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Abstract 
Having lectured in some universities and polytechnics in Nigeria, the re-
searchers observed problems in course allocations. There are no lay-down 
techniques on how courses should be allocated with respect to the minimum 
and maximum credit a lecturer should carry in a semester. Many lecturers 
were overloaded while others were under-loaded. For this reason, dynamic 
programming model was developed for allocating courses among lecturers in 
the Nigerian universities using the Department of Statistics, Federal Universi-
ty of Technology Owerri, as a case study. From our analysis, we observed that 
among all the optimal allocations discovered in the study, the best optimal al-
location policy was achieved at the point (1, 2, 1, 2). Allocation of courses in 
this order will yield an optimal credit hour of 12 per lecturer per semester. 
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1. Introduction 

Dynamic programming is a mathematical technique well suited for the optimi-
zation of multistage decision problem. The dynamic programming technique 
decomposes a multistage decision problem as a sequence of single-stage decision 
problems. A multistage decision process is one in which a number of sin-
gle-stage processes are connected in series so that the output of one stage is the 
input of the succeeding stage. This is a serial dynamic programming since the 
individual stages are connected head to tail with no recycle. A decision process 
can be characterized by certain input parameters, S (or data), certain decision 
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variables (X), and certain output parameters (T) representing the outcome ob-
tained as a result of making the decision. The input parameters are called input 
state variables, and the output parameters are called output state variables. The 
objective function R, measures the effectiveness of the decisions made and the 
output that results from these decisions. 

A dynamic programming problem can be stated as follows: find 1 2, , , nx x x , 
which optimizes 

( ) ( )1 2
1 1

, , , , 1
n n

n i i i i
i i

f x x x R r x s
= =

= = +∑ ∑
                 (1) 

and satisfies the design equations 

( )1, , 1, 2, , .i i i is t s x i n= + =                        (2) 

The dynamic programming makes use of the concept of sub-optimization and 
the principle of optimality in solving a problem. An optimal policy (or a set of 
decisions) has the property that whatever the initial state and initial decision are, 
the remaining decisions must constitute an optimal policy with regard to the 
state resulting from the first decision [1]. It can be grouped into the following 
four categories depending on the underlying structures of the systems under 
study, they are: a) serial processes; b) non-serial processes; c) Markov processes; 
and d) fuzzy processes [2]. These researchers concentrated mainly on the 
non-serial dynamic programming. They applied dynamic programming to mod-
el problems in chemical engineering, natural gas pipeline systems and water re-
source systems. 

A simplified work was done on dynamic programming formulation [3]. The 
authors demonstrated the application of dynamic programming using musical 
instruments and their player and the total man-hour required for playing music. 
Many researchers on dynamic programming lament the lack of practical appli-
cations of the technique. The increasingly powerful computing facilities now 
available mean that the solution of many hitherto intractable problems is be-
coming a reality. However, there remains a problem in encouraging students 
and practitioners to adopt a dynamic programming approach to solution [4]. 
The author used dynamic programming to model a system whereby revenue 
support grants are distributed to local authorities, with apparently strong incen-
tives for authorities to reduce expenditure levels. Future spending targets re-
mained heavily dependent on past spending levels. 

Dynamic programming is conceptually a powerful computational technique 
that can solve nonlinear stochastic control problems involving constraints in the 
state and control variables [5]. His work presents a new decomposition proce-
dure that reduces both the high-speed memory requirement and the computa-
tional time for interpolations in the dynamic programming algorithm. He de-
veloped dynamic programming model that can calculating the optimal values of 
cost and control for states and store only the optimal values of cost for states 
which is what is needed to be stored in the high-speed memory. Dynamic pro-
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gramming is a mathematical technique for solving certain types of sequential 
decision problems. A sequential decision problem is a problem in which a se-
quence of decisions must be made with each decision affecting future decisions 
[6]. Dynamic programming is quite different in form and concept from linear 
programming. Dynamic programming is conceptually more powerful and com-
putationally less powerful than linear programming. 

Dynamic programming was used to determine the optimum mix of widths of 
steel used to “pack” a transformer coil. The approach enables the designer to 
specify and vary the number of widths to be incorporated into the design. It was 
found that, beyond a relatively small number, the “coverage” obtained is largely 
independent of the coil diameter. Transformer coil comprises a series of “plates” 
of transformer steel packed together. The closer the “packing” is to being circu-
lar, the better the design. Thus the designer starts off aiming to fill a circular area 
with as much transformer steel as possible, this material typically being made 
available in thicknesses of around 1 mm [7]. 

