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Abstract

Background: The neutrophils (PMN) are our main blood cells to combat fun-
gi, bacteria, and fibrin. For normal function, an activated PMN generates a
certain concentration of reactive oxygen species (ROS). If the generated blood
ROS concentration is too low, then fungi, bacteria or fibrin might threaten the
life of the patient, and it could be of great medical interest to stimulate PMN
by physiologic drugs. Granulocyte-Colony Stimulating Factor (G-CSF) is a
cell hormone that increases the cell number of PMN and that stimulates the
individual PMN. The blood ROS generation assay (BRGA) is an innovative
physiologic test to monitor the ROS generation of PMN in blood. Here the
ROS generating action of G-CSF on normal PMN is quantified. Material ana
Methods: 40 pl 0 - 10.3 ng/ml (final conc.) G-CSF (in 5% human albumin) in
black Brand® 781608 high quality polystyrene F-microwells was incubated in
triplicate with 125 ul Hanks’ balanced salt solution (HBSS; modified without
phenol red) and 10 pl normal citrated blood. Immediately (BRGA) or after 60
min (BRGA-60-) 10 pl 5 mM luminol sodium salt in 0.9% NaCl and 10 pl 0 or
36 pug/ml zymosan A in 0.9% NaCl was added. The photons were counted
within 0 - 318 min (37°C) in a photons-multiplying microtiter plate lumino-
meter. At about 0.5 t-max, (0.5 fold the time to normal maximum) the ap-
prox. SC200 of G-CSF was determined. Results and Discussion: The approx.
SC200 of G-CSF on normal blood ROS generation was 0.2 ug/l (=20 IU/ml).
In clinical situations where an increased blood ROS generation is pharmaco-
logically required, few micrograms of G-CSF could be a sufficient dosage for
an adult patient. The BRGA helps to find out the correct stimulating G-CSF
dosage for each individual. An enhanced PMN function could favor a better
clinical outcome in situations of wanted increase of the innate immunology or
in cellular fibrinolysis. G-CSF plasma concentrations of 0.1 - 1 pg/l might fa-
vor singlet oxygen generation without immunosuppression or cell fragment-
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induced thrombin generation.
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1. Introduction

The main cells of innate immunology are the phagocytes (neutrophils = PMN,
monocytes = M@, dendritic cells = DC). Drugs that enhance the PMN function
are of great clinical relevance in many diseases where PMN are needed against
the disease [1] [2]. The present study aimed to analyze the drug granulocyte-
colony stimulating factor (G-CSF) in the blood ROS generation assay (BRGA)
[3] [4], an innovative test for whole blood ROS generation working with lumi-
nol-enhanced photons emission primarily by diluted whole blood PMN [5] [6]
[7], stimulated by typical pathophysiological septic concentrations of the fungal
compound zymosan A (ZyA; 1 - 2 ug/ml).

2. Material and Methods

40 pl 0 - 10.3 ng/ml (0 - 974 IU/ml) G-CSF (final conc.) (2nd International
WHO Standard, human rDNA derived, protein expressed in E. coli; NIBSC,
Potters Bar, UK; article nr. 09/136; 1000 ng G-CSF (containing less than 10 ng
LPS [8]), 10 mg arginine, 10 mg phenylalanine, 5 mg trehalose, 2 mg human al-
bumin, 0.01% Tween 20° dissolved in 500 ul H,O followed by 500 pl 5% human
albumin (CSL Behring, Marburg, Germany) in black high quality flat bottomed
polystyrene microwells (Brand, Wertheim, Germany; article nr. 781608), diluted
with 5% human albumin, were incubated in triplicate with 125 pl Hanks’ ba-
lanced salt solution (HBSS; modified without phenol red; SAFC Bios-
ciences-Sigma, Deisenhofen, Germany; article nr. 55037C-1000 ML) and 10 pl
freshest normal blood anticoagulated with 11 mM sodium citrate (within 30 min
after withdrawal). Immediately (BRGA) or after 60 min (BRGA-60-) 10 ul 5 mM
luminol sodium salt (Sigma, Deisenhofen, Germany) in 0.9% NaCl and 10 pl 0
or 36 pg/ml zymosan A (Sigma) in 0.9% NaCl were added. The photons were
counted within 0 - 318 min (37°C) in a photons-multiplying microtiter plate lumi-
nometer (LUmo; anthos, Krefeld, Germany) with an integration time of 0.5 s per
well. The intra-assay coefficients of variation were less than 10%. At about 0.5 t-max,
(0.5 fold the time to normal maximum) the approx. SC200 of G-CSF was determined.

