
Journal of Software Engineering and Applications, 2017, 10, 891-906
http://www.scirp.org/journal/jsea

ISSN Online: 1945-3124
ISSN Print: 1945-3116

DOI: 10.4236/jsea.2017.1013051 Dec. 28, 2017 891 Journal of Software Engineering and Applications

Code Clone Detection Method Based on the
Combination of Tree-Based and Token-Based
Methods

Ryota Ami, Hirohide Haga

Graduate School of Science and Engineering, Doshisha University, Kyoto, Japan

Abstract
This article proposes the high-speed and high-accuracy code clone detection
method based on the combination of tree-based and token-based methods.
Existence of duplicated program codes, called code clone, is one of the main
factors that reduces the quality and maintainability of software. If one code
fragment contains faults (bugs) and they are copied and modified to other lo-
cations, it is necessary to correct all of them. But it is not easy to find all code
clones in large and complex software. Much research efforts have been done
for code clone detection. There are mainly two methods for code clone detec-
tion. One is token-based and the other is tree-based method. Token-based
method is fast and requires less resources. However it cannot detect all kinds
of code clones. Tree-based method can detect all kinds of code clones, but it is
slow and requires much computing resources. In this paper combination of
these two methods was proposed to improve the efficiency and accuracy of
detecting code clones. Firstly some candidates of code clones will be extracted
by token-based method that is fast and lightweight. Then selected candidates
will be checked more precisely by using tree-based method that can find all
kinds of code clones. The prototype system was developed. This system ac-
cepts source code and tokenizes it in the first step. Then token-based method
is applied to this token sequence to find candidates of code clones. After ex-
tracting several candidates, selected source codes will be converted into ab-
stract syntax tree (AST) for applying tree-based method. Some sample source
codes were used to evaluate the proposed method. This evaluation proved the
improvement of efficiency and precision of code clones detecting.

Keywords
Code Clone, Token-Based Detection, Tree-Based Detection, Tree Edit
Distance

How to cite this paper: Ami, R. and Haga,
H. (2017) Code Clone Detection Method
Based on the Combination of Tree-Based
and Token-Based Methods. Journal of
Software Engineering and Applications, 10,
891-906.
https://doi.org/10.4236/jsea.2017.1013051

Received: November 23, 2017
Accepted: December 25, 2017
Published: December 28, 2017

Copyright © 2017 by authors and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

http://www.scirp.org/journal/jsea
https://doi.org/10.4236/jsea.2017.1013051
http://www.scirp.org
https://doi.org/10.4236/jsea.2017.1013051
http://creativecommons.org/licenses/by/4.0/

R. Ami, H. Haga

DOI: 10.4236/jsea.2017.1013051 892 Journal of Software Engineering and Applications

1. Introduction

This article proposes the high-speed and high-accuracy code clone detecting
method. Code clone is a fragment of source code that is identical or similar to
other portion of source code [1]. Code clones often reduce the maintainability of
software. Suppose that there are two code fragments A and B, and fragment B is
a clone of fragment A. If errors (bugs) are included in A, B must contain same
errors and they must be removed at the same time when errors in A are re-
moved. If the programmer does not recognize the existence of clone B, he or she
may forget to revise them in clone B. This may cause the deterioration of soft-
ware quality. It is often said that 10% to 20% of codes are duplicated code (code
clones) in large-scale software [2] [3]. If the software is large, finding all code
clones are hard work.

From syntactical point of view, there are three types of code clone named
TYPE-1, TYPE-2, and TYPE-3 [4]. In TYPE-1, all parts of original and clones
are identical. In TYPE-2, some differences such as the difference of identifier
name and function name, and the value of constants exist but structure of code
is identical. In TYPE-3, several statements are inserted or removed from original
source code.

In order to detect these code clones, several methods are proposed in previous
works. These methods are based on two principles; one is token-based method
[5] [6] and the other is tree-based method [7] [8]. Token-based methods can
detect TYPE-1 and TYPE-2 clones very fast but hard to detect TYPE-3 clones.
This method is relatively fast and can be applied to large-scale software. On the
other hand, tree-based methods can detect all types of code clone but require
large computing resources (CPU time and memory).

