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Abstract 
For a class of nonlinear systems whose states are immeasurable, when the 
outputs of the system are sampled asynchronously, by introducing a state ob-
server, an output feedback distributed model predictive control algorithm is 
proposed. It is proved that the errors of estimated states and the actual sys-
tem's states are bounded. And it is guaranteed that the estimated states of the 
closed-loop system are ultimately bounded in a region containing the origin. 
As a result, the states of the actual system are ultimately bounded. A simula-
tion example verifies the effectiveness of the proposed distributed control 
method.  
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1. Introduction 

Traditional process control systems just simply combine the measurement sen-
sors with control actuators to ensure the stability of closed-loop systems. Al-
though this paradigm to process control has been successful, the calculation 
burden of this kind of control is large and the performance of the system is not 
good enough [1]. So far the stability of closed-loop systems has been guaranteed 
and at the same time, the performance of the closed-loop systems has been im-
proved if the control systems are divided into local control systems (LCS) and 
networked control systems (NCS). And it can reduce the burden of calculation. 
But this kind of transformation needs to redesign LCS and NCS to ensure the 
stability of closed-loop systems. As a result, the control strategy is changed [2]. 
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Model predictive control (MPC) is receding horizon control which can deal 
with the constraints of systems’ inputs and states during the design of optimiza-
tion control. It adopts feedback correction, rolling optimization, and has strong 
ability to deal with constraints and dynamic performance [3] [4] [5]. Therefore, 
it can be more effective to solve the optimal control problem for distributed sys-
tems. That is distributed model predictive control [6]. The distributed model 
predictive control takes into account the actions of the local controller in the 
calculation of its optimal input trajectories. At the same time, LCS and NCS are 
designed via Lyapunov-based model predictive control (LMPC). But when the 
LCS is a model predictive control system for which there is no explicit control 
formula to complete its future control actions, it is necessary to redesign both 
the NCS and LCS and establish some communication between them so that they 
can coordinate their actions. We refer to the trajectories of 1u  and 2u  as 
LMPC1 and LMPC2. The structure of the system is as Figure 1. 

There are many research results about distributed MPC design at present. In 
literature [7], a novel partition method of distributed model predictive control 
for a class of large-scale systems is presented. Literature [8] presents a coopera-
tive distributed model predictive control algorithm for a team of linear subsys-
tems with the coupled cost and coupled constraints. A distributed model predic-
tive control architecture of nonlinear systems is studied in literature [2]. Based 
on literature [2], literature [9] considers a distributed model predictive control 
method subject to asynchronous and delayed measurements. A distributed 
model predictive control strategy for interconnected process systems is proposed 
in reference [10]. In literature [11], a design approach of robust distributed 
model predictive control is proposed for polytopic uncertain networked control 
systems with time delays. Reference [12] presents that the distributed model 
predictive control method is applied for an accurate model of an irrigation canal. 
For a hybrid system that comprises wind and photovoltaic generation subsys-
tems, a battery bank and an ac load, a distributed model predictive control me-
thod is designed to ensure the closed-loop system stable in reference [13]. 

These references are obtained on the assumption that the systems’ states can 
be measured continuously. The systems whose states are immeasurable are not 
taken into account in these references. However, immeasurable states often  
 

 
Figure 1. Distributed LMPC control architecture. 
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happen in practice. In literature [14], under the condition that the states are not 
measured, a distributed model predictive control algorithm for interconnected 
systems based on neighbor-to-neighbor communication is presented. Literature 
[15] considers the design of robust output feedback distributed model predictive 
control when the dynamics and measurements of systems are affected by 
bounded noise. But both literatures are studied for the linear systems. An out-
put-feedback approach for nonlinear model predictive control with moving ho-
rizon state estimation is proposed in reference [16]. Reference [17] considers 
output feedback model predictive control of stochastic nonlinear systems. Yet 
these two references are centralized model predictive control methods. The 
computational complexity grows significantly. 

On the basis of the above references, this paper considers a class of nonlinear 
systems whose states are immeasurable. By introducing a state observer, and us-
ing output feedback, under the assumption that the outputs of the system are 
sampled of asynchronous measurements, an output feedback distributed model 
predictive control algorithm is designed. Therefore, the ultimately boundedness 
of the estimated states and the boundedness of the error between estimated 
states and the actual system’s states are proved, and then it is proved that the 
states of the actual system are ultimately bounded. And the stability of the 
closed-loop system is guaranteed. The performance of the system is improved 
and the burden of calculation is reduced. 

This paper is arranged as follows. The second section is the preparation work. 
In the third section, the state observer is designed, and its stability is analyzed. 
The fourth section designs a controller based on Lyapunov function to make 
sure the asymptotic stability of the nominal observer. In the fifth section, an 
output feedback distributed model predictive control algorithm is proposed and 
the stability of the closed-loop system is proved. The instance simulation is pro-
vided in the sixth section. Conclusion is given in Section 7. 

2. Preliminaries 
2.1. Definitions and Lemmas 

In this paper, the operator ⋅  denotes Euclidean norm of variates. The symbol 
( )x t  denotes the derivative of ( )x t . The symbol rΩ  denotes the set 

( ){ }:xn
r x R V x rΩ = ∈ ≤  where V is a scalar positive definite, continuous diffe-

rentiable function and ( )0 0V =  and r is a positive constant. Definitions and 
lemmas used in this paper are as follows: 

Definition 1 [18]: A function ( )f x  is said to be locally Lipschitz if there ex-
ists a constant xL  such that ( ) ( )1 2 1 2xf x f x L x x− ≤ −  for all 1x  and 2x  
in a given region of x and xL  is the associated Lipschitz constant. 

