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Commons Attribution International . . . . . .
License (CC BY 4.0). Sobolev equations are a class of mathematical physics equations, which are widely

http://creativecommons.org/licenses/by/4.0/ used in engineering field. Many numerical methods have been proposed, such as

the characteristic difference method [1], the /-Galerkin Finite Element Method [2],

the mixed finite element [3] and so on. The collocation method now is widely used

in many fields including engineering technology and computational mathemat-
ics. Many applications have been proved effectively, e.g. the heat conduction eq-
uation [4], stochastic PDEs [5] and reaction diffusion equation [6]. The colloca-
tion method has high convergence order and does not need to calculate numeri-
cal integration so that the calculation is simple. So now we consider the applica-
tion of fully discrete collocation method for Sobolev equations. We consider the

linear Sobolev equations as follows:

u =V(avu +bvu)+ f (x,y,t),(xy) e Qte(0,T],
aQ:O,(X, y)e@Q,te[O,T], (1)
U, =Us (% y).(x.y)eQ

u

In the equations, U, is the time derivative of u, and Vu is the gradient of u.
Q=[0,1]x[0,1], Q istheborderof Q. a=a(x,y,t) and b=b(xy,t) are
known bounded differentiable functions.
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2. Fully-Discrete Collocation Method

T
First, time is divided into n equal parts. Let At =— be the time step. Then we
n

introduce the following notations:

u"—u"t vu" -vu™t

t,=nAt,u" =u(t,),ou" = VU =vu(t,),o,vu" = e

Then we discrete the spatial region Q into grids by points
(Xi,yj),i:0,1,2,---,M,j:0,1,2,---,N and XY, are satisfied
O=x, <% <--<X, =L0=y,<y, <---<y, =1.Let [7]

Q; :[Xiq’Xi]X[qu’ yj:|!hxi =X — X hyj =Y;-VYjuh= max{hx'hy}'

H, = {v = v(x, y) eCt (Q)| v|Qij is a Bi-cubic Hermit polynomial} ,

0920}'

The four Gauss points (Xik,yjl);k,l =12 in Qij are collocation points as
follows: X, =X +1, 6.y, =¥, +N, 6,k 1=12, where 6,=(3-3)/6,
6, = (3+\/§) / 6. Then the intermediate variable q=aVu, +bVu is introduced
so that the orthogonal collocation scheme as follows can be established. Seeking

(U,Q):[0,T]— H; xH,, such that
{0U"=vQ" - £"}(%. vy ) =0,

HJ :{v:v(x,y)e H3|v

n n n n n (2)
{Q ~(a"a,vu" +b"VU )}(xik,yj,):o,
{UL;Q =0,te[0,T],
U|t:0 = u0 (X’ y)'
Now we set the following notations [4]:
M N M N hxhy 2
<U’V>ZZZ<U’V>U - zz 4 ) uv(xik’ Yit )
i=1 j=1 i=1 j=1 k,1=1
M h 2
<U,V>X = Z<U*V>ux = Z?XZUV(X”(, y)’
i=1 i=1 k=1 3)
h

lully = Cw. ) Jull” = (. v)-

Next, we are going to prove existence and uniqueness of collocation solution

and obtain the error estimate.

3. Discrete Galerkin Method

Consider the following discrete Galerkin scheme
<6tU”,zl>+<VQ”,Vzl>—<f",zl>:0, z,eHy, W

(Q".2,)-(a"8,VU" +b"VU",2,}=0, 7, eHy.

Theorem 3.1: The solutions of (4) and (2) are equivalent, existent and unique.
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Proof: From the Equation (3), it is clear that the solution of (2) must be the
solution of (4).

Let {¢:1=12+ 4MN}={(x,y; ) i=1 M, j=1--,N,k1=12},
{Z,},,n beagroupbase of HJ.Thereupon VU"(X,y)eH; can be expressed
as U"(x,y)= Z?:TNﬂi”Zi (X,Y). So (2) and (4) can be written in the form as fol-

lows

FB"+Gp" =R,CB"+Dp"" =5,
F= (Fii )AMNdeN ! FiJ = ZJ' ( i)_anAZj ( i)_bnAtAzj ( i)’

C=(Cy), e Ci =(Z;(1).20)-a"(AZ,(£).Z,) -b"At(AZ (). Z,),
where G,D are both matrixs of 4MN x4MN and R,S areboth vectors of 4MN .
Obviously the solution of equation Fr =0 must be satisfied the equation Czr =0,
when 7 isavectorsof 4MN.So F isnonsingular when C is nonsingular. Then
the solutions of (2) and (4) are unique. To get the existence and uniqueness, we
VNN where A, :<Zj ((i)—aAZj( i),Zi> is non-
singular when At is sufficiently small. And the nonsingularity of A has been

just need to prove A= (AJ— )

proved [8] in. Thus the theorem is proved.

