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Abstract

We present here some general fractional Schlomilch’s type and Rogers-Holder’s
type dynamic inequalities for convex functions harmonized on time scales.
First we present general fractional Schlomilch’s type dynamic inequalities and
generalize it for convex functions of several variables by using Bernoulli’s in-
equality, generalized Jensen’s inequality and Fubini’s theorem on diamond-a
calculus. To conclude our main results, we present general fractional Rog-
ers-Holder’s type dynamic inequalities for convex functions by using general
fractional Schlomilch’s type dynamic inequality on diamond-a calculus for

p >1 with Zi<1.

i=1 pi
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1. Introduction

In the following, we present a result proved by Mitrinovi¢ and Pecari¢ as given
in [1] and ([2], p. 235).

Theorem 1. Let g, eG(f;,k) for (i=1,2) beaclass, where f (x) for
(i=12) are continuous functions and f,(x)>0 implies g,(x)>0 for every
Xe [a, b] and g; :[a, b] — R are represented by

b

g; (x):=jk(x, y) fi(y)dy, vxe[ab], i=12,

a

where k(X,y) is nonnegative arbitrary kernel. Consider w(x)>0 for every
Xe[a, b]. Let F:RR; :[O,oo) — R be a convex and increasing function, then
the following inequality holds
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9:(x)
gz(X)

f,(y)
f, (

|

o= 1 L)

2 0,(x)

Next we present a result on diamond-a calculus, as given in [3].

JS(y)dy, (1)

where,

dx, vye[ab], g,(x)=0.

Theorem 2. Let T, T, be two time scales,and a,beT; c,d eT,; k(X,y)

is a kernel function with x €[a, b]Tl , yelc,d ]Tz ; kis continuous function from
[a,b]Trl ><[C,d]Tz into R; =[0,). Consider
d

K(x)::J'k(x, y)0,Y, ¥xela, b]Tl.

We assume that K (x)>0, vxe(a, b]Tl . Consider f :[c,d ]Tz — R continuous,

and the ¢, -integral operator function
d

g (x)=[k(xy) F(¥)9,Y, vxela,b], .

c

Consider also the weight function WZ[«’:l,b]T — Ry, which is continuous.

b
Define further the function s(y):= IM

a K(x)

any of (O,oo) or [O,oo) ,and F:l >R be aconvex and increasing function.

O X Yy e [C, d ]Tz . Let I denote

In particular, we assume that

[fl([e.al, )<
Then

b |g (X)| d
J.W(X)F = Oaxsjs(y)F(|f(y)|)<>ay. (2)

a K(x) :
We extend these results on time scale calculus. In this paper, it is assumed that
all considerable integrals exist and are finite and T is a time scale, a,beT
with a<b and an interval [a,b]T means the intersection of a real interval

with the given time scale.

2. Preliminaries

We need here basic concepts of delta calculus. The results of delta calculus are
adapted from [4] [5] [6].

Time scale calculus was initiated by Stefan Hilger as given in [7]. A time scale
is an arbitrary nonempty closed subset of the real numbers. It is denoted by T.

For teT, forward jump operator o:T — T isdefined by
o(t)=inf{seT:s>t}.

The mapping :T — Ry =[0,0) such that u(t)=c(t)-t is called the
forward graininess function. The backward jump operator p:T —T is de-
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fined by
p(t)=sup{seT:s<t}.

The mapping v:T — Ry =[0,00) such that v(t):=t—p(t) is called the back-
ward graininess function. If o (t)>t, we say that ¢ is right-scattered, while if
p(t)<t, we say that tis left-scattered. Also, if t<supT and o(t)=t, then ¢
is called right-dense, and if t>infT and p(t)=t, then tis called lefi-dense.
Points that are right-dense and left-dense at the same time are called dense. If T
has a left-scattered maximum A4 then T“=T—{M}. Otherwise T*=T.

For a function f:T — R, the derivative f* is defined as follows. Let t & T,
if there exists f* (t) €R such that for all € >0, there exists a neighborhood U
of ¢, such that

|1 (o(t)- T (5)- 1> (1)(c()-5)| <€ (t) -],

forall seU,then f issaid to be delta differentiable at t,and f* (t) is called
the delta derivativeof f att

A function f:T — R is said to be right-dense continuous (rd-continuous),
if it is continuous at each right-dense point and there exists a finite left limit in
every left-dense point. The set of all rd-continuous functions is denoted by
Cy(T.R).

The next definition is given in [4] [5] [6].