In this article, we propose the new method that can detect all types of code
clone and run relatively fast. Our method combines token-based method and
tree-based method. By using token-based method that runs fast, some candi-
dates of code clones are extracted. After the extraction of candidates, each can-
didate fragment is examined by using tree-based method if it is clone or not. By
combining token-based method and tree-based method, our method can detect
all types of code clone faster.

2. Definition of Code Clone
2.1. Definitions and Types of Code Clones

Figure 1 is a conceptual illustration of code clone. Let us consider one sample
source code shown in Figure 1. The code fragment shown at the left-hand side is
the original code. There are another two code fragments at the right-hand side of
the source code illustrated by rectangles. These two fragments are assumed to be
identical or similar to the original. Then these two fragments are code clones.
Note that there are only two fragments in Figure 1, three or more code clones
may exist in the source code. Suppose there is one bug in the original code
shown by the red star in Figure 1. Then similar bugs may exist in another code

https://doi.org/10.4236/jsea.2017.1013051

R. Ami, H. Haga

DOI: 10.4236/jsea.2017.1013051 893 Journal of Software Engineering and Applications

Figure 1. Conceptual illustration of code clone.

fragments of code clones. In order to remove all bugs in the source code, pro-
grammer has to find all bugs in other code clones. If he or she forgets to revise
other bugs, the quality of software will reduce.

As the size of program increases, the number of code clones increases. Code
clones are usually brought into original code by copy-and-paste operation.
Finding all code clones in large complex program becomes hard. Therefore, de-
tecting code clones and improving the structure of original code play an impor-
tant role in software quality assurance.

Bellon et al. classified code clones into three types based on the features of
clones [4]. They are:
• Type-1 (Exact clone): Exact duplication of original part except white space,

tab, carriage code and other coding style related characters.
• Type-2 (Parameterized clone): Syntactically identical but some names of

identifiers (variable names, function/method names etc.) and the values of
constants are different in two code fragments.

• Type-3 (Gap clone): Duplication with some insertion and/or deletion of
statements.

2.2. Related Works of Clone Detection

Several methods to detect code clones are proposed in previous works. For ex-
ample, Baker et al tried to detect clones by line-wise comparison of two files [2].
Furthermore, they introduced the parse tree and used it for detecting clones [2].
Currently, detecting methods are classified into three categories.
• Text-based method (or line-based method): This method detects code

clones by comparing two codes fragments line by line. This method runs fast
and lightweight. But this method can detect only Type-1 clones. Some so-
phisticated method can detect Type-2 clones. This method is the fastest.

• Token-based method: This method detects code clones by comparing two
sequences of tokens (minimum unit of lexically meaningful sequence of cha-

https://doi.org/10.4236/jsea.2017.1013051

R. Ami, H. Haga

DOI: 10.4236/jsea.2017.1013051 894 Journal of Software Engineering and Applications

racters). As tokens only represent the kind of elements in programming lan-
guage, this method can detect Type-1 and Type-2 clones. But it requires so-
phisticated modification to detect Type-3 clones. This method is relatively
faster and lightweight.

• Tree-based method: This method detects code clones by comparing two ab-
stract syntax tree (AST) [9] or other tree representation of source codes. In
this method, a source code is tokenized and parsed firstly. Source code is
converted into AST (or other tree-based representation) and compared the
similarity of two (or more) trees. This method requires much computing re-
sources (slow and large memory) but detect all types of clones.

Table 1 is a result of the comparison of previous methods.

2.3. Issues of Previous Works

As shown in Table 1, all previous methods have some advantages and disadvan-
tages. Text-based and token-based methods can run relatively fast and do not
require much computing resources. For example, Kamiya et al. reported that 40
seconds are required to find clones in 235,000 lines source code [5]. Baker
showed only 12 seconds were necessary to the same source code [10]. But find-
ing Type-3 clones is difficult by these two methods.

Our preliminaries investigation on some sample programs found that the dis-
tribution of the clone types is shown in Figure 2. This graph shows that ap-
proximately 97% of clones are Type-2 and Type-3, and Type-3 occupies about
40%. Therefore, ignoring Type-3 clones makes the quality of software worse. As

Table 1. Comparison of previous methods of code clone detection.