Definition 2 [18]: A continuous function [ ) [ ): 0, 0,aγ → ∞  belongs to class 
  if it is strictly increasing and ( )0 = 0γ . A continuous function ( ),r sβ  is 
said to belong to class   if, for fixed s, ( ),r sβ  belongs to class   with 
respect to r and, for fixed r, ( ),r sβ  is decreasing with respect to s and 
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( ), 0r sβ →  as 0s → . 
Lemma 1 [18]: Let [ ]T0, ,0  be an equilibrium point for the nonlinear sys-

tem ( ),x f t x=  where [ ): 0, nf D R∞ × →  is continuous differentiable, 

{ }nD x R x r= ∈ <  where r is a positive constant and the Jacobian matrix 
[ ]f x∂ ∂  is bounded on D, uniformly in t. Let β  be a class   function and 

0r  be a positive constant such that ( )0 ,0r rβ < . Let { }0 0
nD x R x r= ∈ < . As-

sume that the trajectory of the system satisfies  

( ) ( )( ) ( )0 0 0 0 0, , , 0x t x t t t x t D t tβ≤ − ∀ ∈ ∀ ≥ ≥            (1) 

Then, there is a continuously differentiable function [ ) 0: 0,V D R∞ × →  that 
satisfies the inequalities  

( ) ( ) ( )

( ) ( )

( )

1 2

3

4

,

,

x V t x x

V V f t x x
t x
V x
x

α α

α

α

≤ ≤

∂ ∂
+ ≤ −

∂ ∂
∂

≤
∂

                    (2) 

where 1 2 3, ,α α α  and 4α  are class   functions defined on [ ]00, r . If the sys-
tem is autonomous, V can be chosen independent of t. 

Lemma 2 [18]: Let [ ]T0, ,0  be an equilibrium point for the nonlinear sys-
tem ( ),x f t x= . The equilibrium point is uniformly asymptotically stable if and 
only if there exist a class   function β  and a positive constant c, indepen-
dent of 0t , such that  

( ) ( )( ) ( )0 0 0 0, , 0,x t x t t t t t x t cβ≤ − ∀ ≥ ≥ ∀ <           (3) 

2.2. Problem Formulation 

Consider a class of nonlinear systems described as follows:  

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( )

1 2, , ,x t f x t u t u t w t

y t h x tυ

=

= +



                (4) 

where ( ) xnx t R∈  denotes the state vector which is immeasurable. ( ) 1
1

unu t R∈ , 
( ) 2

2
unu t R∈  are control inputs. 1u  and 2u  are restricted to be in two non-

empty convex sets 1 2
1 2,u un nU R U R⊆ ⊆ . ( ) wnw t R∈  denotes the disturbance 

vector. ( ) yny t R∈  is the measured output and ( ) vnv t R∈  is a measurement 
noise vector. The disturbance vector and noise vector are bounded such as 
w∈ , v∈  where  

{ }
{ }

1 1

2 2

: , 0

: , 0

w

v

n

n

w R w c c

v R v c c

= ∈ ≤ >

= ∈ ≤ >




                  (5) 

with 1c  and 2c  are known positive real numbers. We assume that f and h are 
locally Lipschitz vector functions and ( ) ( )0,0,0,0 0, 0 0f h= = . This means that 
the origin is an equilibrium point for system (4). And we assume that the output 
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of system (4), y, is sampled asynchronously and measured time is denoted by 
{ }0kt ≥  such that 0 , 0,1,kt t k k= + ∆ =   with 0t  being the initial time, ∆  
being a fixed time interval. Generally, there exists a possibility of arbitrarily large 
periods of time in which the output cannot be measured, then the stability prop-
erties of the system is not guaranteed. In order to study the stability properties in 
a deterministic framework, we assume that there exists an upper bound mT  
on the interval between two successive measured outputs such that 

{ }1max k k mt t T+ − ≤ . This assumption is reasonable from a process control pers-
pective. 

Remark 1: Generally, distributed control systems are formulated on account 
of the controlled systems being decoupled or partially decoupled. However, we 
consider a seriously coupled process model with two sets of control inputs. This 
is a common phenomenon in process control. 

The objective of this paper is to propose an output feedback control architec-
ture using a state observer when the states are immeasurable. The state observer 
has the potential to maintain the closed-loop stability and improve the 
closed-loop performance. We design two LMPCs to compute 1u  and 2u . The 
structure of the system is as follows: 

Remark 2: The procedure of the system shown in Figure 2 is as follows 
1) When the states are immeasurable, the observer is used to estimate the 

current state x. 
2) LMPC2 computes the optimal input trajectory of 2u  based on the esti-

mated state x̂  and sends the optimal input trajectory to process and LMPC1. 
3) Once LMPC1 receives the optimal input trajectory of 2u , it evaluates the 

optimal input trajectory of 1u  based on x̂  and the optimal input trajectory of 

2u . 
4) LMPC1 sends the optimal input trajectory to process. 
5) At next time, return step (1).  

3. Observers and Property 
3.1. The Design of Observers 

Define the nominal system of system (4) as following:  
 

 
Figure 2. Distributed LMPC architecture where the states are immeasurable. 
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( ) ( ) ( ) ( )( )
( ) ( )

* *
1 2

* *

, , ,0x t f x t u t u t

y t h x

=

=



                 (6) 

where * xnx R∈  denotes the state vector of nominal systems, * yny R∈  is the 
noise free output. 

Assume that there exists a deterministic nonlinear observer for the nominal 
system (6): 

( ) ( ) ( ) ( )( )* * *
1 2ˆ ˆ , , ,x F x t u t u t y t=                  (7) 

such that *x̂  asymptotically converges *x  for all the states * *ˆ, xnx x R∈ , where 
*ˆ xnx R∈  indicates the state vector of nominal observer. From Lemma 2, there 

exists a class   function β  such that: 

( ) ( ) ( ) ( )( )* * * *
0 0 0ˆ ˆ ,x t x t x t x t t tβ− ≤ − −              (8) 

We assume that F is a locally Lipschitz vector function. Note that the conver-
gence property of observer (7) is obtained based on nominal system (6) with 
continuous measured output. 

From the Lipschitz property of f and Definition 1, there exists a positive con-
stant 1M  such that:  

( )*
1 2 1, , ,0f x u u M≤                       (9) 

for all * xnx R∈ . 
The actual observer of the system is obtained when the deterministic observer 

is applied to system (4). The observer of system (4) is described as follows with 
the state disturbance and measurement noise:  

( ) ( ) ( ) ( )( )1 2ˆ ˆ , , , kx F x t u t u t y t=                   (10) 

where ( )ky t  is the actual sampled measurement at kt , for kt t∀ ≥ . 

3.2. The Property of Observers 

In this subsection, the error between the actual system's states and estimated 
states will be studied under the condition of state disturbance and measurement 
noise when observer (10) is applied to system (4). 

