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Abstract 
A Krylov space based time domain method for wave propagation problems is 
introduced. The proposed method uses the Arnoldi algorithm to obtain 
broadband frequency domain solutions. This method is especially advanta-
geous in cases where slow convergence is observed when using traditional 
time domain methods. The efficiency of the method is examined in several 
test cases to show its fast convergence in such problems. 
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1. Introduction 

Wave equations can be generally solved using two categories of methods: 
time-domain and frequency-domain methods. Finite-difference time-domain 
(FDTD) methods have been widely adopted for solving different kinds of wave 
propagation problems. In these methods, the field is discretized into a series of 
uniform hexahedral volumes. The spatial derivatives are approximated with 
second-order central differences and the leapfrog method is used for temporal 
discretization [1]. The interests in the time domain methods have been ex-
panded over the past few decades for several reasons, such as the natural treat-
ments of impulsive behaviors, nonlinear behaviors, and so on. 

The solution to linear wave equations can be approximated by linear combi-
nations of sinusoidal waves at various frequencies, which leads to a frequen-
cy-domain formulation for different time-harmonic sources. The time-domain 
solution is of interest in this research for its capability of obtaining frequency 
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domain solutions across a frequency range. Besides, in the time domain, the re-
sidual of the linear system is reduced several orders of magnitude, and requires 
much less search direction in a Krylov subspace [2]. 

The time domain methods, however, have been found to suffer from conver-
gence problems for physical models that include locally resonant structures. 
Such structures may be the result of large material mismatches, or complex 
geometries. The convergence problems have also been a concern in structural 
optimizations such as the designs of metamaterials [3] [4], where the geometry 
constantly changes during the design iterations and is not predictable. 

The purpose of this paper is to introduce a Krylov space based time domain 
approach for frequency domain solutions. The proposed algorithm is suitable for 
physical models where slow convergence is found with traditional time domain 
methods. Related research can be found in [5] [6] [7], and so on. Different from 
existing work, the proposed algorithm is derived directly from discrete Fourier 
transform of time domain data, by which the corresponding frequency domain 
solutions of a wide range can be obtained with negligible computational costs 
once the projection of the time domain solution onto the Krylov subspace is ob-
tained. No matrix operation with complex numbers is required in the algorithm. 
Several numerical cases are examined to demonstrate the efficiency of the me-
thod, in which cases the spatial discretization is done with finite element me-
thods. 

2. Numerical Model 

Wave propagations can be modeled by first order partial differential equations 
(PDEs) in general, which may be written as 

( ) 0
t

∂
+ ∇ ⋅ =

∂
Q F Q .                      (1) 

In acoustics, the wave equations can be written in a non-conservative form, 
known as the linearized Euler equations 

0e
p K
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where p is the acoustic pressure, u is the velocity vector, Ke is the bulk modulus 
of compressibility of the material, and ρe is the density. 

The wave propagation problems in this paper are modeled using a stabilized 
finite element formulation: Streamlined Upwind/Petrov Galerkin (SUPG) me-
thod [8] for time-domain applications. As the speed of computing resources in-
creases and as the geometry conformity becomes more of a concern, finite ele-
ment methods have become an alternative to the FDTD methods. There are 
mainly two different strategies in dealing with the convective terms in the 
hyperbolic equations, and it has been shown that SUPG has the advantage of 
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using a reduced number of unknowns in comparison with the discontinuous 
Galerkin (DG) method. 

Finite element methods typically start with formulating the equations using a 
weighted residual method, which can be cast in the form of 

[ ] 0
t

φ
Ω

∂ +∇ ⋅ ∂Ω = ∂ ∫
Q F ,                 (4) 

where φ  is a weighting function. The temporal discretization of the governing 
equation is advanced by implementing a backward differentiation formula 
(BDF), and the fully discretized equation is solved with an implicit time march-
ing approach (Newton’s method) so that the time-step size can be determined by 
accuracy considerations instead of stability limitations as in explicit methods. 

3. A Broadband Frequency Domain Method Based on Krylov 
Space Projections of Time Domain Solutions 

While the time domain formulation can be used to obtain the frequency domain 
solution across a frequency range, the convergence of the frequency domain solu-
tion is not always as rapid as expected. Especially in physical problems where lo-
cally resonant structures exist, the solution procedure can easily take numerous 
time-marching steps before the errors are reduced to a tolerance. 

