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Abstract 

Given two left cO -analytic functions ,f g  in some open set Ω  of 8R , we 

obtain some sufficient conditions for fg  is also left cO -analytic in Ω . 

Moreover, we prove that f λ  is a left cO -analytic function for any 

constants cλ∈O  if and only if f  is a complex Stein-Weiss conjugate 
harmonic system. Some applications and connections with Cauchy- 
Kowalewski product are also considered. 
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1. Introduction 

Let Ω  be an open set of 8R . A function f  in ( )1 ,C Ω O  is said to be left 
(right) O -analytic in Ω  when 

7 7

0 0
0 0 ,i i

i ii i

f fDf e fD e
x x= =

 ∂ ∂
= = = = 

∂ ∂ 
∑ ∑  

where the Dirac D-operator and its adjoint D  are the first-order systems of  

differential operators in ( )1 ,C Ω O  defined by 7
0 i

i

D e
x
∂

=
∂∑  and  

7
0 1

0
i

i

D e e
x x
∂ ∂

= −
∂ ∂∑ . 

If f  is a simultaneously left and right O -analytic function, then f  is 
called an O -analytic function. If f  is a (left) O -analytic function in 8R , 
then f  is called a (left) O -entire function. 
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Since octonions is non-commutative and non-associative, the product 
( ) ( )f x g x  of two left O -analytic functions ( )f x  and ( )g x  is generally no 

longer a left O -analytic function. Furthermore, if ( )g x λ≡  becomes an 
octonionic constant function, the product ( )f x λ  is also probably not a left 
O -analytic function; that is, the collection of left O -analytic functions is not a 
right module (see [1]). 

The purpose of this paper is to study the analyticity for the product of two left 
cO -analytic functions in the framework of complexification of O , cO . 

Especially, the analyticity for the product of left cO -analytic functions and cO
constants will be consider more by us. 

The rest of this paper is organized as follows. Section 2 is an overview of some 
basic facts concerning octonions and octonionic analysis. Section 3 we give some 
sufficient conditions for the product ( ) ( )f x g x  of two left cO -analytic 
functions ( )f x  and ( )g x  is also a left cO -analytic function. In Section 3, 
we prove that, ( )f x λ  is a left cO -analytic function for any constants cλ∈O  
if and only if ( )f x  is a complex Stein-Weiss conjugate harmonic system. This 
gives the solution of the problem in [2]. In the last section we give some 
applications for our results. 

2. Preliminaries: Octonions and Octonionic Analysis 

It is well known that there are only four normed division algebras [3] [4] [5]: the 
real numbers R , complex numbers C , quaternions H  and octonions O , 
with the relations ⊆ ⊆ ⊆R C H O . In other words, for any ( )1, , nx x x= 

, 
( )1, , n

ny y y= ∈ R , if we define a product “ xy ” such that nxy∈R  and  

x y x y⋅ = , where 2
1
n

ix x= ∑ , then the only four values of n  are 1,2,4,8.  

Quaternions H  is not commutative and octonions O  is neither commutative 
nor associative. Unlike R , C  and H , the non-associative octonions can not 
be embedded into the associative Clifford algebras [6]. 

Octonions stand at the crossroads of many interesting fields of mathematics, 
they have close relations with Clifford algebras, spinors, Bott periodicity, 
Projection and Lorentzian geometry, Jordan algebras, and exceptional Lie 
groups, and also, they have many applications in quantum logic, special 
relativity and supersymmetry [3] [4]. 

Denote the set W  by 

( ) ( ) ( ) ( ) ( ) ( ) ( ){ }1,2,3 , 1,4,5 , 1,7,6 , 2,4,6 , 2,5,7 , 3,4,7 , 3,6,5 .=W  

Then the multiplication rules between the basis 0 1 7, , ,e e e  on octonions are 
given by [3] [7]: 

2 2
0 0 0 0, , 1, 1, 2, ,7,i i i ie e e e e e e e i= = = = − = 

 

and for any triple ( ), ,α β γ ∈W , 

, , .e e e e e e e e e e e e e e eα β γ β α β γ α γ β γ α β α γ= = − = = − = = −  

For each ( )7
0 , 0,1, ,7i i ix x e x i= ∈ ∈ =∑ O R , 0x  is called the scalar part of 
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x and 7
1 i ix x e=∑  is termed its vector part. Then the norm of x is  

( )
1

7 2 2
0 ix x= ∑  and its conjugate is defined by 7

00 i ix x e x x= = −∑ . We have 

7 2
0 ixx xx x= =∑ , ( ),xy yx x y= ∈O  Hence, 1

2

xx
x

− =  is the inverse of  

( )0x ≠ . 