Dynamic programming was used for cluster sampling [8]. His work considers 
the problem of partitioning N entities into M disjoint and nonempty subsets 
(clusters). Except when both N and N-M are very small, a search for the optimal 
solution by total enumeration for clustering alternatives is quite impractical. The 
author presents a dynamic programming approach that reduces the amount of 
redundant transitional calculations implicit in a total enumeration approach. 
Unlike most clustering approaches used in practice, the dynamic programming 
algorithm will always converge on the best clustering solution. The efficiency of 
the dynamic programming approach depends upon the rapid-access computer 
memory available. Dynamic programming was used for capital allocation of re-
sources. Dynamic programming algorithms were developed for optimal capital 
allocation subject to budget constraints. By including multi-level projects, rein-
vesting returns, borrowing and lending, capital deferrals, and project interac-
tions, the authors were able to handle dynamic programming models with sev-
eral state variables because the optimal returns are monotone non-decreasing 
step functions [9]. 

Due to problems arising from course allocation in various departments in the 
Nigerian Universities, where some lecturers will carry excess work load and oth-
ers carry less, the researchers saw it as a matter of priority to develop a model 
that will equally distribute courses to different cadres of lecturers in different 
departments using the department of Statistics, Federal University of Technolo-
gy Owerri as a case study. A Dynamic programming model, otherwise known as 
optimal allocation policy, was developed for the study. Dynamic programming is 
a multi-stage decision process where the solution of the final stage proceeds 
from the first stage with a recursive relationship. The first stage forms a base for 
the computation of the second stage etc. From this study, it was observed that 
among all the optimal allocations, the best optimal allocation policy was 
achieved at the point (1, 2, 1, 2). This means that each lecturer should be as-
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signed at most one statistics course in both the harmattan and rain semester 
second year and one course in the harmattan semesters fourth year respectively. 
On the other hand, lecturers should be allocated two courses each in the third 
and fifth year rain and harmattan semesters. Allocation of courses in this order 
will yield an optimal credit hour of 12 per lecturer per semester. In the second 
year, Statistics courses are being introduced to the students and they have few of 
those courses to offer while in the fourth year, the students offer fewer courses 
only in the harmattan semesters due to six-month industrial attachment they at-
tend in the rain semester. 

2. Methodology 

Dynamic programming begins by sub-optimizing the last component, numbered 
1. This involves the determination of 

( ) ( )1 2 1 1 2,
ixf s opt R x s∗  =                        (3) 

The best value of the decision variable x1 is that which makes the return (or 
objective) function R1 assume its optimum value, denoted by f1. Both x1 and f1 
depend on the condition of the input that the component 1 receives from s2. 
Since the particular value s2 will assume after the upstream components are op-
timized is not known at this time, this last stage sub-optimization problem is 
solved for a range of possible values of s2 and the results are entered into a table. 
This table contains a complete summary of the results of sub-optimization of 
Stage 1. Next we move up the serial system to include the last two components. 
In this two-stage sub-optimization, we have to determine 

( ) ( ) ( )
2 12 3 , 2 2 3 1 1 2, ,x xf s opt R x s R x s∗  = +                 (4) 

Since all the information about component 1 has already been encoded in the 
table corresponding to f1, this information can then be substituted for R1 and so 
on till the final stage 

( ) ( ) ( )1,
ii n n x n i n n nf s x opt R x f s x∗ ∗

+ = + −                (5) 

The final thing needed is to retrace the steps through the tables generated, to 
gather the complete set of ( )1,2, ,ix i n∗ =   for the system. This can be done as 
follows. The nth sub-optimization gives the values of nx∗  and nf

∗  for the spe-
cified value of sn+1. The known design equation 

( )1,n n n ns f s x∗+=                        (6) 

can be used to find the input, ns∗ , to the (n − 1)th stage. 
The data for this paper was collected from the department of Statistics, Feder-

al University of Technology, Owerri. The courses are designated by titles, codes 
and credit hours attached to each of them. Each of these courses is to be allo-
cated to different cadres of academic staff (lecturers) in the department. The da-
ta comprise different Statistics courses offered by the department of Statistics 
from second year to final year (fifth year) when Statistics courses are actually of-
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fered by the students of the department. Few courses are offered in both second 
and fourth year because in the second year, students are introduced to statistics 
courses and in the fourth year, second semester (rain), students’ go for industrial 
training. Out of the entire courses offered by the department, simple random 
sampling was used to draw six courses each from third and fifth year respectively 
where the bulk of the courses are offered and the entire courses are drawn in 
both second and fourth year where fewer courses are offered. 