To circumvent the problem of slow convergence in certain situations, the time 
domain method is reformulated with a Krylov space projection. Consider the ful-
ly discretized equations with BDF-1 scheme, the residual at time step j (t = jΔt) 
can be written as 

[ ] ( )
1j j

j j

t
φ

−

Ω

 −
= +∇ ⋅ ∂Ω ∆ 
∫

Q QR F Q .              (5) 

Since the equations are linear, the residual can be expressed as 
1j j jA B −   = +   R Q Q  ,                    (6) 

where 
j

jA ∂  =  ∂
R
Q

                          (7) 

and 

1

j

jB −
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Q
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are the linearization matrices. Substitute this into the Newton’s step, 
1j jA B −   = −   Q Q  .                    (9) 

Denote 

[ ]M A B   = −   
                       (10) 

and use deduction, given an initial condition Q0, for any given time j, the time 
dependent solution can be described as 
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[ ] 1j jM −=Q Q ,                       (11) 

which indicates that the time domain solution forms a Krylov basis with the iter-
ative matrix [M], such that 

[ ] [ ] [ ]1 2 10 0 0 0nt
ntK M M M − =  Q Q Q Q ,          (12) 

where nt is the number of time steps. It also indicates that, the damping of the 
numerical error is strongly related to the eigenvalues of the matrix [M]; the closer 
the eigenvalues are to 1.0, the slower the convergence would be. 

Since the frequency domain solutions are of interest, the Fourier transform can 
be applied to the time domain solutions. At each frequency point fk, the discrete 
Fourier transform may be expressed as 

1

ˆ e k
nt

tj
k

j
tια−

=

= ∆∑Q Q ,                     (13) 

where ι2 = −1 and 

2πk kfα = .                        (14) 

Denote 

e k tj
k

ιαψ −= ,                        (15) 

and substitute Equation (11) into Equation (13), the frequency domain solutions 
may now be written as 
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The initial condition Q0 can be projected into the eigen-space of matrix [M]. 
That is, it can be expressed as 

0
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nn

i i
i

a
=
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where nn is the number of nodes (degree of freedom), vi is the ith eigenvector of 
[M], and ai is the corresponding coefficient. Therefore the solution at time step j 
can be re-written as 

1
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then the frequency domain solution becomes 
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Switch the sum operators, 
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and this can be expressed as 
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with 
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The set of the eigenvalues and eigenvectors can be approximated by the Arnol-
di algorithm [9]. The algorithm can be summarized with the following: 

Algorithm. A Krylov space-based time domain method for broadband fre-
quency domain solutions 

1) Use Q0 as the initial condition for time-domain method to get matrices [A] 
and [B] as in Equations (7-8). 

2) Set i = 1, and set 
0

1 0
=

Qq
Q

.                         (23) 

and start the Arnoldi iteration. Store the qi vectors in the [Q] matrix, and hj,i 
items in the [H] matrix. 

3) Calculate 

i iM=u q .                         (24) 

4) Set j = 1. 
5) Calculate 

,
H

j i j ih = q u .                         (25) 

,i i j i jh= −u u q                        (26) 

6) If j = i, stop the inner loop; otherwise set j = j + 1 and go to step 5. 
7) Calculate 

1,i i ih + = u .                         (27) 

8) If hi+1,i = 0, stop the Arnoldi iteration. 
9) Calculate 

1
1,

i
i

i ih+
+

=
u

q .                        (28) 

10) If i = niter (the prescribed number of Arnoldi iteration), stop the Arnoldi 
iteration; otherwise set i = i + 1 and go to step 3. 

11) Calculate the eigenvalues [Λ] and eigenvectors [VH] of the Hessenberg ma-
trix [H] obtained by the Arnoldi iteration, and the eigenvectors [V] of the [M] 
matrix is given by 

[ ] [ ] [ ]1
HV Q V−

=                      (29) 

12) Calculate the coefficients ai by Equation (17). 
13) Calculate the weight coefficients wi by Equation (22). 
14) Calculate the frequency domain solutions by Equation (21). 
Since in some cases the time domain solution procedure starts by introducing 

an excitation such as a Gaussian pulse, an intermediate state Q0 after the excita-
tion is completed, will be needed in order to proceed with the algorithm. In this 
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case, one needs to calculate the frequency domain solutions before the interme-
diate state by Equation (13) and add it to the primitive frequency domain solu-
tion. 