 Type-1 Type-2 Type-3 Speed

Text-based 

 Δ × Fast

Token-based 



 × Medium

Tree-based 





 Slow

Figure 2. Ratio of code clone type.

https://doi.org/10.4236/jsea.2017.1013051

R. Ami, H. Haga

DOI: 10.4236/jsea.2017.1013051 895 Journal of Software Engineering and Applications

you can easily imagine, detecting Type-1 and Type-2 is not so difficult and de-
tecting Type-3 is hard.

With this investigation, we can also see that the number of exact clones is rel-
atively small. This make sense since in most of the cases of code clone, we take a
part of the code and change it to fit new need of the function which is near the
cloned program in terms of service or computation to provide. In the process of
modification, some identifiers may be renamed, some statements are inserted or
removed, and some conditional expression may be changed. Therefore, difficulty
of finding Type-3 clones is a serious drawback from the practical point of view.

On the other hand, tree-based methods can detect almost all clones including
Type-3 clones that are hard to be detected by text or token-based method. But
tree-based methods require much computing time and resources. Baxter [7] and
Krinke [11] indicated that about 3 hours and 63 hours were necessary to find all
code clones in approximately 115,000 lines codes. The reason why tree-based
method requires much computing resources is basically the comparison time of
two or more trees. When the number of nodes in the tree T is N, the computa-
tional time complexity of naive tree comparison is proportion to N6 [11]. There-
fore, when the number of nodes, which corresponds to the size of software, be-
comes 10 times larger, the computation time becomes 1 million times longer
than original one. It means that the tree-based method is hard to apply to
large-scale software.

3. Proposed Method
3.1. Overall of Proposed Method

Based on the above consideration, we propose our new code clone detection
method that is based on the combination of token-based method and tree-based
method. Token-based method runs faster but is not appropriate for detecting
Type-3 clones. Tree-based method can find all types of clones but runs slower.
The reason of large amount of computing time of tree-based method is its com-
parison time of trees. The larger the software becomes, the more the number of
compared trees. Therefore, we use the token-based method to narrow down the
number of trees to be compared. By reducing the number of trees to be com-
pared, we can execute the tree-based method much faster. Figure 3 is the overall
steps of proposed method. Proposed method consists of following steps.

1) Lexical analyzing source code and generate token sequence,
2) Applying token-based method to extract the candidates of code clones,
3) Generating abstract syntax trees (ASTs) of code clone candidates,
4) Comparing ASTs to fix code clones of all types.
In step (1), source code is converted into the sequence of tokens. Then some

conversion will be done to the sequence of tokens to detect TYPE-2 clones. This
conversion includes the replacement of specific tokens such as identifier and
function/method name by special characters. Figure 4 is an example of conver-
sion. In this example, all identifiers are replace by special character “$” and

https://doi.org/10.4236/jsea.2017.1013051

R. Ami, H. Haga

DOI: 10.4236/jsea.2017.1013051 896 Journal of Software Engineering and Applications

Figure 3. Overall steps of proposed method.

constants are replaced by “#”. After the conversion, detection process will be ex-
ecuted. After arranging all tokens as shown in Figure 5, check the identical to-
ken and mark as “*”. Some code fragments, which have sufficient length of di-
agonal lines of Figure 5, are candidates of code clone. After the extraction of
code clone candidates in step (2), these code fragments are converted into ab-
stract syntax trees in step (3). Then these trees are compared to find Type-3 code
clones by using tree distance in step (4).

3.2. Gap of Diagonal Line

Type-1 and Type-2 code clones draw the continuous diagonal lines when we
represent them in a manner shown in Figure 5. But as Type-3 code clones have
some insertions and/or deletions of statements, there are several gaps within the
clone diagonal lines. Figure 6 shows the example of this gap diagonal line. In
this case, original source code has several inserted and/or removed tokens. This
will cause a gap as shown in Figure 6.

In order to detect Type-3 code clones, we have to detect the candidates with
gap in a diagonal line. In order to detect this gap, we need to find a method to
look for other part of code that might follow this gap.

Figure 7 shows an illustration of gap diagnose lines. In this case, there are
three diagonal lines il , jl , and kl . To find Type-3 code clones by merging
several code clone fragments, we will use the following algorithms.