Theorem 1: Consider observer (10) with output measurement ( )ky t  starting 
from the initial condition ( )ˆ kx t , the error of estimated state ( )x̂ t  and actual 
state ( )x t  is bounded: 

( ) ( ) ( ) ( )( ) ( ) ( )1 2ˆ ,k k k ke t x t x t e t t t t t t tβ δ δ= − ≤ − + − + −     (11) 

for kt t∀ ≥  where ( ) ( ) ( )ˆk k ke t x t x t= −  is the initial error of the states, and 

( ) ( )

( ) ( )( )

1

1

2 1
1

1

2
2 1 2

1

e 1

e 1

l

q

l c
l
q bM N c
q

τ

τ

δ τ

δ τ

= −

= ∆ + −
                (12) 

where 1l  and 2l , 1q  and 2q , b are Lipschitz constants associated with f, F 
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and h, respectively, and N is the predictive horizon. 
Proof: For kt t∀ ≥ , from (8) and ( ) ( ) ( ) ( )* *ˆ ˆ ,k k k kx t x t x t x t= = , it can be ob-

tained that:  

( ) ( ) ( ) ( )( )
( ) ( )( )
( )( )

* * * *ˆ ˆ ,

ˆ ,

,

k k k

k k k

k k

x t x t x t x t t t

x t x t t t

e t t t

β

β

β

− ≤ − −

= − −

= −

             (13) 

Based on the Lipschitz property of f and Definition 1, there exist constants 

1 2,l l , such that:  

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )
( ) ( ) ( )

* *
1 2 1 2

*
1 2

, , , , , ,0x t x t f x t u t u t w t f x t u t u t

l x t x t l w t

− = −

≤ − +

 

 (14) 

Because of ( ) ( )*
k kx t x t=  (that is to say ( ) ( )* 0k kx t x t− = ), and ( ) 1w t c≤ , 

the following inequality can be got by integrating the above inequality from kt  
to t :  

( ) ( ) ( )( ) ( )1* 2 1
1

1

e 1kl t t
k

l cx t x t t t
l

δ−− ≤ − = −           (15) 

From the triangle inequality and inequalities (13), (15), it can be written as:  

( ) ( ) ( ) ( ) ( ) ( )
( )( ) ( )

* * * *

1

ˆ ˆ

, ,k k k k

x t x t x t x t x t x t

e t t t t t t tβ δ

− ≤ − + −

≤ − + − ∀ ≥
       (16) 

From the Lipschitz property of F and Definition 1, there exist constants 1 2,q q  
satisfying the following inequality:  

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )

* * *
1 2 1 2

* *
1 2

ˆ ˆ ˆ ˆ, , , , , ,

ˆ ˆ

k

k

x t x t F x t u t u t y t F x t u t u t y t

q x t x t q y t y t

− = −

≤ − + −

 

(17) 

for kt t∀ ≥ . Note that ( ) ( )( ) ( ) ( )( ) ( )* * , k k ky t h x t y t h x t tυ= = + , hence:  

( ) ( ) ( )( ) ( )( ) ( )* *
k k ky t y t h x t h x t tυ− ≤ − +           (18) 

Due to the Lipschitz property of h and Definition 1, there exists a constant b 
such that:  

( ) ( ) ( ) ( ) ( )* *
k k ky t y t b x t x t tυ− ≤ − +            (19) 

Because of ( ) ( )*
k kx t x t=  and the boundedness of υ , we can get:  

( ) ( ) ( ) ( )* * *
2k ky t y t b x t x t c− ≤ − +              (20) 

From (9) and the dynamics of *x , it can be derived that:  

( ) ( ) ( )* *
1k kx t x t M t t− ≤ −                  (21) 

From (20) and (21), we can get:  

( ) ( ) ( )*
1 2k ky t y t bM t t c− ≤ − +                 (22) 

From (17) and (22) and kt t N− ≤ ∆ , it can be obtained that:  
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( ) ( ) ( ) ( )* *
1 2 1 2 2ˆ ˆ ˆ ˆ , kx t x t q x t x t q bM N q c t t− ≤ − + ∆ + ∀ ≥       (23) 

Integrating the above inequality from kt  to t  and taking into account of 
( ) ( )*ˆ ˆk kx t x t= , the following inequality can be got:  

( ) ( ) ( ) ( )( ) ( )1* 2
1 2 2

1

ˆ ˆ e 1kq t t
k

qx t x t bM N c t t
q

δ−− ≤ ∆ + − = −       (24) 

As a result, based on the triangle inequality and the inequalities (16) and (24), 
it can be written that:  

( ) ( ) ( ) ( ) ( )
( )( ) ( ) ( )

* *

1 2

ˆ ˆ ˆ

,k k k k

e t x t x t x t x t

e t t t t t t tβ δ δ

≤ − + −

≤ − + − + −
           (25) 

That finishes the proof of the theorem. 
Theorem 1 indicates that, the upper bound of the estimated error depends on 

several factors including initial error of the states ( )ke t , Lipschitz properties of 
the system and observer dynamics, sampling time of measurements ∆  and the 
predictive horizon N, the bounds 1c  and 2c  of magnitudes of disturbances 
and noise, as well as open-loop operation time of the observer kt t− . 

Remark 3: Because the bound of ( )e t  is the function of the observer's 
open-loop operation time and the observer’s open-loop operation time is finite, 
the function can be restricted to a region. We assume the region is eΩ . It can be 
derived that ( ) ee t ∈Ω .  

4. Lyapunov-Based Controller 

We assume that there exists a Lyapunov-based controller ( ) ( )( )1 ˆu t g x t=  
which satisfies the input constraints on 1u  for all x̂  inside a given stability re-
gion. And the origin of the nominal observer is asymptotically stable with 

2 0u = . From Lemma 1, this assumption indicates that there exist class   
functions ( )iα ⋅  and a continuous Lyapunov function V for the nominal ob-
server, which satisfy the following inequalities:  

( ) ( ) ( )
( ) ( )( ) ( )
( ) ( )

( )

* * *
1 2

*
* * * *

3*

*
*

4*

*
1

ˆ ˆ ˆ

ˆ
ˆ ˆ ˆ, ,0,

ˆ
ˆ

ˆ
ˆ

ˆ

x V x x

V x
F x g x y x

x
V x

x
x

g x U

α α

α

α

≤ ≤

∂
≤ −

∂

∂
≤

∂

∈

              (26) 

for *ˆ xnx D R∀ ∈ ⊆  where D is an open neighborhood of the origin. We denote 
the region DρΩ ⊆  as the stability region of the nominal observer under the 
control law ( )*