For physical problems which require a lot of iterations before the frequency 
domain solutions reach convergence, this algorithm is recommended. In fact, the 
eigenvalues in these problems are found to be close to 1.0, which can be effective-
ly approximated by the Arnoldi algorithm since these eigenvalues are typically 
extremes in the eigensystems. The advantage of using this algorithm is that, the 
number of time steps nt can be chosen to be an arbitrary number, so that the 
number of iterations is reduced from nt to niter as is needed for the Arnoldi ite-
ration. 

4. Numerical Examples 

An acoustic wave propagation case with artificial material properties is designed 
to examine the efficiency of the proposed algorithm. The geometry is shown in 
Figure 1, where the background material (material 1) is shown in gray color, 
and the inclusion (material 2) is shown in black color. This geometry is a simple 
locally resonant structure. The unit cell is a square with edge length a = 1 cm. 
The frequency range of interest is from 0.5 kHz to 3 kHz as reported in a design 
of acoustic metamaterials [4]. Three cases with different material properties are 
considered, and the relative material properties of the inclusion are shown in 
Table 1. 
 

 
Figure 1. The geometry of the acoustic wave propagation case. 

 
Table 1. The relative material properties of the inclusion. 

Cases and material properties 2
eρ  2

eK  

Case 1 14000 eρ  1400000 eK  

Case 2 1400 eρ  140000 eK  

Case 3 140 eρ  14000 eK  

a. Ke is the bulk modulus of compressibility of the material, and ρe is the density. b. The superscripts 
represent the acoustic materials 1 (background) and 2 (inclusion). 
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The simulation is configured as initiating a Gaussian pulse in the left end, and 
sensors are used to collect information for use in the frequency domain solutions. 
In addition, periodic boundary conditions are applied to the upper and lower 
parts of the domain, and absorbing boundary conditions [10] are applied to the 
left and right ends. 

The frequency domain solutions for a sensor located in the center of the 
computational domain are used as the reference. Since the convergence of the 
solutions is of primary concern, only the frequency domain solutions after the 
completion of the Gaussian pulse are considered. It is shown in Figure 2 that the 
time domain solutions for cases 1 and 2 take a long time before settling down. It 
is thus to be expected that the convergences of the frequency solution will be 
slow, and the errors to the converged numerical solutions are plotted in Figure 3. 
In practice, the numbers of time steps required for cases 1 and 2 to reach the er-
ror level of 10−10 are 441,769 and 26,280, respectively. In comparison, in both 
cases the solutions converge to the level of 10−10 within 100 Arnoldi iterations 
with the proposed time domain-based broadband frequency domain algorithm, 
as shown in Figure 4. However, it is also noted that the solution may diverge 
due to the fact that the eigenvalues approximated by the Arnoldi algorithm can 
be bigger than 1, and their exponentials may be exceedingly large. It is thus ne-
cessary to monitor the approximated eigenvalues in some cases to ensure their 
values are all below 1, and if one or more of them are larger than 1, more Arnol-
di iterations need to be taken. 

It is seen from Figure 5 that in cases 1 and 2 the frequency domain solutions 
have peaks at their resonant frequencies, which indicate the long-term vibrations 
of the acoustic wave within the structure. In case 3, the solutions converge  

 

 
Figure 2. The time domain solutions at a sensor located in the center of the geometry. 
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Figure 3. The convergence of frequency domain solutions with the time-marching 
approach. 
 

 
Figure 4. The convergence of frequency domain solutions with the Krylov space-based 
time domain algorithm. 
 
promptly with time marching method, and the resonant frequency is not ob-
vious, due to the fact that most of the vibrations are damped after the excitation 
is completed. In addition, the Arnoldi iteration is also able to reduce the error 
level for this case. 

https://doi.org/10.4236/oja.2017.74009


W. Y. Lin 
 

 

DOI: 10.4236/oja.2017.74009 103 Open Journal of Acoustics 
 

 
Figure 5. The Frequency domain solutions at a sensor located in the center of the 
geometry. 

5. Conclusion 

A Krylov space-based time domain method is introduced for broadband fre-
quency domain solutions. This method is useful for dealing with physical models 
for which slow convergences are observed with traditional time marching me-
thods. The efficiency of the method is examined in several test cases to show its 
fast convergence in such problems. An acoustic wave propagation problem is 
modeled with a stabilized finite element method. In the test cases, the proposed 
method uses less than 100 iterations before an error level is reached. This de-
crease is orders of magnitude less than the time-marching approach. 
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