HBSS consisted of 185.4 mg/1 CaCl,-2H,0, 200 mg/l MgSO,-7H,0, 400 mg/1
KCl, 60 mg/l KH,PO,, 350 mg/l NaHCO,, 8000 mg/l NaCl, 90 mg/l Na,HPO,,
1000 mg/I glucose, pH 7.0 - 7.4. Expressed in molarity, the concentrations of the
HBSS components are: 1.3 mM Ca’, 0.8 mM Mg*, 5.8 mM K", 143 mM Na’,
144 mM CI', 1.6 mM SO, 0.4mM H,PO;,0.6 mM HPO> ,42mM HCO;,

DOI: 10.4236/0pj.2018.81001

2 Optics and Photonics Journal


https://doi.org/10.4236/opj.2018.81001

T. Stief

5.6 mM glucose.

3. Results

In albumin samples, the BRGA maximum of 2389 RLU/s was reached after 124
min. In NaCl samples, the maximum of 1694 RLU/s was reached after 137 min.
At 318 min, the blood ROS generation was 51% or 37% of the maximum, re-

spectively (Figure 1).

2500

2000

1500

1000

Luminescence [RLU/s]

500

0 T T T T T T 1

0 50 100 150 200 250 300 350
BRGA Incubation Time [min]

2000

(b)

1500

1000

500

Blood ROS Generation [RLU/s]

0 50 100 150 200 250 300 350
BRGA Incubation Time [min]

Figure 1. Blood ROS generation in presence of albumin or 0.9% NaCl in BRGA. 40 ul 5% human albumin (Figure 1(a)) or 0.9%
NaCl for control (Figure 1(b)) in black Brand® 781608 high quality polystyrene F-microwells were incubated in triplicate with 125
ul Hanks’ balanced salt solution (HBSS; modified without phenol red) and 10 pl normal citrated blood. 10 ul 5 mM luminol so-
dium salt in 0.9% NaCl and 10 pl 36 ug/ml zymosan A in 0.9% NaCl were added. The photons were counted within 0 - 318 min
(37°C) in a photons-multiplying microtiter plate luminometer (LUmo). In albumin samples the maximum of 2389 RLU/s was
reached after 124 min, in NaCl samples the maximum of 1694 RLU/s was reached after 137 min. At 318 min the blood ROS gen-
eration was 51% or 37% of the maximum, respectively. The experiment was repeated twice, the standard deviations were <10%.
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In albumin samples, the BRGA-60-maximum of 6502 RLU/s was reached after
84 min. In NaCl samples, the maximum of 6254 RLU/s was reached after 84
min, too. At 264 min, the blood ROS generation was 43% or 22% of the maxi-
mum, respectively (Figure 2). This means that a protein-poor environment faci-
litates the down-regulation of the ROS generation.