1 ˆu g x=  and 2 0u = . 
By continuity and the local Lipschitz property of F, it is obtained that there 

exists a positive constant 2M  such that:  

( ) ( ) ( ) ( )( )1 2 2ˆ , , , kF x t u t u t y t M≤                 (27) 
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In addition, due to the Lipschitz property of F, there exist positive constants 

1 2,d d  such that  

( )( ) ( )( ) ( ) ( )* * * * * * * *
1 2 1 1 2 1 1 2ˆ ˆ ˆ ˆ, , , , , , k kF x u u y t F x u u y t d x x d y t y t− ≤ − + −  (28) 

Because of ( ) ( )( ) ( ) ( )( ) ( )* * ,k k k k ky t h x t y t h x t v t= = +  and ( ) ( )*
k kx t x t= , 

it can be written that ( ) ( ) ( )*
k k ky t y t v t= − . As a result,  

( )( ) ( )( )
( ) ( ) ( )

( ) ( ) ( )( )
( )

* * * *
1 2 1 1 2

* * *
1 1 2

* * *
1 1 2

* *
1 1 2 1 2 2

* *
1 1 2 1 2 2

ˆ ˆ, , , , , ,

ˆ ˆ

ˆ ˆ

ˆ ˆ

ˆ ˆ= 2

k

k k

k k

F x u u y t F x u u y t

d x x d y t y t v t

d x x d y t y t v t

d x x d bM N c c

d x x d bM N d c

−

≤ − + − +

≤ − + − +

≤ − + ∆ + +

− + ∆ +

            (29) 

5. Output Feedback Distributed Model Predictive Control 
5.1. Distributed Model Predictive Control 

LMPC2 and LMPC1 what are needed in this article are obtained through solving 
the following optimization problems. 

First we define the optimization problem of LMPC2, which depends on the 
latest state estimation ( )ˆ kx t . However, LMPC2 has no information about the 
value of 1u , so LMPC2 must assume a trajectory for 1u  along the prediction 
horizon. Therefore, the Lyapunov-based controller ( )*

1 ˆu g x=  is used. It is 
used to define a contractive constraint in order to guarantee a given minimum 
decrease rate of the Lyapunov function V to inherit the stability properties. 
LMPC2 is used to obtain the optimal input trajectory 2u  based on the follow-
ing optimization problem: 

( )
( ) ( ) ( ) ( ) ( ) ( )( )

2

T T T* *
1 1 1 2 2 2min dk

kc

t N
c c c c c ctu P

x t Qx t u t Q u t u t Q u t t
+ ∆

∈ ∆
+ +∫     (30a) 

( ) ( ) ( ) ( ) ( )( ) [ ]* * *
1 2s.t. , , , , ,c c k kx t F x t u t u t y t t t t N= ∀ ∈ + ∆

     (30b) 

( ) ( )( ) ( )*
1 , , 1 , 0, , 1c k k ku t g x t j t t j t j j N= + ∆ ∀ ∈ + ∆ + + ∆ = −  

  (30c) 

( ) [ ]2 2 , ,c k ku t U t t t N∈ ∀ ∈ + ∆                (30d) 

( ) ( ) ( )( ) ( )( ) ( )* * * *, ,0, , , 1k k kx t F x t g x t j y t t t j t j= + ∆ ∀ ∈ + ∆ + + ∆   (30e) 

( ) ( ) ( )* * ˆk k kx t x t x t= =                    (30f) 

( )( ) ( )( ) [ ]* * , ,k k sV x t V x t t t t N≤ ∀ ∈ + ∆            (30g) 

where ( )P ∆  is the family of piece-wise constant functions. 1, cQ Q  and 2cQ  
are positive definite weight matrices. sN  is the control horizon which is the 
smallest integer that satisfies the inequality m sT N≤ ∆ . To take full advantage of 
the nominal model in the computation of the control action, we take sN N≥ . 
The optimal solution of optimization problem (30) is denoted by  

( ) [ ]2 | , ,c k k ku t t t t t N∈ + ∆ . Once the optimal input trajectory of LMPC2 is com-
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puted, it is sent to LMPC1 and its corresponding actuators. 
Note that the constraints (30e)-(30f) generate a reference state trajectory 

(namely, a reference Lyapunov function trajectory). The constraint (30g) guar-
antees that the constrained decrease of the Lyapunov function from kt  to 

k st N+ ∆ , if ( ) ( )*
1 2 2ˆ , cu g x u u t= =   are applied. 

The optimization problem of LMPC1 depends on ( )ˆ kx t  and the the optimal 
solution 2cu . LMPC1 is used to obtain the optimal input trajectory 1u  based 
on the following optimization problem:  

( )
( ) ( ) ( ) ( ) ( ) ( )( )

1

T T T* *
1 1 1 2 2 2min dk

kc

t N
c c c c c ctu P

x t Qx t u t Q u t u t Q u t t
+ ∆

∈ ∆
+ +∫

    (31a) 

( ) ( ) ( ) ( ) ( )( ) [ ]* * *
1 2s.t. , , , , ,c c k kx t F x t u t u t y t t t t N= ∀ ∈ + ∆ 

     (31b) 

( ) ( ) ( )( ) ( ) ( )( )
( )

* * * *
2, , , ,

, 1 , 0, , 1

k c

k k

x t F x t g x t j u t y t

t t j t j j N

= + ∆

∀ ∈ + ∆ + + ∆ = −  



  



          (31c) 

( ) ( ) [ ]2 2 | , ,c c k k ku t u t t t t t N= ∀ ∈ + ∆               (31d) 

( ) [ ]1 1, ,c k ku t U t t t N∈ ∀ ∈ + ∆                  (31e) 

( ) ( ) ( )* * ˆk k kx t x t x t= =

                    (31f) 

( )( ) ( )( ) [ ]* * , ,k k sV x t V x t t t t N≤ ∀ ∈ + ∆

             (31g) 

The optimal solution to this optimization problem is denoted by 
( ) [ ]1 | , ,c k k ku t t t t t N∈ + ∆ . By imposing the constraint (30g) and (31g), we can 

prove that the proposed distributed model predictive control architecture inhe-
rits the stability properties of Lyapunov-based controller ( )ˆg x . The control 
inputs are defined as follows  

( ) [ ]1| , , , 1, 2i ci k k ku u t t t t t i+= ∀ ∈ =                (32) 

Note that, the actuators apply the last computed optimal input trajectories 
between two successive estimated states.  