A Flow Diagram of the Method 

 

3. Presentation and Analysis of Data 
3.1. Presentation of Data 

The data to be presented here are: 
1) Cadres of lecturers and level of statistics courses, see Table 1. 
2) Cadres of lecturers and credit hours per statistics courses, see Table 2. 

3.2. Analysis of Data 

The standard form of dynamic programming when the final state is fixed and 
initial state is free is given by 

( ) ( ) ( )1,
in n n x n i n n nf s x opt R x f s x∗

+ = + −                   (7) 

where xi are the stages and Si are the states, 1,2, ,i n=  . 
In this section, we analyze the data presented in Tables 3-7. 
1) We represent different cadres of lecturers as “State” and level of courses as 

“Stages”. Here, we have six states and four stages. Zeroes in the second row 
represent the origin where no allocation has been made. This is represented in 
Table 3. 

2) Table 4 is derived from the state and last column of Stage 4 from Table 3, 
since the last stage is fixed. 

Stage 4

Stage 3

Stage 2

Stage 1 Decision 1

Decision 2

Decision 3

Decision 4

(1, 2, 1, 2)
Optimal
Policy
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Table 1. Cadres of lecturers and level of STA courses. 

Cadre of lecturers  200 Level 300 Level 400 Level 500 Level 

Professors 1 STA 211 STA 301 STA 411 STA 501 

Readers 2 STA 221 STA 321 STA 421 STA 511 

Senior lecturers 3 STA 223 STA 331 STA 431 STA 513 

Lecturer 1 4 STA 212 STA 312 STA 433 STA 502 

Lecturer 11 5 STA 222 STA 336 STA 435 STA 512 

Ass. lecturer 6 STA 224 STA 342 STA 451 STA 514 

Source: Department of Statistics, FUTO (2017). 

 
Table 2. Cadres of lecturers and credit hours per STA courses. 

Cadre of lecturers  200 Level 1 300 Level 2 400 Level 3 500 Level 4 

Professors 1 3 3 3 3 

Readers 2 3 3 3 3 

Senior lecturers 3 1 3 2 3 

Lecturer 1 4 3 3 3 3 

Lecturer 11 5 3 3 3 3 

Ass. lecturer 6 1 3 3 3 

 
Table 3. State and stages. 

State/Stages 1 2 3 4 

0 0 0 0 0 

1 3 3 3 3 

2 3 3 3 3 

3 1 3 2 3 

4 3 3 3 3 

5 3 3 3 3 

6 1 3 3 3 

 
Table 4. Stage 1 of the problem. 

S4 4f
∗  4X ∗  

0 0 0 

1 3 1 

2 3 2 

3 3 3 

4 3 4 

5 3 5 

6 3 6 
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Table 5. Stage 2 of the problem. 

S3/X3 0 1 2 3 4 5 6 3f
∗  3X ∗  

0 0       0 0 

1 3 3      3 0 or 1 

2 3 6 3     6 1 

3 3 6 6 2    6 1 or 2 

4 3 6 6 5 3   6 1 or 2 

5 3 6 6 5 6 3  6 1, 2 or 4 

6 3 6 6 5 6 6 3 6 1, 2, 4 or 5 

 
Table 6. Stage 3 of the problem. 

S2/X2 0 1 2 3 4 5 6 2f
∗  2X ∗  

0 0       0 0 

1 3 3      3 0 or 1 

2 6 6 3     6 0 or 1 

3 6 9 6 3    9 1 

4 6 9 9 6 3   9 1 or 2 

5 6 9 9 9 6 3  9 1, 2 or 3 

6 6 9 9 9 9 6 3 9 1, 2, 3 or 4 

 
Table 7. Stage 4 (final stage) of the problem. 

S1/X1 0 1 2 3 4 5 6 1f
∗  1X ∗  

0 0       0 0 

1 3 3      3 0 or 1 

2 6 6 3     6 0 or 1 

3 9 9 6 1    9 0 or 1 

4 9 9 9 4 3   9 0, 1 or 2 

5 9 12 12 7 6 3  12 1, or 2 

6 9 12 12 10 9 6 1 12 1 or 2 

 
3) Tables 5-7 are obtained recursively from Equation (7) using Table 4 as the 

first stage. 
Since the final stage was fixed, we obtain Table 4 from the first and last col-

umn of Table 3 above. The optimal value 4X ∗  correspond to the values in the 
column of S4. 