Algorithm
Step 1 Extracting diagonal lines (code clone candidates) with longer than

predefined length.
Step 2 Let il be a diagonal line whose starting point is () ()(),s s

i il x l y and

https://doi.org/10.4236/jsea.2017.1013051

R. Ami, H. Haga

DOI: 10.4236/jsea.2017.1013051 897 Journal of Software Engineering and Applications

Figure 4. Example of conversion.

ending points is () ()(),e e

i il x l y .
Step 3 For all diagonal lines, if there is another diagonal line jl where
() ()e s

i jl x l x dx− < and () ()e s
i jl y l y dy− < , merge two lines il and jl and

draw a diagonal line starting at s
il and ending at e

jl . Note that dx and dy
are predefined tolerable limit. The fragment corresponding this new diagonal
line is a merged virtual diagonal line and will be a candidate of Type-3 code
clone.

Step 4 When there are two or more lines
1 2
, , , , ,j j jm jkl l l l  whose starting

points
m

s
jl satisfies () ()

m

e s
i jl x l x dx− < and () ()

m

e s
i jl y l y dy− < , draw a line

from s
il to e

vl where e
vl is an ending point of virtual line vl where

() () () (){ }1 2
max , , ,e

v j j jki x l x l x l x=  and
() () () (){ }1 2max , , ,e

v j j jkl y l y l y l y=  . The code fragment corresponding to the

https://doi.org/10.4236/jsea.2017.1013051

R. Ami, H. Haga

DOI: 10.4236/jsea.2017.1013051 898 Journal of Software Engineering and Applications

Figure 5. Arranging token streams to find code clones.

Figure 6. Example of gapped diagonal line.

https://doi.org/10.4236/jsea.2017.1013051

R. Ami, H. Haga

DOI: 10.4236/jsea.2017.1013051 899 Journal of Software Engineering and Applications

Figure 7. Illustration of gapped diagonal lines.

diagonal line s

il to e
vl is a candidate of Type-3 code clone. Figure 8 illustrates

the gap code clone that has virtual diagonal line. This virtual diagnose line
represents the candidate of TYPE-3 code clone.

3.3. Applying Tree-Based Method

Exact and parameterized code clones (Type-1 and Type-2) can be found by
token-based method. But gap clone (Type-3) cannot be identified by
token-based method. In order to identify Type-3 code clone, we need further
steps. They are 1) translating source code into abstract syntax tree (AST) or
similar tree-based representation method for source code, 2) compute the
difference (distance) of any pair of code clone candidates, and 3) identify Type-3
code clone by examination of distance. Transforming source code into AST is a
well-known processing of language processor such as compiler. We will not
mention this process any more.

In order to compute the distance of two trees, we use the tree edit distance
(TED) [12]. In TED, several primitive operations are used to modify trees. For
example, we can assume that following three operations are primitive operations
for tree transformation: 1) insertion of node, 2) deletion of node, and 3)
renaming of node. Let 1T and 2T be two trees. By applying above-mentioned
three primitive operations for tree modification, we can always transform 1T
into 2T . The trivial method of transforming 1T into 2T is that a) delete all
nodes in 1T and generate void (null) tree, b) insert all nodes of 2T into void
tree. Let 1n and 2n be the number of nodes in 1T and 2T respectively. Then
maximum TED of 1T and 2T is 1 2n n+ (deleting all nodes of 1T requires 1n
operations and inserting all nodes of 2T requires 2n operations). There may
be another shorter sequence of operations that transform 1T into 2T . TED is
defined as the minimum number of these primitive operators. For example, let
us consider two trees AT and BT in Figure 9. The number of nodes in AT is 6

https://doi.org/10.4236/jsea.2017.1013051

R. Ami, H. Haga

DOI: 10.4236/jsea.2017.1013051 900 Journal of Software Engineering and Applications

Figure 8. Virtual diagonal line.

Figure 9. Tree transformation.

and that of BT is 6. Therefore by using trivial method, AT can be converted
into BT by 6 + 6 = 12 operations. This is the maximum length of
transformation operations. However, AT can be converted by the following
sequence: i) delete node “D” from tree AT , ii) insert node “G” between node “A”
and “B” of tree BT , iii) rename node “F” of tree AT into “H”. Total number of
primitive operation is 3 and this is the minimum number of operations for
transforming AT into BT . Therefore TED of AT and BT is 31.

By applying TED and computing the distance of any two trees based on the
established algorithms [13], we can filter the Type-3 code clones.