5.2. Stability Analysis 

In this subsection, we will prove that the proposed distributed control architec-
ture inherits the stability of the Lyapunov-based controller ( )ˆg x . This property 
is described by Theorem 2 below. In order to present the theorem, we need the 
following propositions. 

Proposition 1: Consider the trajectory *x  of nominal observer (7) with the 
Lyapunov-based controller ( )*ˆg x  applied in a sample-and-hold fashion and 

2 0u = . Let , , 0sN ε∆ >  and 0sρ ρ> >  satisfy 

( )( ) ( )( )( )1 1
3 2 4 1 1 2 2 1 2 22s sd M N d bM N d cα α ρ α α ρ ε− −− + ∆ + ∆ + ≤ − ∆    (33) 

Then, if mρ ρ<  where 

( )( ) ( )( ){ }* *max :m sV x t V x tρ ρ= + ∆ ≤               (34) 

and ( )*
0x t ρ∈Ω , we can obtain such result:  
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( )( ) ( )( ){ }* *
0max ,k s mV x t V x t kε ρ≤ −                (35) 

Proof: The derivative of the Lyapunov function along the trajectory ( )*x t  of 
nominal observer is:  

( )( ) ( ) ( )( ) ( )( ) [ ]* * * *
1, ,0, , ,k k k

VV x t F x t g x t y t t t t
x +

∂
= ∈
∂

      (36) 

Taking into account (26), it is obtained that:  

( )( ) ( ) ( )( ) ( )( )
( ) ( )( ) ( )( )
( ) ( )( ) ( )( )

( )( ) ( ) ( )( ) ( )( )
( ) ( )( ) ( )( )

* * * *

* * *

* * *

* * * *
3

* * *

, ,0,

, ,0,

, ,0,

, ,0,

, ,0,

k

k k k

k k k

k k

k k k

VV x t F x t g x t y t
x

V F x t g x t y t
x
V F x t g x t y t
x

Vx t F x t g x t y t
x

F x t g x t y t

α

∂
=
∂
∂

+
∂
∂

−
∂

∂ ≤ − + ∂
− 



     (37) 

From (26) and 0sρ ρ> >  we have  

( )( ) ( )( )
( )( )

* 1
3 3 2

1
4 1

k sx t

V
x

α α α ρ

α α ρ

−

−

− ≤ −

∂
≤

∂

                   (38) 

for ( )*
skx t ρ ρ∀ ∈Ω Ω . Substituting (29) and (38) into (37), it can be written as:  

( )( ) ( )( ) ( )( )
( ) ( )

* 1 1
3 2 4 1

* *
1 2 1 2 22

s

k

V x t

d x t x t d bM N d c

α α ρ α α ρ− −≤ − +

 × − + ∆ + 



         (39) 

From (27) and the continuity of ( )*x t , the following inequality can be got-
ten:  

( ) ( ) [ ]* *
2 1, ,k k kx t x t M N t t t +− ≤ ∆ ∈                (40) 

In consequence, for all initial states ( )*
k s

x t ρ ρ∈Ω Ω , the bound of the de-
rivative of Lyapunov function is derived as:  

( )( ) ( )( ) ( )( )
( ) [ ]

* 1 1
3 2 4 1

1 2 2 1 2 2 12 , ,
s

k k

V x t

d M N d bM N d c t t t

α α ρ α α ρ− −

+

≤ − +

× ∆ + ∆ + ∀ ∈



     (41) 

If condition (33) is satisfied, the following inequality is true:  

( )( ) ( )* *,s k s
V x t x t ρ ρε≤ − ∆ ∈Ω Ω             (42) 

Integrating the above inequality on [ ]1,k kt t t +∈ , we get:  

( )( ) ( )( )* *
1k k sV x t V x t ε+ ≤ −  

( )( ) ( )( ) [ ]* *
1, ,k k kV x t V x t t t t +≤ ∀ ∈              (43) 

The inequalities above indicate that the observer (7) can reach 
sρ

Ω , if it 
starts from 

sρ ρΩ Ω  and ∆  is sufficiently small. Applying the inequalities re-
cursively, there exists 1 0k >  such that ( ) ( )

1

* *,
sk k s

x t x tρ ρ ρ∈Ω ∈Ω Ω  for 
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1k k∀ ≤  and ( )( ) ( )( )* *
0k sV x t V x t kε≤ − , if ( )*

0 s
x t ρ ρ∈Ω Ω . Once the esti-

mated state converges to 
s mρ ρΩ ⊂ Ω  (or starts there), it stays inside 

mρ
Ω  for 

all times. This statement holds because of the definition of mρ . If ( )*
skx t ρ∈Ω , 

( )*
1 mkx t ρ+ ∈Ω . This indicates that the conclusion in Proposition 1 is true. 

Proposition 1 guarantees that the observer (7) is ultimately bounded in 
mρ

Ω , 
if it is under the control law ( )1 2ˆ , 0u g x u= =  and starts from ρΩ . 

Remark 4: Compared with literature [19], under the condition of output 
feedback, the trajectory that Proposition 1 considers is the nominal observer ra-
ther than nominal system. 

Proposition 2 [19]: Consider the Lyapunov function ( )V ⋅  of observer (10). 
There exists a quadratic function ( )G ⋅  such that  

* *ˆ ˆ ˆ ˆ( ) ( ) (| |)V x V x G x x≤ + −                      (44) 

for *ˆ ˆ,x x ρ∀ ∈Ω , 1 2
4 1( ) = ( ( ))G x x Mxα α ρ− +  and 0M > . 

Proposition 2 bounds the difference between the magnitudes of Lyapunov 
function of nominal estimated states and actual estimated states in ρΩ . 

In Theorem 2 below, we prove the distributed MPC design of (31)-(33) guar-
antees that the estimated states of observer (10) is ultimately bounded. 

Theorem 2: Consider observer (10) with the output feedback distributed 
MPC of (30)-(31) based on controller ( )ˆg x  that satisfy the condition (26). The 
conditions (33), (34) and the following inequality  

( )( )2 0s s sN G Nε δ− + ∆ <                      (45) 

is satisfied with sN  being the smallest integer satisfying s mN T∆ ≥ . If 
( )0x̂ t ρ∈Ω , then x̂  is ultimately bounded in 

nρ ρΩ ⊆ Ω  where  

( )( )2n m sG Nρ ρ δ= + ∆                       (46) 

Proof: In order to prove that the closed-loop system is ultimately bounded in 
a region that contains the origin, we need to prove that ( )( )ˆ kV x t  is a decreas-
ing sequence of values with a lower bound. 