Applying the formula in Equation (7) and using Table 4 as a starting point, 
we obtain Tables 5-7 below. See Appendices 1-3 for the computation of these 
Tables respectively. 

In Table 8, we calculate the optimal course allocations starting from Table 7. 
This is calculated by taking the various combinations from the last value of state 
(S1) as 6 and 1X ∗  = 1. And we do the needed computations as shown in Table 8 
to obtain the optimal course allocation. 
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Table 8. Optimal allocations. 

S1 = 6; 1X ∗  = 1 2) S1 = 6; 1X ∗  = 2 

S2 = 6 – 1 = 5; 2X ∗  = 1 S2 = 6 – 2 = 4; 2X ∗  = 1 

S3 = 5 – 1 = 4; 3X ∗  = 1 S3 = 4 – 1 = 3; 3X ∗  = 1 

S4 = 4 – 1 = 3; 4X ∗  = 3 I4 = 3 – 1 = 2; 4X ∗  = 2 

(1, 1, 1, 3) (2, 1, 1, 2) 
3) S1 = 6; 1X ∗  = 1 5) S1 = 6; 1X ∗  = 2 

S2 = 6 – 1 = 5; 2X ∗  = 2 S2 = 6 – 2 = 4; 2X ∗  = 2 

S3 = 5 – 2 = 3; 3X ∗  = 1 I3 = 4 – 2 = 2; 3X ∗  = 1 

S4 = 3 – 1 = 2; 4X ∗  = 2 S4 = 2 – 1 = 1; 4X ∗  = 1 

(1, 2, 1, 2) (2, 2, 1, 1) 

4) S1 = 6; 1X ∗  = 1  

S2 = 6 – 1 = 5; 2X ∗  = 3  

S3 = 5 – 3 = 2; 3X ∗  = 1  

S4 = 2 – 1 = 1; 4X ∗  = 1  

(1, 3, 1, 1)  

 
Thus, the allocation of courses to lectures according to Table 8 above will 

yield estimated optimum credit hours of 12 for each lecturer per semester. See 
the last value in 1f

∗  of Table 7. 

4. Interpretation of Results 

Calculations in Section 3.2 are presented in Appendices 1-3. Hence, the optimal 
allocation policy of (1, 1, 1, 3) in Table 8 means the allocation of one Statistics 
course to each lecturer in each cadre in second, third, fourth year and three 
courses to each cadre of lecturer in the fifth (final) year will yield optimal credit 
hour of 12 for each lecturer per semester. 

(2, 1, 1, 2) in Table 8 means the allocation of two Statistics courses to each 
lecturer in each cadre in second year, one course each in third and fourth year 
and two courses to each cadre of lecturer in the fifth (final) year will yield op-
timal credit hour of 12 for each lecturer per semester. 

(1, 2, 1, 2) in Table 8 means the allocation of one Statistics course to each lec-
turer in each cadre in second year, two courses each to each lecturer in third 
year, one course to each lecturer in fourth year and two courses to each cadre of 
lecturer in the fifth (final) year will yield optimal credit hour of 12 for each lec-
turer per semester. 

(1, 3, 1, 1) in Table 8 means the allocation of one statistics course to each lec-
turer in each cadre in second year, three courses each to each lecturer in third 
year, one course to each lecturer in fourth year and one course to each lecturer 
in each cadre in the fifth (final) year will yield optimal credit hour of 12 for each 
lecturer per semester. 

(2, 2, 1, 1) in Table 8 means the allocation of two Statistics courses to each 
lecturer in each cadre in second and third year and allocation of one fourth and 

https://doi.org/10.4236/ojop.2017.64012


H. O. Amuji et al. 
 

 

DOI: 10.4236/ojop.2017.64012 184 Open Journal of Optimization 
 

fifth year courses to each lecturer in each cadre will yield optimal credit hour of 
12 for each lecturer per semester. 