4. Prototype Implementation
4.1. Overall of Prototype

We have implemented the code clone detection system which adopted proposed

1If strictly speaking, we have to prove that 3 is the minimum number of the sequence of transformation.

https://doi.org/10.4236/jsea.2017.1013051

R. Ami, H. Haga

DOI: 10.4236/jsea.2017.1013051 901 Journal of Software Engineering and Applications

method. Following is a target program of experiment.
• Implementation Language: Java
• Program name: JDK 1.5.0
• The number of files: 108
• The number of lines: 33,128 lines

Proposed system is implemented under following environment.
• OS: Window 7 Professional 64 bits
• CPU: Intel Core i7 3.2 GHz
• RAM: 6.0 GB (2.0 GB is used for executing proposed method)

Proposed system is implemented by Java. The total number of prototype code
is 4333 lines.

4.2. Experimental Result

Figure 10 shows the result of token-based detection. In this experiment, 50 or
longer sequence of tokens were selected as candidates of code clones. As test file
contains more than 400,000 tokens, we divided all token sequence into 4000 to-
kens block. We can identify several clone candidates around the upper left part
of this diagram. By using this diagram, we can extract Type-1 and Type-2 code
clones easily.

After extracting Type-1 and Type-2 code clones, we furthermore try to extract
the candidates of Type-3 (gap) clones. Threshold values of dx and dy
mentioned in section 3.3 were set to 500. Result is shown in Figure 11. For
example, line 121 to 210 of code B is a code clone of source code from line 113 to
202 of source code A.

4.3. Computing Time Comparison

Figure 12 shows the computing time of code clone detection. This graph shows

Figure 10. Result of token-based clone detection.

https://doi.org/10.4236/jsea.2017.1013051

R. Ami, H. Haga

DOI: 10.4236/jsea.2017.1013051 902 Journal of Software Engineering and Applications

Figure 11. Result of the detection of gap code clone.

Figure 12. Computing time of three methods.

that the total computing time is heavily influenced by AST-based time. Ap-
proximately AST-based computing time occupies 80% to 90% of total compu-
ting time.

Let n be the number of tokens. Then complexity of token-based time is

()2O n . And let m be the number of nodes in the tree. Then complexity of
tree-based time is ()4O m [15]. Therefore the complexity of total computing
time is ()2 4O n m+ . Table 2 shows the comparison result of proposed system
and other systems.

CCFinder is the fastest system. But it uses token-based method, therefore it is
not easy to detect Type-3 code clone. Other two systems and the proposed system

https://doi.org/10.4236/jsea.2017.1013051

R. Ami, H. Haga

DOI: 10.4236/jsea.2017.1013051 903 Journal of Software Engineering and Applications

Table 2. Comparison of computing time.

 CCFinder [5] Proposed Method DECKAR [14] CloneDR [7]

TYPE Token-based Tree-based Tree-based Tree-based

CPU - 3.2 GHz 3.2 GHz 2.0 GHz

Memory - 2.0 GB 2.0 GB 1.0 GB

Time 40 sec 2174 sec 7200 sec 9000 sec

 (0.6 h) (2.0 h) (2.5 h)

adopt tree-based method. Therefore, they can detect all types of code clones.
This table shows that proposed system is three to four times faster than other
two tree-based systems (DECKARD and CloneDR). Note that DECKARD uses
same CPU clocks and memory size, and those of CloneDR are lower and small.
Therefore comparison to CloneDR is not accurate. Clone detection computing
does not include so many disk accesses. The computing time mainly depends on
the CPU time. The CPU time is roughly in proportion to clock frequency.
Therefore if CloneDR runs on the same clock frequency of DECKARD and
proposed system, the computing time is approximately 6000 sec2. The reason
why proposed system is faster than other two tree-based systems is the difference
of the number of tree comparison. Our system narrows the candidates of code
clones by token-based method.