Let ( )7 7
0 0, , , 0,1, ,7i i i i i ix x e y y e x y i= = ∈ ∈ =∑ ∑ O R , then 

0 0 0 0 ,xy x y x y x y y x x y= − ⋅ + + + ×      (2.1) 

where 7
1: i ix y x y⋅ = ∑  is the inner product of vectors ,x y  and 

( ) ( ) ( )
( ) ( )
( ) ( )

1 23 45 67 2 13 46 57 3 12 47 56

4 15 26 37 5 14 27 36

6 17 24 35 7 16 25 34

:x y e A A A e A A A e A A A

e A A A e A A A

e A A A e A A A

× = + − + − + + + + −

+ − − − + − +

+ + − + − + +

 

is the cross product of vectors ,x y , with 

det , , 1, 2, ,7.i j
ij

i j

x x
A i j

y y
 

= = 
 

  

For any ,x y∈O , the inner product and cross product of their vector parts 
satisfy the following rules [8]: 

( ) ( )0, 0, || 0, .x y x x y y x y x y x y y x× ⋅ = × ⋅ = ⇔ × = × = − ×  

We usually utilize associator as an useful tool on ontonions since its non- 
associativity. Define the associator [ ], ,x y z  of any , ,x y z∈O  by  
[ ] ( ) ( ), ,x y z xy z x yz= − . 

The octonions obey the following some weakened associative laws. 
For any , , , ,x y z u v∈O , we have (see [7]) 

[ ] [ ] [ ] [ ] [ ] [ ], , , , , , , , , , , , 0 , ,x y z y z x x z y x y z x x y x x y= = − = =      (2.2) 

and the so-called Moufang identities [5] 

( ) ( )( ) ( ) ( )( ) ( ) ( )( ), , .uvu x u v ux x uvu xu v u u xy u ux uy= = =  

Proposition 2.1 ([7]). For any { }, , 0,1, ,7i j k∈ 
, , , 0 0i j ke e e ijk  = ⇔ =   

or ( )( )( ) 0i j j k k i− − − =  or ( ) 1i j ke e e = ± . 

Proposition 2.2 ([7]). Let , ,i j ke e e  be three different elements of  
{ }1 2 7, , ,e e e

 and ( ) 1i j ke e e ≠ ± . Then ( ) ( )i j k i j ke e e e e e= − . 
Since octonions is an alternative algebra (see [3] [9] [10]), we have the 

following power-associativity of octonions. 
Proposition 2.3. Let 1 2, , , kx x x ∈ O , ( )1, , nl l

 be n  elements out of  

{ }1, ,k
 repetitions being allowed and let ( )1 2 n n

l l lx x x
⊗

  be the product of n  

octonions in a fixed associative order n⊗ . Then 
( )

( )1 2
1, ,

n n
n

l l l
l l

x x x
π ⊗∑



  is  

independent of the associative order n⊗ , where the sum runs over all 
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distinguishable permutations of ( )1, , nl l
 

Proof. Let 1 1 2 2 k kx x x xλ λ λ= + + + , then 
( )

( )1 2
1, ,

n n
n

l l l
l l

x x x
π ⊗∑



  is just the 

coefficient of 
1 2 nl l lλ λ λ  in the product of ( )

s
n

n

n x

x xx x ⊗=


 . By induction and 

(2.2), one can easily prove that ( )
s

n

n

n x

x xx x ⊗=


  is independent of the 

associative order n⊗  for any x∈O . Hence 
( )

( )1 2
1, ,

n n
n

l l l
l l

x x x
π ⊗∑



  is also 

independent of the associative order n⊗ .  

( )0 1, , , nµ µ µ µ= 
 is called a Stein-Weiss conjugate harmonic system if they 

satisfy the following equations (see [11]): 

( )
0

0, 0 .
n

ji i

i i j i

i j n
x x x

µµ µ
=

∂∂ ∂
= = ≤ < ≤

∂ ∂ ∂∑  

It is easy to see that if ( ) ( )0 1 7 0 1 7, , , , , ,F x x x f f f= 
 is a Stein-Weiss 

conjugate harmonic system in an open set Ω  of 8R , then there exists a real- 
valued harmonic function Φ  in Ω  such that F is the gradient of Φ . Thus 

0 0 1 1 7 7F f e f e f e D= − − − = Φ  is an O -analytic function. But inversely, this is 
not true [12]. 