Next we will need to analyse the error estimate of (4).

4. Error Estimate

Define interpolation operators (P, P,) which satisfied the following conditions

W=PRuv=W-U,n=u-W,V=PRq,w=V-Q,£=q-V,
<V(q” —V”),z>:0,vZe H,,
<a”V(u{‘ —Wt”)+b”V(u” —W"),Vz>:O,VZ e H,,
Le, U-U=v+7,0-Q=w+¢ . Now we can get the error equations

<77{‘, zl>+<6tv”,zl>+<r”,zl>+<<§" +W",V21> =0, z,eH),

<§”+W”,22>—<a”(Vr”+81Vv”),22>—<b"Vv”,zz>=0, z,eHJ. ®

where r" =W"-oW",Vr" =VW,"—9,VW". Then there is the theorem as fol-
lows.

Theorem 4.1: If u(x,y) is the accurate solution of (1), U(X,y) is the solution
of the orthogonal collocation method, and u(x,y) satisfies the condition [4] [7]
uel”(0,T;H*(Q))NL*(0,T;H®(Q)), u eL”(0,T;H®(Q)), then there is the

error estimate as follows

u"-U"|<0(h*+At), [g"-Q"| <O(h* + At).
Proof: First, it is clearly for r",Vr" that
n th 2 alll2 t 2
Il <catf W[ ds, [Jve] <catf [[vw]"ds. ©)
Thenlet z, =v",z, =VVv" in (5), the equations
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<77{‘,v”>+<6tv",v”>+<r”,v”>+<§” +W",Vv">=0,
<§” +W”,Vv”>—<a” (Vr” +ale”),Vv”>—<b"Vv",Vv”> =0

can be got. It is easily calculated to see that
a" <6th”,an> +<6tv”,v”> =-a" <Vr”,Vv”>—b” <Vv”,Vv”>—<r”,v”> —<;7t”,v“>.

2
n

1
Then through the Cauchy inequality, &inequality and <6tvn,v”> > Ea[ v

and the functions a and b are bounded, it leads to the inequality

%at HVV“ v’

2 1
+—=0,
2

2 2 2 2

S i R W I 48 B
n 2 n 2
el <[l

The coefficients K,C both have nothing to do with h,At in the upper eq-

2
b

uation and following proof. Add the inequality (6) and make summation to the

series sum from N=1 to N and multiply At.Then

H
< KAtzn:(
i=0

2
+

2
n

V" v
o N T R N (e e W
is obtained. So it follows from discrete Gronwall lemma that

o <l < kSl )+ <ae e (vl -1l Jes -

if At is small enough.

Second, let z, =9,v",z, =6,VV" in (5), the equations
(n0,o5" )+ (0", 0" )+ (1", 0" )+ (£" + W', 0, V") = 0,
<§" +w“,ale”>—<a” (Vr” +ale”),ale”>—<b”Vv”,8th”> =0,

can be got. It is easy to get
a" <81Vv” ,0,VV" > + <atv" , 81v”>
=-a" <Vr”,6th”> -b" <Vv”,ath”>—<r“,atv”>—<77t”,atv”>.

Then through Cauchy inequality and &-inequality, (6) and (7) it leads to the
inequality
2

H|61Vv“ g

||6tv“

(8)

<Kifin!

2 n
+ KAt
i=1

=]

KA [[ow |+ o s

if At is sufficiently small.
At last, let z,=w" in the second equation of (5), it can be expressed as
(& +w”,w”>—<a” (vr" +81VVH),Wn>—<anVn,Wn> =0. (7) and (8) implies that
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2 2
o y
| t 2 | 9)
+KAL L (7w |+ W s
The results
L 1
2 \2
||n||<<:h4[ j ||nt|<<:h4( o ] |
, (10)
4 4 ) 2 )2
Je] <ch [ j l&]<ch ( j |
ij

can be obtained from lemma 1.6 in [4], where u is sufficiently smooth (Cis a
positive constant). Moreover (3) in [7] implies that Vf e H3,|| f ||£|||f||| SC"f"
is valid. So it follows from (7), (9) and (10) that

u“—Unz

IF+ KAtzj;"(||| VW I + [l W [I?)ds < K;h® + K, AL,

n n||?
q-Q

I+ KA [ (I 9W, 1P + 11, I )ds

<K,h® + K,At?,

where K, and K, are constants which have nothing to do with h and 7,.

Thus the theorem is proved.
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