4.4. Quality of Proposed Method

Currently there is no standard criterion of the quality of code clone detection
method. One of the simplest quality measures is the ratio of the number of de-
tected code clones and the number of all code clones. But this measure is vir-
tually useless because we cannot count all code clones in large-scale software.
Bellon [16] proposed new assessment metric. Select several sample code clones
from the set of detected clones and evaluate whether they are clones or not. By
using this metric, we can assess the precision rate of detection. But we cannot
assess the recall rate by using this metric3. However, in the detection of code
clone, precision rate is more important than recall rate. Low precision rate
means that the system generates many noisy code fragments that are not clones.
This causes the waste of time to check if they are clones or not. On the other
hand, even if undetected code clones remain in the source code, serious negative
effect to the quality of software will not occur. Therefore, we use the Bellon’s
method for assessing the proposed method.

Figure 13 is an example of detected code clone. Left hand code contains 39
tokens and right hand code contains 46 tokens. The number of common tokens

2 2.09000
3.2

× .

3The terms “precision rate” and “recall rate” are commonly used in the field of information retrieval
and pattern recognition. Precision rate is the fraction of detected instance that are relevant, and re-
call rate is the fraction of relevant instance that are detected.

https://doi.org/10.4236/jsea.2017.1013051

R. Ami, H. Haga

DOI: 10.4236/jsea.2017.1013051 904 Journal of Software Engineering and Applications

Figure 13. Example of detected code clones.

in these two is 22 and the ratios of common tokens are 56% (left) and 48%
(right). After converting these two codes into two ASTs, we compare the ratio of
common nodes in ASTs. The number of nodes of left code is 77 and that of right
code is 79. The number of common nodes of these two ASTs is 63. Therefore ra-
tios of common nodes are 78% and 82% respectively. Higher common ratio (to-
kens and nodes) means the high similarity of two codes. Comparing the com-
mon tokens with common nodes, ratio of common nodes is higher than that of
common tokens. This means that using tree-based method can detect code
clones more precisely.

Total average ratio of common tokens in our experiment is 57% and that of
common nodes is 78%. Bellon’s experiment says average ratio of precision of
previous works is approximately 64% [16]. Therefore, we can conclude that our
proposed method has sufficient precision ratio.

5. Conclusions

In this article, we proposed the new method of code clone detection which can
detect all types of code clones. Our method combines token-based method and
tree-based method. The former can run faster but cannot detect all types of code
clones, the latter can detect all types of code clones but requires large computing
resources (memory and CPU time). Therefore, applying tree-based methods to
large-scale software is virtually impossible. We combine these two methods; to-
ken-based method is used to extract the candidates of code clones. Extracted
candidates are transformed into abstract syntax trees (ASTs) representation and
tree-based method is applied to these trees. By narrowing the candidates of code
clones and reducing the number of comparison operations, computing time is
reduced to reasonable time.

Experimental evaluation is conducted using sample files with approximately
35,000 lines source code. Proposed method is 3 to 4 times faster than conven-
tional tools such as DECKARD and CloneDR, all of which adopt tree-based me-
thod. Detection accuracy is assessed using Bellon’s criterion. Proposed method
keeps almost the same accuracy of conventional tools. Based on these evaluation

https://doi.org/10.4236/jsea.2017.1013051

R. Ami, H. Haga

DOI: 10.4236/jsea.2017.1013051 905 Journal of Software Engineering and Applications

results, we can conclude that the proposed method keeps the accuracy of detec-
tion and runs faster than conventional tools and therefore is useful for the im-
provement of code clone detection of large-scale software.

References
[1] Rattan, D., Bhatia, R. and Singh, M. (2013) Software Clone Detection: A Systematic

Review. Information and Software Technology, 55, 1165-1199.
https://doi.org/10.1016/j.infsof.2013.01.008

[2] Baker, B. (1995) On Finding Duplication and Near-Duplication in Large Software
Systems. Proceedings of the 2nd Working Conference on Reverse Engineering
(WCRE 1995), 86-95. https://doi.org/10.1109/WCRE.1995.514697

[3] Roy, C.K. and Cordy, J.R. (1995) An Empirical Study of Function Clones in Open
Source Software Systems. Proceedings of the 15th Working Conference on Reverse
Engineering (WCRE 2008), 81-90.