First, we prove the stability results of Theorem 2 when 1 ,k k m m st t T T N+ − = = ∆  
for all k. The case is the worst situation that LMPC1 and LMPC2 need to operate 
in an open-loop for the maximum amount of time. ( )*

1kx t +  is obtained from 
the nominal observer (7) starting from ( )ˆ kx t  under the Lyapunov-based con-
troller ( )*

1 ˆu g x=  applied in a sample-and-hold fashion and 2 0u = . From 
proposition 1 and 1k k st t N+ = + ∆ , it is obtained that  

( )( ) ( )( ){ }* *
1 max ,k k s s mV x t V x t N ε ρ+ ≤ −               (47) 

From the constraints of (30g) and (31g), we can get  

( )( ) ( )( ) ( )( ) [ ]* * * , ,k k sV x t V x t V x t t t t N≤ ≤ ∀ ∈ + ∆

          (48) 

From the inequalities (47) and (48) and ( ) ( ) ( ) ( )* * * ˆk k k kx t x t x t x t= = =

 , it is 
derived that when ( )x̂ t ρ∈Ω  (this point will be proved below), the following 
inequality is true 
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( )( ) ( )( ){ }*
1 ˆmax ,k k s s mV x t V x t N ε ρ+ ≤ −               (49) 

Based on Proposition 2, we obtain the following inequality  

( )( ) ( )( ) ( ) ( )( )* *
1 1 1 1ˆ ˆk k k kV x t V x t G x t x t+ + + +≤ + −             (50) 

The following upper bound of the error between ( )x̂ t  and ( )*x t  is ob-
tained by applying the inequality (24)  

( ) ( ) ( )*
1 1 2ˆk k sx t x t Nδ+ +− ≤ ∆                    (51) 

From inequalities (49), (50) and (51), ( )( )1ˆ kV x t +  can be written as  

( )( ) ( )( ) ( )( )
( )( ){ } ( )( )
( )( ) ( )( ) ( )( ){ }

*
1 1 2

2

2 2

ˆ

ˆmax ,

ˆ= max ,

k k s

k s s m s

k s s s m s

V x t V x t G N

V x t N G N

V x t N G N G N

δ

ε ρ δ

ε δ ρ δ

+ +≤ + ∆

≤ − + ∆

− + ∆ + ∆



  (52) 

From the condition (45) and inequality (52), there exists 0δ >  satisfying the 
following inequality  

( )( ) ( )( ){ }1ˆ ˆmax ,k k nV x t V x t δ ρ+ ≤ −                 (53) 

This indicates that ( )( ) ( )( )1ˆ ˆk kV x t V x t+ ≤  if ( )ˆ
nkx t ρ ρ∈Ω Ω , and 

( )( )1ˆ k nV x t ρ+ ≤  if ( )ˆ
nkx t ρ∈Ω . 

The upper bound of the error between the Lyapunov function of the actual 
observer state ( )x̂ t  and nominal observer state ( )*x t  is a strictly increasing 
function of time (due to the definition of 2δ  and G in the inequality (24) and 
Proposition 2), so inequality (53) indicates that  

( )( ) ( )( ){ } [ ]1ˆ ˆmax , , ,k n k kV x t V x t t t tρ +≤ ∀ ∈             (54) 

Using the inequality (54), the closed-loop trajectories of observer (10) are 
proved always staying in ρΩ  by using the proposed output feedback distri-
buted MPC when ( )0x̂ t ρ∈Ω . Furthermore, using the inequality (53), when 
( )0x̂ t ρ∈Ω , the estimated states of observer (10) satisfy  

( )( )ˆlimsup n
t

V x t ρ
→∞

≤                       (55) 

So ( )ˆ ,x t tρ∈Ω ∀ , and ( )x̂ t  is ultimately bounded in 
nρ

Ω . 
Second, we extend the results to the common case, that is 1k k mt t T+ − ≤  and 

m sT N≤ ∆ , which indicates that 1k k st t N+ − ≤ ∆ . Because 2δ  and G are strictly 
increasing function and G is a convex function. Similarly, it can be proved that 
the inequality (53) is still true. This implies that the stability results of Theorem 
2 hold. 

Corollary: Because of ( )x̂ t  is ultimately bounded, that is ( )ˆ
n

x t ρ∈Ω  when 
( )0x̂ t ρ∈Ω , for nρ ρ∀ < . Since ( ) ee t ∈Ω  and ( ) ( ) ( )ˆx t x t e t= + , it can be 

obtained that  
( ) ( ) ( ) ( )0 0ˆ ˆ ,

ne e nx t e t x t e tρ ρ ρ ρ+ ∈Ω +Ω ⇒ + ∈Ω +Ω ∀ <        (56) 

That is  
( ) ( )0 ,

ne e nx t x tρ ρ ρ ρ∈Ω +Ω ⇒ ∈Ω +Ω ∀ <             (57) 
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So the state ( )x t  of the system is ultimately bounded. 
Remark 5: The proposed output feedback distributed MPC can be extended 

to multiple LMPC controllers using one direction sequential communication 
strategy (that is LMPCk sends information to LMPCk − 1, k = 1, 2, 3, ∙∙∙). By let-
ting each LMPC send its trajectory, all the trajectories received from previous 
controllers are sent to their successor LMPC (that is LMPCk sends both its tra-
jectory and the trajectories received from LMPCk + 1 to LMPCk − 1). 

Remark 6: The implementation strategy of the output feedback distributed 
model predictive control proposed in this paper is as follows 

1) The observer is used to estimate the current state ( )kx t . 
2) LMPC2 computes the optimal input trajectory of 2u  based on the esti-

mated state ( )ˆ kx t  and sends the optimal input trajectory to its actuators and 
LMPC1. 

3) Once LMPC1 receives the optimal input trajectory of 2u , it evaluates the 
optimal input trajectory of 1u  based on ( )ˆ kx t  and the optimal input trajecto-
ry of 2u . If the optimal input trajectory of 2u  cannot be received by LMPC1, a 
zero trajectory for 2u  is used in the evaluation of LMPC1. 

4) LMPC1 sends the optimal input trajectory to its actuators. 
5) At next time, let 1k k+ →  and return step (1).  