In the BRGA, the approx. SC200 was 0.2 ng/ml G-CSF (=20 IU/ml) (Figure
3). In the BRGA-60-, there appeared an approx. IC50 of 2 ng/ml G-CSF. Higher
conc. of G-CSF again stimulated the ROS generation (Figure 4). This means that
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Figure 2. Blood ROS generation in presence of albumin or 0.9% NaCl in BRGA-60-. 40 ul 5% human albumin (Figure 2(a)) or
0.9% NaCl for control (Figure 2(b)) in black Brand® 781608 high quality polystyrene F-microwells were incubated in triplicate
with 125 ul Hanks’ balanced salt solution (HBSS; modified without phenol red) and 10 ul normal citrated blood. After 60 min 10
ul 5 mM luminol sodium salt in 0.9% NaCl and 10 pl 36 ug/ml zymosan A in 0.9% NaCl were added. The photons were counted
within 0 - 264 min (37°C) in a photons-multiplying microtiter plate luminometer (LUmo). In albumin samples the maximum of
6502 RLU/s was reached after 84 min, in NaCl samples the maximum of 6254 RLU/s was reached after 84 min, too. At 264 min the
blood ROS generation was 43% or 22% of the maximum, respectively. The experiment was repeated twice, the standard deviations
were < 10%.
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Figure 3. Approx. SC200 of G-CSF in BRGA. 40 pl 0 - 10.3 ng/ml (final conc.) G-CSF (in 5% human albumin) in black Brand®
781608 high quality polystyrene F-microwells were incubated in triplicate with 125 ul Hanks’ balanced salt solution (HBSS; mod-
ified without phenol red) and 10 pl normal citrated blood. 10 pl 5 mM luminol sodium salt in 0.9% NaCl and 10 pul 0 or 36 pg/ml
zymosan A in 0.9% NaCl were added. The photons were counted at 44 min (37°C); approx. SC200 = 0, 2 ng/ml = 20 IU/ml.
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Figure 4. Approx. IC50 of G-CSF in BRGA-60-. 40 pl 0 - 10.3 ng/ml (final conc.) G-CSF (in 5% human albumin) in black Brand®
781608 high quality polystyrene F-microwells were incubated for 60 min (37°C) in triplicate with 125 ul Hanks’ balanced salt solu-
tion (HBSS; modified without phenol red) and 10 ul normal citrated blood. 10 pl 5 mM luminol sodium salt in 0.9% NaCl and 10
ul 0 or 36 pg/ml zymosan A in 0.9% NaCl were added. The photons were counted at 42 min (37°C). There appeared an approx.
IC50 of 2 ng/ml G-CSF. Higher conc. of G-CSF again stimulated the ROS generation.
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a) NADPH- Oxidase

0O, > H,0, (HO--OH)

NADPH + H'— NADP"

b) Myeloperoxidase

H,0, + CI’ > CIO” + H,O
¢) ClO" + R-NH, — R-NHCI (chloramine) + HO
d) H,0, + CIO — '0, + CI'+ H,O (Mallet reaction 1)
e) H,O, + R-NHC1 — 102 + HCI1 + R-NH; (Mallet reaction 2)
f)2 CI" +2 HO — '0, + 2HCI (chloronium reaction)

R
0-0- 0-0-0-0-C-C-R o

g) 2 H,0, + 2 R-C=C-R — 2 R-C-C-R — R-C-C-R - 2 R-C-C-R +'0,

(Russell reaction = peroxy-acyl (self) reaction)

T
h) R-C=C-R + 'O, - R-C-C-R — R-C=0* + R-C=0 — 2 R-C=0 + hv
(emission of violet/UV photons dependent on the nature of R)

Figure 5. Biogenesis of ROS/photons by activated neutrophils.

within the first incubation time of one hour (37°C) in the BRGA-60-, G-CSF

seems to be inactivated to some extent.

4. Discussion

By contrast, in the BRGA, very low concentrations of G-CSF stimulate blood
ROS generation. This could be of pharmacologic interest: in clinical situations
where an increased blood ROS generation is pharmacologically required, few
micrograms of G-CSF could be a sufficient dosage for an adult patient. The
BRGA helps to find out the correct stimulating G-CSF dosage for each individual.
An enhanced PMN function could favor a better clinical outcome in situations
of wanted increase of the innate immunology or in cellular fibrinolysis [9]-[17].
The normal plasma concentration of G-CSF is about 25 + 20 pg/ml, and in
acute infections, the G-CSF concentration can increase up to about 100 fold [18]
[19] [20]; upon subcutaneous injection of 300 ug filgrastim, the G-CSF plasma
concentration has increased about 1000 fold (blood half-life about 4 h), activat-
ing on neutrophils the CD11b/CD18 expression and the respiratory burst, on
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monocytes/dendritic cells the generation of immune suppressive interleukin-10,
on endothelial cells the release of von Willebrand factor and F8, on hepatocytes
the release of fibrinogen [21]. There could be an enhanced generation of throm-
bin/systemically circulating micro-thrombi [14] [22]. Thus, respective blood
hemostasis, a G-CSF dosage of about 300 pg seems to be “too much of a good
thing”. The present work indicates that a G-CSF plasma concentration around 1
ng/ml (injection of about 3 pg G-CSF, ie. 100 fold less than currently used)
might favour the physiologic singlet oxygen generation (Figure 5) against pa-
thogens without pathologic thrombin generation or immune suppressive side ef-
fects [23]-[47]. The BRGA is a powerful tool to compare new analogues of
G-CSF (e.g. the E. coli product filgrastim or the CHO product lenograstim).
Dose-finding studies are highly indicated to establish the range of beneficial

G-CSF concentrations for each individual patient.
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