[4] Bellon, S., Koschke, R., Antoniol, G., Krinke, J. and Merlo, E. (2007) Comparison
and Evaluation of Clone Detection Tools. IEEE Transactions on Software Engi-
neering, SE-33, 577-591. https://doi.org/10.1109/TSE.2007.70725

[5] Kamiya, T., Kusumoto, S. and Inoue, K. (2002) CCFinder: A Multilinguistic To-
ken-Based Code Clone Detection System for Large Scale Source Code. IEEE Trans-
actions on Software Engineering, SE-28, 654-670.
https://doi.org/10.1109/TSE.2002.1019480

[6] Li, Z., Lu, S., Myagmar, S. and Zhou, Y. (2006) CP-Miner: Finding Copy-Paste and
Related Bugs in Large-Scale Software Code. IEEE Transactions on Software Engi-
neering, SE-32, 176-192. https://doi.org/10.1109/TSE.2006.28

[7] Baxter, I.D., Yahin, A., Moura, L., Sant’Anna, M. and Bier, L. (1998) Clone Detec-
tion Using Abstract Syntax Trees. IEEE International Conference on Software
Maintenance (ICSM 1998), 368-377. https://doi.org/10.1109/ICSM.1998.738528

[8] Yang, W. (1991) Identifying Syntactic Differences between Two Programs. Software
Practice and Experience, 21, 739-755. https://doi.org/10.1002/spe.4380210706

[9] Anil Kumar, G., Reddy, C.R.K. and Govardhan, A. (2014) Software Code Clone De-
tection Using AST. International Journal of P2P Network Trends and Technology,
9, 33-39.

[10] Baker, B. (1992) A Program for Identifying Duplicated Code. Computing Science
and Statistics, 24, 49-57.

[11] Krinke, J. (2001) Identifying Similar Code with Program Dependence Graphs. Pro-
ceedings of the 8th Working Conference on Reverse Engineering, 303-309.

[12] Bille, P. (2005) A Survey on Tree Edit Distance and Related Problems. Theoretical
Computer Science, 337, 217-239. https://doi.org/10.1016/j.tcs.2004.12.030

[13] Demaine, E.D., Mozes S., Rossman, B. and Weimann, O. (2009) An Optimal De-
composition Algorithm for Tree edit Distance. ACM Transactions on Algorithms,
6, 2:1-2:19.

[14] Jiang, L., Misherghi, G., Su, Z. and Glondu, S. (2007) DECKARD: Scalable and Ac-
curate Tree-based Detection of Code Clones. Proceedings of 29th International
Conference on Software Engineering (ICSE 2007), 96-105.

[15] Zhang, K. and Shasha, D. (1989) Simple Fast Algorithms for the Editing Distance
Between Trees and Related Problems. Society for Industrial and Applied Mathe-
matics Journal on Computing, 18, 1245-1262. https://doi.org/10.1137/0218082

https://doi.org/10.4236/jsea.2017.1013051
https://doi.org/10.1016/j.infsof.2013.01.008
https://doi.org/10.1109/WCRE.1995.514697
https://doi.org/10.1109/TSE.2007.70725
https://doi.org/10.1109/TSE.2002.1019480
https://doi.org/10.1109/TSE.2006.28
https://doi.org/10.1109/ICSM.1998.738528
https://doi.org/10.1002/spe.4380210706
https://doi.org/10.1016/j.tcs.2004.12.030
https://doi.org/10.1137/0218082

R. Ami, H. Haga

DOI: 10.4236/jsea.2017.1013051 906 Journal of Software Engineering and Applications

[16] Bellon, S., Koschke, R., Antonio, G., Krinke, J. and Merlo, E. (2007) Comparison
and Evaluation of Clone Detection Tools. IEEE Transactions on Software Engi-
neering, SE-33, 577-591. https://doi.org/10.1109/TSE.2007.70725

https://doi.org/10.4236/jsea.2017.1013051
https://doi.org/10.1109/TSE.2007.70725

	Code Clone Detection Method Based on the Combination of Tree-Based and Token-Based Methods
	Abstract
	Keywords
	1. Introduction
	2. Definition of Code Clone
	2.1. Definitions and Types of Code Clones
	2.2. Related Works of Clone Detection
	2.3. Issues of Previous Works

	3. Proposed Method
	3.1. Overall of Proposed Method
	3.2. Gap of Diagonal Line
	3.3. Applying Tree-Based Method

	4. Prototype Implementation
	4.1. Overall of Prototype
	4.2. Experimental Result
	4.3. Computing Time Comparison
	4.4. Quality of Proposed Method

	5. Conclusions
	References

