity interactions and the inertia term. 
Thus, it is perhaps not surprising that the numerical val-
ues obtained here are in very good agreement with those 
obtained by Abd-Alla et al. [26-28].  

The example considered by Sladek, et al. [29] may be 
considered as a special case of the current general prob-
lem in the context of the uncoupled thermoelasticity the-
ory. Also, there are alot of practical applications may be 
deduced as special cases from this general study and may 
be implemented in commercial finite element method 
(FEM) software packages FlexPDE 6. 

In the special case under consideration, the results of 
the displacement 1  are plotted in Figure 8 to show the 
validity of the proposed method. These results obtained 
with the DRBEM have been compared graphically with 
those obtained using the Meshless Local Petrov-Galerkin 
(MLPG) method of Sladek, et al. [29] and also the re-
sults obtained from the FlexPDE 6 are shown graphically 
in the same figures to confirm the validity of the pro-
posed method. It can be seen from this figure that the 
DRBEM results are in excellent agreement with the re-
sults obtained by MLPG and finite element methods, 
thus confirming the accuracy of the DRBEM.With a 
view to illustrate the numerical implementation pre-
sented earlier, we consider a monoclinic graphite- epoxy 
as an anisotropic magneto-thermo-visco-elastic solid 
with the following physical constants: 

u

Elasticity tensor 

430.1 130.4 18.2 0 0 201.3

130.4 116.7 21.0 0 0 70.1

18.2 21.0 73.6 0 0 2.4
GPa

0 0 0 19.8 8.0 0

0 0 0 8.0 29.1 0

201.3 70.1 2.4 0 0 147.3

pjklC




 

 


 

  





 

Mechanical temperature coefficient 

6 2

1.01 2.00 0

2.00 1.48 0 10 N/Km

0 0 7.52

 pj
 
   
  

 

Tensor of thermal conductivity 

5.2 0 0

0 7.6 0 W/Km

0 0 38.3
pjk

 
   
  

 

Mass density  and heat capacity 37820 kg/m 
)461 J/(kg Kc  , 0 1000000H  Oersted, 0.5    

Gauss/Oersted, 0 0.5  , , 0.5m  0.0001  . The 
boundary  is 1C 0x  , the boundary  is 3C 0x  , the 
boundary 2  is C 1x  , while 4  is . The nu-
merical values of the temperature and displacement are 
obtained by discretizing the boundary into 120 elements 

C 1x

( 120)bN   and choosing 60 well spaced out collocation 
points (N 60)i   in the interior of the solution domain. 

The initial and boundary conditions considered in the 
calculations are 

1 2 1 20 0, 1at u u u u T          

1 20 0,  0at x u u T     

1 21 0,  0
u u T

at x
x x x

  
   

  
 

1 20 0,  0at y u u T     

1 21 0,  0
u u T

at y
y y y

  
   

  
 

In order to evaluate the influence of the inhomogene-
ity on the displacements and thermal stresses in an ani-
sotropic viscoelastic solid under initial stress, the inho-
mogeneity parameter is taken to be  and for the 
homogeneous solid, we assume that . 

0.5m 
0.0m 

A comparison of the results is presented graphically 
for the following different cases: the solid line denoted 
by “A” represents the solution for homogeneous solid in 
the absence of initial stress , the dashed line de-
noted by “C” represents the solution for non-homoge- 
neous solid in the absence of initial stress, the dotted line 
denoted by “B” represents the solution for homogeneous 
solid in the presence of initial stress  and the 
dashed-dotted line denoted by “D” represents the solu-
tion for non-homogeneous solid in the presence of initial 
stress. 

(P 0)

(P 0.5)

Figure 2 shows the variation of the temperature T 
along x -axis at various values of the time  . It is no-
ticed that the temperature increases with the increase of 
x  and  . 

Figures 3-7 show the influence of the initial stress and 
inhomogeneity of the material constants on the dis-
placements 1  and 2  and thermal stresses 11u u  , 12  
and 22 . Also, they show the difference among the four 
cases “A”, “C”, “B” and “D”. 

Figure 3 shows that the displacement 1  increases 
and then decreases with the increase of 

u
x . It is noticed 

that the maximum value happens in the homogeneous 
solid in the presence of initial stress. 

Figure 4 shows that the displacement 2  decreases 
and then increases for all cases. It is clear from this fig- 

u

ure that the homogeneous and non-homogeneous curves 
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Figure 2. Variation of the temperature T with x coordinate 
(y = 1). 
 

 

Figure 3. Variation of the displacement u1 with x coordi-
nate. 
 

 

Figure 4. Variation of the displacement u2 with x coordi-
nate. 

diverge in the presence of initial stress. We can see also 
from this figure that the negative maximum value hap-
pens in the non-homogeneous solid in the presence of 
initial stress. 

Figure 5 shows that the thermal stress 11  increases 
with increasing x  for all cases. It is apparent from this 
figure that the increasing rate is more pronounced in 
non-homogeneous solid in the presence of initial stress. 

Figure 6 shows that the thermal stress 12  increases 
with the increase of x  for all cases. It will be observed 
from this figure that the increasing rate is more pro-
nounced in the presence of initial stress. 

Figure 7 shows that the thermal stress 22  decreases 
with the increase of x  for the non-homogeneous solid, 
but for homogeneous solid it increases with the increase 
of x . It is clear from this figure that the increasing rate 
is more pronounced in the presence of initial stress. 

It is clear from all of these figures that the curves of  
the displacements  and  and thermal stresses 1u 2u 11 , 
 

 

Figure 5. Variation of the thermal σ11 with x coordinate. 
 

 

Figure 6. Variation of the thermal σ12 with x coordinate. 
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Figure 7. Variation of the thermal σ22 with x coordinate. 
 

 

Figure 8. Variation of the displacement u1 with time τ for 
the three methods: DRBEM, MLPG and FEM. 
 

12  and 22  are closer in the absence of initial stress 
than in the presence of initial stress. We may also ob-
serve from these figures that the initial stress has an im-
portant effect on the magneto-thermo-visco-elastic stres- 
ses along x -axis through the material constants, thermal 
constants, magnetic constants and viscosity factor, which 
are essential parameters to be considered in the design of 
various devices. Furthermore, while there is no limitation 
in the solution procedure, all boundary and initial condi-
tions are strongly satisfied. 

This phenomenon gives clear evidence of a magneto-
thermostress-focusing effect in a non-homogeneous ani-
sotropic initially stressed viscoelastic solid. From this 
knowledge of the variation of magneto-thermo-visco- 
elastic stresses along x -axis in a non-homogeneous 
anisotropic initially stressed viscoelastic solid placed in a 
constant primary magnetic field, we can design various 
viscoelastic solids under magnetothermal load to meet 
specific engineering requirements and utilize it in meas-

urement techniques of thermoviscoelasticity. 
 
5. Conclusions 
 
The purpose of this paper is to investigate the transient 
magneto-thermo-visco-elastic stresses in a non-homo- 
geneous anisotropic body. A development of the dual 
reciprocity boundary element method for solving the 
system of fundamental equations is presented. In the case 
of plane deformation, a numerical scheme for the im-
plementation of the method is presented and the numeri-
cal computations are carried out for the temperature, dis-
placement components and thermal stress components. 
The validity of DRBEM is examined by considering a 
magneto-thermo-visco-elastic solid occupies a rectangu-
lar region and excellent agreement is obtained with exis-
tent results. The results obtained are presented graphi-
cally to show the effects of inhomogeneity and initial 
stress on the displacement components and thermal stress 
components. 
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