Definition 1. A function F:T—>R 1is called a delfa antiderivative of
f:T— R, provided that FA(t)= f(t) holds for all teT*, then the delta
integralof f isdefined by

The following results of nabla calculus are taken from [4] [5] [6] [8].

If T has aright-scattered minimum m, then T, =T —{m} . Otherwise
T, =T. The function f:T—>R is called nabla differentiable at teT,, if
there exists f" (t)eR such that for any ¢ >0, there exists a neighborhood V/
of ¢, such that

[£(p() =1 ()= 7 (B)(p(t)-5) <[ (t) -],

forall seV.

A function f:T —> R is left-dense continuous (Id-continuous), provided it
is continuous at left-dense points in T and its right-sided limits exist (finite) at
right-dense points in T. The set of all 1d-continuous functions is denoted by
Cu(T.R).

The next definition is given in [4] [5] [6] [8].

Definition 2. A function G: T — R is called a nabla antiderivativeof ¢:T >R,
provided that G" (t) =g (t) holds for all teT,, then the nabla integralof g is
defined by

jg(t)Vt:G(b)—G(a).

a
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Now we present short introduction of diamond-a derivative as given in [4] [9].

Let T be a time scale and f(t) be differentiable on T in the A and V
senses. For teT", where T =TT, , diamond-a dynamic derivative f° (t)
is defined by

f O ()=af*(t)+(1-a)f"(t), 0<a<l.

Thus f is diamond-a differentiable if and only if f is A and V diffe-
rentiable.

The diamond-a derivative reduces to the standard A -derivative for a =1,
or the standard V -derivative for « =0. It represents a weighted dynamic deriv-
ative for a € (0,1) .

Theorem 3. [9]: Let f,g:T—>R be diamond-a differentiable at teT.
Then

1) f+g:T—>R isdiamond-a differentiable at t T, with

(f£9)"(t)=f"(t)xg" (1).

2) fg:T—R isdiamond-adifferentiable at t e T, with
(fa)" ()=t (g(t)+af(t)g* (1)
+(1-a) f7(t)g" (1).

3) For g(t)g”(t)gp(t);ﬁo, é:T—)R is diamond-a differentiable at

teT, with
(i}oﬂ (t)= ()97 (1) g’ () - f’(t)g” (1) g* () -(1-a) 7 () 9" (1) 9" (1)
g g(t)g” (t)a” (1)

Theorem 4. [9]: Let a,teT and h:T — R. Then the diamond-a integral
from a to t of Aisdefined by

Ih <>S ajh AS+1 ajh VS 0<a<l,

provided that there exist delta and nabla integrals of h on T.
Theorem 5. [9]: Let a,b,teT, ceR. Assume that f(s) and g(s) are
0, -integrable functions on [a,b],, then

D [[f(s)£a(s)]0,s=].f(5)0,5%[a(5)0,55
2) jcf 5)0 s_cjf $)0,83

3)jf )0,5=—["f(s)0,5;

4) [f(s <>s_jf )0,5+].f(5)0,55
S)J'f 5)0,5=0.

We need the following results.

Theorem 6. [4]: Let a,beT and c,d € R. Suppose that
geC([ab],.(c.d)) and heC([ab] R) with [|n(s)0,s>0.1f
FeC ((C, d), R) is convex, then generalized Jenser s inequality is
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finslote)o.s| TIF(a()0.s
|

<2 . (3)

finles | fines.s

If Fis strictly convex, then the inequality < can be replaced by <.
Theorem 7. [3] [10): Let a,beT. Let f,eC([a,b].,R), i=1--,n are 0,-

n

integrable functions and p, >1 such that 2i =1.Then
i1 P

h‘l[| fi (1) 0,t < q[ﬂ £ ()" Oatjpi’ 0

which is generalized Rogers-Holder s Inequality.
Definition 3. [11]: A function f:T—>R is called convexon I, =1NT,
where | isaninterval of R (open or closed), if

f(At+(1-2)s)<Af(t)+(1-2)f(s), (5)

forall t,sel; andall 2€[0,1] suchthat At+(1-A)sel;.

The function f is strictly convex on | if (5) is strict for distinct t,sel;
and Ae (0,1) .

The function f 1is concave (respectively, strictly concave) on |, if —f is

convex (respectively, strictly convex).