6. Example 

In order to verify the effectiveness of the proposed output feedback distributed 
model predictive control method, we apply it into a three vessel consisting of 
two continuously stirred tank reactors and a flash tank separator [5] which react 

,A B B C→ →  where A is the reactant and B is the product which is asked and 
C is the secondary product. The mathematical model of this process under stan-
dard modeling assumptions are given as follows:  

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

1

1 1

1

1

1
10 31

10 1 1 1 1 3 1
1 1 1

1 2
10 31

10 1 1 1 1 2 1 3 1
1 1 1

1
101 1

10 1 3 1 1 1
1 1

2
2 1

2 1
1

d e
d

d e e
d

d e
d

E
RTA r

A A Ar A A A A

E E
RT RTB r

B B Br B A B B B

E
RTr

A
p

E
RT

B
p p

F Fx Fx x x x k x x x
t V V V

F Fx Fx x x x k x k x x x
t V V V

FT F HT T T T k x
t V V C

H Qk e x
C C Vρ

−

− −

−

−

= − + − − + −

= − + − + − + −

−∆
= − + − +

−∆
+ + ( )3

3 1
1

F T T
V

+ −

 

( ) ( )

( ) ( )

( ) ( )

2

2 2

2 2

1
202 1

1 2 20 2 1 2
2 2

1 2
202 1

1 2 20 2 1 2 2 2
2 2

1 2
202 1 1 2 2

1 2 20 2 1 2 2 2
2 2 2

d
e

d

d
e e

d

d
e e

d

E
RTA

A A A A A

E E
RT RTB

B B B B A B

E E
RT RT

A B
p p p

Fx F x x x x k x
t V V

Fx F x x x x k x k x
t V V

FT F H H QT T T T k x k x
t V V C C C Vρ

−

− −

− −

= − + − −

= − + − + −

−∆ −∆
= − + − + + +

 

(58) 
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( ) ( )

( ) ( )

( )

3 2
2 3 3

3 3

3 2
2 3 3

3 3

3 32
2 3

3 3

d
d

d
d

d
d

r pA
A A Ar A

r pB
B B Br B

p

F Fx F x x x x
t V V

F Fx F x x x x
t V V

T QF T T
t V C Vρ

+
= − − −

+
= − − −

= − +

 

where 3y F=  is the output sampled asynchronously,  

[
]

T
1 1 1 1 1 1 2 2 2 2

2 2 3 3 3 3 3 3

, , , , ,

, , ,
A A s B B s s A A s B B s

s A A s B B s s

x x x x x T T x x x x

T T x x x x T T

= − − − − −

− − − −
 is the state of the system. 

[ ]T
1 1 1 2 2 3 3, ,s s su Q Q Q Q Q Q= − − − , 2 20 20su F F= −  are the manipulated inputs, 

where 6
1 1.49 10 kJ hsQ = × , 6

2 1.46 10 kJ hsQ = × , 6
3 1.55 10 kJ hsQ = × ,  

3
20 5.1 m hsF =  and 6

1 10 kJ hu ≤ , 3
2 3 m hu ≤ . The process above can be 

writing as follows:  

( ) ( )( ) ( )( ) ( ) ( )( ) ( ) ( )1 1 2 2x t f x t g x t u t g x t u t w t= + + +      (59) 

The objective is to guide the process from the initial  
[ ]T

0 0.7998  0.1  378  0.8517  0.2012  363  0.67  0.22  368x =  to the steady state 
[ ]T 0.4995  0.39  423  0.59  0.4751  434  0.35  0.6491  436sx = . We design a  

Lyapunov-based controller ( )1u g x=  which stabilize the closed-loop system as 
follows:  

( )
( )

( )
1

1

1

1

42

2 0

0 0

f f g
g

g

g

L V L V L V
L V

g x L V

L V

 + +
− ≠= 

 =

         (60) 

Consider a Lyapunov function  

( ) TV x x Px=  

where ( )12 4 4 4diag 5.2 10 4,4,10 ,4,4,10 ,4,4,10P − − − = ×    and ( )diag v  denotes 
a diagonal matrix with its diagonal elements being the elements of vector v. The 
sampling time is chosen to be 0.02 h 1.2 min∆ = = . Suppose the measured out-
put is obtained asynchronously at time instants 0kt ≥ . The maximum interval 
between two successive asynchronous measured output is 3mT = ∆ . The predic-
tion horizon is chosen to be 6N =  and control horizon is 3sN =  such that 

s mN T∆ ≥ . The weight matrices are  
[ ]( )3diag 10 2,2,0.0025,2,2,0.0025,2,2,0.0025cQ = ,  

( )12 12 12
1 diag 5 10 ,5 10 ,5 10cR − − − = × × ×  , 2 100cR =  respectively. Computer the 

inputs of LMPC1 and LMPC2. The simulation results are as follows: 
Figure 3 is the output of the system, and Figures 4-6 are states of the system, 

and Figure 7 and Figure 8 are inputs of the system. From the figures, outputs of 
the system tend towards stability finally, the reduction of reactant [ ]1 2 3, ,A A A Ax x x x=  
makes product [ ]1 2 3, ,B B B Bx x x x=  to become more and more and stable gradu-
ally, and temperature rise and tend to be stable gradually, the rate of heat  
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Figure 3. The trajectory of 3F . 

 

 
Figure 4. The trajectories of 1 2,A Ax x  and 3Ax . 

 

 
Figure 5. The trajectories of 1 2,B Bx x  and 3Bx . 
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Figure 6. The trajectories of 1 2,T T  and 3T . 

 

 
Figure 7. The trajectories of 1 2,Q Q  and 3Q . 

 

 
Figure 8. The trajectory of 20F . 
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input reduce and tend to be stable gradually. From the results, we know the 
proposed output feedback distributed model predictive control architecture 
guarantees the ultimately boundedness of the system’s states, and then the reac-
tor-separator process is stable. 

7. Conclusion 

For a class of nonlinear systems whose states are immeasurable, an output feed-
back distributed model predictive control algorithm is proposed. The main idea 
is: For the considered system, when the outputs are sampled asynchronously, by 
introducing a state observer, the estimated states of the original system are ob-
tained. It is proved that the error is bounded and the estimated states are ulti-
mately bounded. The stability of closed-loop system is guaranteed and the per-
formance of the closed-loop system is improved. The simulation results verify 
the effectiveness of the method proposed in this paper. 