5. Conclusion 

In this paper, dynamic programming was applied in allocating courses to lectur-
ers in the Nigerian universities, using the Department of Statistics, Federal Uni-
versity of Technology, Owerri, Imo State as a case study. An optimal 12 credit 
hours was obtained for each lecturer in each cadre for the semester. Among all 
the optimal allocations policies presented in section 4, the best optimal alloca-
tion is achieved at the point (1, 2, 1, 2). This means that each lecturer should be 
assigned at most one course in both harmattan and rain semester of second year 
and one course in harmattan semester of fourth year when fewer number of Sta-
tistics courses are offered due to introduction of Statistics courses to second year 
students and also due to six-month industrial training by the fourth year stu-
dents in the rain semester. On the other hand, lecturers should be allocated two 
courses each in the third and fifth year rain and harmattan semesters, when all 
the students are back for their normal academic session. Allocation of courses in 
this order will yield an optimal credit hour of 12 per lecturer per semester. This 
is highly reasonable as opposed to the use of rule of thumb which overload some 
lecturers with more courses and under load others with fewer courses. 
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Appendices 

Computations of Tables 5-7 
In these appendices, we show how Tables 5-7 were computed from Equation 

(7). The values of current state and stages were substituted while the previous 
stage forms the starting point in the current stage. This recursive relationship 
continues until the final stage is obtained. 

 
Appendix 1. Computation of Stage 2 presented in Table 5. 

For n = 3, we have n(3,0): = R3(0) + 4f
∗ (3) = 0 + 3 = 3 

f3(S3,X3) = R3(X3) + 4f
∗ (S3 − X3) n(3,1): = R3(1) + 4f

∗ (2) = 3 + 3 = 6 

n(0,0): f3(0,0) = R3(0) + 4f
∗ (0 − 0) n(3,2): = R3(2) + 4f

∗ (1) = 3 + 3 = 6 

= R3(0) + 4f
∗ (0) = 0 n (3,3): = R3(3) + 4f

∗ (0) = 2 + 0 = 2 

n(1,0): f3(1, 0) = R3(0) + 4f
∗ (1 − 0) n(4,0): = R3(0) + 4f

∗ (4) = 0 + 3 = 3 

= R3 (0) + 4f
∗ (1) = 0 + 3 = 3 n(4,1): = R3(1) + 4f

∗ (3) = 3 + 3 = 6 

n(1,1): f3(1,1) = R3(1) + 4f
∗ (0) = 3 + 0 = 3 n(4,2): = R3(2) + 4f

∗ (2) = 3 + 3 = 6 

n(1,1): f3(1,1) = R3(1) + 4f
∗ (0) = 3 + 0 = 3 n(4,3): = R3(3) + 4f

∗ (1) = 2+3 = 5 

n (2,0): = R3(0) + 4f
∗ (2) = 0 + 3 = 3 n(4,4): = R3(4) + 4f

∗ (0) = 3 + 0 = 3 

n(2,1): = R3(1) + 4f
∗ (1) = 3 + 3 = 6 n(5,1): = R3(1) + 4f

∗ (4) = 3 + 3 = 6 

n(2,2): = R3(2) + 4f
∗ (0) = 3 + 0 = 3 n (5,2): = R3(2) + 4f

∗ (3) = 3 + 3 = 6 

n(5,0): = R3(0) + 4f
∗ (5) = 0 + 3 = 3 n(5,3): = R3(3) + 4f

∗ (2) = 2 + 3 = 5 

n(6,0): = R3(0) + 4f
∗ (6) = 3 n(5,4): = R3(4) + 4f

∗ (1) = 3 + 3 = 6 

n(6,1): = R3(1) + 4f
∗ (5) = 6 n(5,5): = R3(5) + 4f

∗ (0) = 3 + 0 = 3 

n(6,2): = R3(2) + 4f
∗ (4) = 6  

n(6,3): = R3(3) + 4f
∗ (3) = 5  

n(6,4): = R3(4) + 4f
∗ (2) = 6  

n(6,5): = R3(5) + 4f
∗ (1) = 6 n (6,6): = R3(6) + 4f

∗ (0) = 3 

 
Appendix 2. Computation of Stage 3 presented in Table 6. 