3. Main Results

First we present ¢, -integral general fractional Schlémilch’s type inequalities on

time scales, which is an extension of Schlémilch’s inequality given in [12].
Theorem 8. Let [a, b] and [c,d], ;, De two time scales;

k(X, y) : [a, b] [C d] —) R, is continuous kernel function with xe [a b]

and ye [C,d]Tz . Let <>a -integral operator functions g :|[a, b] —->R belongmg

toaclass G(f,k) for (i=1,2) arerepresented by

x);:f:k(x,y)fi(y)oay
where f;:[c, d] — R are continuous functions. Continuous weight function
is defined by w: [a b] —> R, with I x)0,x=1. Define
s(y)= fz(y)j W(x)k(—(y))oax and Vye[c,d] , where f,(y)>0 implies
a g X 2

2

9,(X)>0.Let F:Ry=[0,0)—>R; bea convex and increasing function.
If 5, 2mn, 21, then the following inequality holds
9,(%)

oo (<x>jw°“x JF[

Proof. In order to prove this Theorem, we need Bernoulli’s inequality, that is,
if x>0, then

J (¥)0,y | - (6)
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Since 77, 21, 21, we have

that is,

Jw(x)

a

|

px+1-p<xP, if p>1.

s
Ui

>1. Thus, by Bernoulli’s inequality, we have

9 ()
9. (x)

9 (x)
9, (x)

Jmoaxz[iw(x)F{ Joame

1
Let F bereplacedby F™ and taking power — >0, we get

2

222 o]

[ 2] oo

- EW(X)F Ldk(x’;z)(f;gy)oayd” . m
[or{ienortto] o]
e
_ JF[ :((3 T[fz( ), (x)%oaxj%yfz

) }F[ E(();/)) ]7725()/)0&)/}’72,
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where we used the generalized Jensen’s inequality and Fubini’s theorem.
This proves the claim. U
Remark. If we set 7, =7, =1 and F:[0,0) >R be a convex and increas-

ing function, then (6) takes the form

:[W(X)F(%JOQXSEF[%\JS(y)an. (7)

If [a, b] =[c, d] ,where T, =T, =R, then (7) takes the form of (1).
Corollary 1. If 771 1,=1, F:[0,0) >R be a convex and increasing func-

tion and « =1, then delta version form of (6) is

b2 14

Wy
(v)

J Ay. (8)
9, (

a
If 7 =n,=1, F:[0,0)>R be a convex and increasing function and « =0,
then nabla version form of (6) is

r X f

gz<x>]V“H L(y)

Remark. Now we take that F is not necessarily increasing and is taken from

JS(y)Vy- 9)

f
(0,) into Ry and (y) has fixed and strict sign, then according to

f,(y)
Liw(x) ] [ Js(y)oayr.

Corollary 2. If we apply for F X) xP, p>1, then (6) takes the form

bl ]

Pﬂz 7
)anJ . (10)

Corollary 3. If we apply for F X) =¢*,x>0, then (6) takes the form

ﬁWX)em[ ] J [fe[ ] (¥)0. y} (1)

Corollary 4. If 7,=n,=1, F:(0,0)—>R be a convex and not necessarily

f1(y)
f,(y)
F(x)=-Inx, x>0, then (6) takes the form

Tw(x)ln[MJoaxziln( f

a 9, (X) f,(y)

Remark. If we set f,(y)=1, g,(x)=9(x), f,(y)=f(y), m=n,=1 and
F:[0,00) >R be a convex and increasing function, then

Theorem 8, we get

Ly
(y)

X

(x) y

(y)

X

y)

ai(x)
92()

2

increasing function, has fixed and strict sign and we apply for

ﬂUs(y)%y- (12)
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d

9,(x)=Jk(x y)0,y=K(x), vxe[a,b],.

c

We assume that K(x)>0, and define

Sw(x)k(x,y)
s(y)::jwoax, vye[cd], .

Then (6) takes the form of (2), as proved in [3].

Corollary 5. If we take T, =q"°, q>1, where N, isthe set of nonnegative
integersand T,=R.

Then

n

T (x)0.x=(a-1)

n-
m =|
q I=m

1

q [af (q‘)+(1—a) f (q‘“)]

for [a,b]le[qm,q”LNO, m<n, where m,neN,.

And
}f(y)oay=}f(y)dy

then (6) can be written as

g, (')
9, (d')

gl(qm)
gz(qi+l)

]+<1—a>w(q‘“)F(

When 7,=7,=1 and F:[0,:0) >R be a convex and increasing function,
nl )
(9-1)>q aw(q' ) F
f.(

fp[ : &;

We can generalize Theorem 8 for convex functions of several variables on time

o

scales in the upcoming theorem.