Acknowledgements 

This research was supported by the Natural Science Foundation of China 
(61374004, 61773237, 61473170) and Key Research and Development Programs 
of Shandong Province 2017GSF18116. 

References 
[1] Wang, W.L., Rivera, D.E. and Kempf, K.G. (2003) Centralized Model Predictive 

Control Strategies for Inventory Management in Semiconductor Manufacturing 
Supply Chains. American Control Conference, Denver, 4-6 June 2003, 585-590.  

[2] Liu, J.F., Muñoz de la Peña, D. and Christofides, P.D. (2009) Distributed Model 
Predictive Control of Nonlinear Process Systems. AiChE Journal, 55, 1171-1184.  
https://doi.org/10.1002/aic.11801 

[3] Su, B.L., Li, S.Y. and Zhu, Q.M. (2009) Predictive Control of the Initial Stable Re-
gion for Constrained Switched Nonlinear Systems. Science in China, 39, 994-1003.  

[4] Zhu, J. (2002) Intelligent Predictive Control and Its Application. Zhejiang Univer-
sity Press, Hangzhou. 

[5] Kong, X.B. and Liu, X.J. (2014) Nonlinear Model Predictive Control for 
DFIG-Based Wind Power Generation. IEEE Transactions on Automation Science & 
Engineering, 11, 1046-1055. https://doi.org/10.1109/TASE.2013.2284066 

[6] Camponogara, E., Jia, D., Krogh, B.H. and Talukdar, S. (2002) Distributed Model 
Predictive Control. IEEE Control Systems, 22, 44-52.  
https://doi.org/10.1109/37.980246 

[7] Zhang, L.W. and Wang, J.C. (2012) Distributed Model Predictive Control with a 
Novel Partition Method. Proceedings of 31st Chinese Control Conference, Hefei, 
25-27 July 2012, 4108-4113.  

[8] Gao, Y.L., Xia, Y.Q. and Dai, L. (2015) Cooperative Distributed Model Predictive 
Control of Multiple Coupled Linear Systems. IET Control Theorem & Applications, 
9, 2561-2567. https://doi.org/10.1049/iet-cta.2015.0096 

[9] Liu, J.F., Muñoz de la Peña, D. and Christofides, P.D. (2010) Distributed Model 
Predictive Control of Nonlinear Process Systems Subject to Asynchronous and De-

https://doi.org/10.4236/am.2017.812131
https://doi.org/10.1002/aic.11801
https://doi.org/10.1109/TASE.2013.2284066
https://doi.org/10.1109/37.980246
https://doi.org/10.1049/iet-cta.2015.0096


B. L. Su, Y. Z. Wang 
 

 

DOI: 10.4236/am.2017.812131 1850 Applied Mathematics 
 

layed Measurements. Automatica, 46, 52-61.  
https://doi.org/10.1016/j.automatica.2009.10.033 

[10] Tran, T. and Quang, N.K. (2013) Distributed Model Predictive Control with Re-
ceding-Horizon Stability Constraints. International Conference on Control, 80, 
85-90.  

[11] Zhang, L.W., Wang, J.C., Ge, Y. and Wang, B.H. (2014) Robust Distributed Model 
Predictive Control for Uncertain Networked Control System. IET Control Theorem 
& Applications, 8, 1843-1851. https://doi.org/10.1049/iet-cta.2014.0311 

[12] Álvarez, A., Ridao, M.A., Ramirez, D.R. and Sánchez, L. (2013) Distributed Model 
Predictive Control Techniques Applied to an Irrigation Cannal. European Control 
Conference (ECC), 415, 3276-3281.  

[13] Jia, Y.B. and Liu, X.J. (2014) Distributed Model Predictive Control of Wind and So-
lar Generation System. Proceedings of the 33rd Chinese Control Conference, Nanj-
ing, 28-30 July 2014, 7795-7799.  

[14] Farina, M. and Scattolini, R. (2011) An Output Feedback Distributed Predictive 
Control Algorithm. 50th IEEE Conference on Decision and Control and European 
Control Conference, Orlando, 12-15 December 2011, 8139-8144.  
https://doi.org/10.1109/CDC.2011.6160366 

[15] Giselsson, P. (2013) Output Feedback Distributed Model Predictive Control with 
Inherent Robustness Properties. American Control Conference, Washington DC, 
17-19 June 2013, 1691-1696. https://doi.org/10.1109/ACC.2013.6580079 

[16] Copp, D.A. and Hespanha, J.P. (2014) Nonlinear Output-Feedback Model Predic-
tive Control with Moving Horizon Estimation. 53rd IEEE Conference on Decision 
and Control, Los Angeles, 15-17 December 2014, 3511-3517.  
https://doi.org/10.1109/CDC.2014.7039934 

[17] Homer, T. and Mhaskar, P. (2015) Output Feedback Model Predictive Control of 
Stochastic Nonlinear Systems. American Control Conference, Chicago, 1-3 July 
2015, 793-798. https://doi.org/10.1109/ACC.2015.7170831 

[18] Khalil, H.K. (2011) Nonlinear Systems. 3rd Edition, Publishing House of Electronics 
Industry, Beijing.   

[19] Muñoz de la Peña, D. and Christofides, P.D. (2008) Lyapunov-Based Model Predic-
tive Control of Nonlinear Systems Subject to Data Losses. IEEE Transactions on 
Automatic Control, 53, 2076-2089. https://doi.org/10.1109/TAC.2008.929401 

 
 

https://doi.org/10.4236/am.2017.812131
https://doi.org/10.1016/j.automatica.2009.10.033
https://doi.org/10.1049/iet-cta.2014.0311
https://doi.org/10.1109/CDC.2011.6160366
https://doi.org/10.1109/ACC.2013.6580079
https://doi.org/10.1109/CDC.2014.7039934
https://doi.org/10.1109/ACC.2015.7170831
https://doi.org/10.1109/TAC.2008.929401

	The Design of Output Feedback Distributed Model Predictive Controller for a Class of Nonlinear Systems
	Abstract
	Keywords
	1. Introduction
	2. Preliminaries
	2.1. Definitions and Lemmas
	2.2. Problem Formulation

	3. Observers and Property
	3.1. The Design of Observers
	3.2. The Property of Observers

	4. Lyapunov-Based Controller
	5. Output Feedback Distributed Model Predictive Control
	5.1. Distributed Model Predictive Control
	5.2. Stability Analysis

	6. Example
	7. Conclusion
	Acknowledgements
	References