For n = 2, we have n(4,3) = R2(3) + 3f
∗ (1) = 3 + 3 = 6 

f2(S2,X2) = R2(X0) + 3f
∗ (S2 – X2) n(4,4) = R2(4) + 3f

∗ (0) = 3 + 0 = 3 

f2(0, 0) = R2(0) + 3f
∗ (0) = 0 n(5,0) = R2(0) + 3f

∗ (5) = 0 + 6 = 6 

n(1,0) = R2(0) + 3f
∗ (1) = 3 n(5,1) = R2(1) + 3f

∗ (4) = 3 + 6 = 9 

n(1,1) = R2(1) + 3f
∗ (0) = 3 n(5,2) = R2(2) + 3f

∗ (3) = 3 + 6 = 9 

n(2,0) = R2(0) + 3f
∗ (2) = 6 n(5,3) = R2(3) + 3f

∗ (2) = 3 + 6 = 9 

n(2,1) = R2(1) + 3f
∗ (1) = 6 n(5,4) = R2(4) + 3f

∗ (1) = 3 + 3 = 6 

n(2,2) = R2(2) + 3f
∗ (0) = 3 n(5,5) = R2(5) + 3f

∗ (0) = 3 + 0 = 3 

n(3,0) = R2(0) + 3f
∗ (3) = 6 n(6,0) = R2(0) + 3f

∗ (6) = 0 + 6 = 6 
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n(3,1) = R2(1) + 3f
∗ (2) = 3 + 6 = 9 n(6,1) = R2(1) + 3f

∗ (5) = 3 + 6 = 9 

n(3,2) = R2(2) + 3f
∗ (1) = 3 + 3 = 6 n(6,2) = R2(2) + 3f

∗ (4) = 3 + 6 = 9 

n(3,3) = R2(3) + 3f
∗ (0) = 3 + 0 = 3 n(6,3) = R2(3) + 3f

∗ (3) = 3 + 6 = 9 

n (4, 0) = R2(0) + 3f
∗ (4) = 0 + 3 = 3 n (6, 4) = R2(4) + 3f

∗ (2) = 3 + 6 = 9 

n (4, 2) = R2(2) + 3f
∗ (2) = 3 + 6 = 9 n (6, 5) = R2(5) + 3f

∗ (1) = 3 + 3 = 6 

 n (6, 6) = R2(6) + 3f
∗ (0) = 3 + 0 = 3 

 
Appendix 3. Computation of Stage 4 presented in Table 7. 

For n = 1, we have n(4,3) = R1(3) + 2f
∗ (1) = 1 + 3 = 4 

f1(S1,X1) = R1(X1) + 2f
∗ (S1 – X1) n(4,4) = R1(4) + 2f

∗ (0) = 3 + 0 = 3 

f1(0,0) = R1(0) + 2f
∗ (0) = 0 n(5,0) = R1(0) + 2f

∗ (5) = 9 

n(1,0) = R1(0) + 2f
∗ (1) = 3 n(5,1) = R1(1) + 2f

∗ (4) = 3 + 9 = 12 

n(1,1) = R1(1) + 2f
∗ (0) = 3 + 0 = 3 n(5, 2) = R1(2) + 2f

∗ (3) = 3 + 9 = 12 

n(2,0) = R1(1) + 2f
∗ (2) = 6 n(5, 3) = R1(3) + 2f

∗ (2) = 1 + 6 = 7 

n(2,1) = R1(1) + 2f
∗ (1) = 3 + 3 = 6 n(5, 4) = R1(4) + 2f

∗ (1) = 3 + 3 = 6 

n (2, 2) = R1(2) + 2f
∗ (0) = 3 + 0 = 3 n(5, 5) = R1(5) + 2f

∗ (0) = 3 + 0 = 3 

n (3, 0) = R1(0) + 2f
∗ (3) = 9 n(6,0) = R1(0) + 2f

∗ (6) = 9 

n(3,1) = R1(1) + 2f
∗ (2) = 3 + 6 =9 n(6,1) = R1(1) + 2f

∗ (5) = 3 + 9 = 12 

n(3,2) = R1(2) + 2f
∗ (1) = 3 + 3 = 9 n(6, 2) = R1(2) + 2f

∗ (4) = 3 + 9 = 12 

n(3,3) = R1(3) + 2f
∗ (0) = 1 n(6,3) = R1(3) + 2f

∗ (3) = 1 + 9 = 10 

n(4,0) = R1(0) + 2f
∗ (4) = 9 n (6, 4) = R1(4) + 2f

∗ (2) = 3 + 9 = 9 

n(4,1) = R1(1) + 2f
∗ (3) = 3 + 6 = 9 n(6,5) = R1(5) + 2f

∗ (1) = 3 + 3 = 6 

n(4,2) = R1(2) + 2f
∗ (2) = 3 + 6 = 9 n(6,6) = R1(6) + 2f

∗ (0) = 1 + 0 = 1 
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