Theorem 9. Let [a,b]T1 and [C,d]Tz be two time scales;
k(xy):[a b]Tl x[C,d]Tz — Ry is continuous kernel function with x €[a, b]Tl
and ye [C,d]Tz .Let 0, -integral operator functions g; :[a, b]Tl — R belonging

toaclass G(f,k) for (i=12,3) arerepresented by

0 (x) =k (x¥) i (¥)0.y,
where f, :[C,d]1T2 — R are continuous functions. Continuous weight function
is defined by w:[a, b]Tl —>R; with I:W(X)Oax =1. Define

s(y)= fz(y)j:w(x)l;(x—('x?oax and Vye[c,d]1T2 , where f,(y)>0 implies
2

9,(x)>0. Let F:R;xR;=[0,0)x[0,00)>R; be a convex and increasing
function.

If 7n,2>n, 21, then the following inequality holds
1 1
b n m d 2 .
[J.W(X)F[ % () _g3(x)] Oax} S[IF(—fl(y) J s(y)oay} . (13)

9,(x) f,(y)
DOI: 10.4236/jamp.2017.512193 2367 Journal of Applied Mathematics and Physics
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Proof. Proof is similar to Theorem 8. ]
Remark. If we set 77, =17, =1, F:[0,00)x[0,00) >R be a convex and increas-
ing function and [a, b] =[c, d] ,where T, =T, =R, then (13) reduces to

jl ( ) 93( ;desj'[:{ MDs(y)dy,

2 (%)]'] 92 (x f.(y)
Now we present ¢, -integral general fractional Rogers-Holder’s type inequalities.

fl(Y)
f,(y)
as given in ([2], p. 236).

Upcoming result is an application of general fractional Schlémilch’s type dy-
namic inequality.

Theorem 10. Let [a, b]Tl and [C,d]TZ be two time scales;
ki (x, y):[a,b]Tl ><[c,d]1T2 —> Ry for i=1-,
functions with xe|a,b|. and yefc,d
f., g :[a,b]Tl ->R [for ]jirlz 1, [ ]Tz

X) = chki (% y)u; (¥)0,Y,

neN are continuous kernel
. Let 0, -integral operator functions
neN arerepresented by

and
X) = J.cdki (X' y)Vi (y)oa Y

where U,V .[c, d ]T — R are continuous functions for i=1---,neN.
2

Continuous weight function is defined by w: [a b] — R, with
ki (x,y
(V)W) =5
AT

i=1---,neN, where Vi(Y)>O implies gi(x)>0 for i=1-,
F:R; >Ry for i=1--,

I:W(X)OIXX=1.Deﬁne si(y)=v <> x,and vye[c,d]

neN. Let

neN are convex and increasing functions.
n

If p,>1 with 2i <1. Then the following inequality holds

i1 P
jo X < q[jF[ T si(y)an]pl- (14)

)/:=Z:i 1 and ¢, =yp,<p, for i=L---,n. Then z—=l,

i-1 P =he
where ¢;>1 for i=1--,

lity, Schlémilch’s inequality, generalized Jensen’s inequality and Fubini’s theo-

fi ()
gi(x)

()
()

I()"F.[

a i=1

Proof. Let

Nn. We use here generalized Rogers-Holder’s inequa-

rem, as
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IN
El
—c
=
—_
>
SN
-n
—h
—_
>
SN

=l 9 (x)
T [k onuoy|] |
=11 J;W(X)F. 5. ‘ 0, X
:H EW(X)F'[ﬁ Cdk,( ; )vi(y)%oay]'oax b

>
o

IN
—
=
—
x
—

I
QD
©«
—| =
x
SN—

.L
(3}

Il
=
—— o
-n

e
=< |£&=
e
< <
~ |~—

11 TF{ﬂ?(y)]p' 30|

This proves the claim. U
Corollary 6. If we apply for F, (X): X%, x>0, i=1---,n and let & 2>1,
i=1---,n.Then (14) takes the form
1
Pi

SiPi
] s (Y)0,y | - (15)

u; (y)
y

vi(y)

i=1

]Ioaxgﬁ ]:'[

4. Conclusion and Future Work

The study of dynamic inequalities on time scales has a lot of scope. This research
article is devoted to some general fractional Schlémilch’s type and Rogers-Holder’s
type dynamic inequalities for convex functions harmonized on diamond-a calcu-
lus and their delta and nabla versions are similar cases. Similarly, in future, we can
present such inequalities by using Riemann-Liouville type fractional integrals and
fractional derivatives on time scales. It will also be very interesting to present such

inequalities on quantum calculus.
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