Example. Observe the O -analytic function ( ) ( )2 2
6 7 2 6 7 32g x x x e x x e= − − . 

Since 

62
6

6 2

2 0 ,
gg x

x x
∂∂

= ≠ =
∂ ∂

 

g  is not a Stein-Weiss conjugate harmonic system. 
In [13] Li and Peng proved the octonionic analogue of the classical Taylor 

theorem. Taking account of Proposition 2.3, we obtain an improving of Taylor 
type theorem for O -analytic functions (see [14] [15]). 

Theorem A (Taylor). If ( )f x  is a left O -analytic function in Ω  which 
containing the origin, then it can be developed into Taylor series 

( )
( )

( ) ( )
1 1

10 , ,
0 ,

k l lk
k

l l x x
k l l

f x V x f
∞

=

= ∂ ∂∑ ∑




  

and if ( )f x  is a right O -analytic function, then the Taylor series of f  at the 
origin is given by 

( )
( )

( ) ( )
11

10 , ,
0 ,

l l kk
k

x x l l
k l l

f x f V x
∞

=

= ∂ ∂∑ ∑




  

where ( )1, , kl l
 runs over all possible combinations of k  elements out of 

{ }1, ,7
 repetitions being allowed. 

The polynomials 
1 kl lV


 of order k  in Theorem A is defined by 

( )
( )

( )( )( )1 1 2 3
1, ,

1 ,
!k k

k
l l l l l l

l l
V x z z z z

k π
= ∑





   

where the sum runs over all distinguishable permutations of ( )1, , kl l
 and 
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0 0 , 1, ,
j j jl l lz x e x e j k= − =  . 

We have the following uniqueness theorem for O -analytic functions [7]. 
Proposition 2.4. If f  is left (right) O -analytic in an open connect set 

8Ω⊂ R  and vanishes in the open set { }0 0x a⊂ Ω = ≠ ∅E , then f  is 
identically zero in Ω . 

Proof. Without loss of generality, we let E  which containing the origin and 
let 0 0x = . Then f  can be developed into Taylor series 

( )
( )

( ) ( )
1 1

10 , ,
0 .

k l lk
k

l l x x
k l l

f x V x f
∞

=

= ∂ ∂∑ ∑




  

Thus we have 

( )
( )

( )
1 2 1

10 , ,
0 0.

k l lk
k

l l l x x
k l l

f x x x x f
∞

=

= ∂ ∂ ≡∑ ∑


   

By the uniqueness of the Taylor series for the real analytic function, we have 
( )

1
0 0

l lkx x f∂ ∂ =  for any ( ) { }7
1, , 1, 2, ,7kl l ∈   and k∈N . This shows 

that f  is identically zero in E  and also in Ω .  
For more references about octonions and octonionic analysis, we refer the 

reader to [7] [13]-[20]. 

3. Sufficient Conditions 

In what follows we consider the complexification of O , it is denoted by cO .  
Thus, c∈O  is of the form 7

0 ,i i ie= ∈∑ C   . 0  and 7
0 i ie=∑   are still  

called the scalar part and vector part, respectively. The norm of c∈O  is  

( )
1

27 2
0 i= ∑   and its conjugate is defined by 7

0 i ie=∑  , where i  is of the  

conjugate in the complex numbers. We can easily show that for any , c′∈O  , 
2′ ′≤   . For any c∈O , we may rewrite   as x iy= + , where 

,x y∈O . The multiplication rules in cO  is the same as in (2.1). Note that cO  
is no longer a division algebra. Finally, the properties of associator in (2.2) 
except that [ ], , 0=    are also true for any , , c∈O   : 

[ ] [ ] [ ] [ ] [ ], , , , , , , , , , , , 0.= = − =                    (3.1) 

Example. Let 1 2 4,e ie e= + =  , then 

[ ] [ ] [ ] [ ]1 2 1 2 4 1 2 4 2 1 4 7, , , , , , , , 4 0.e ie e ie e i e e e i e e e ie= + − + = − = ≠    

By (3.1) we can get the following lemma, which is useful to deduce our results. 
Lemma 3.1. Let , , c∈O    and there exists complex numbers λ  and 
( )0µ λ µ+ ≠  such that 0λ µ+ =   or 0λ µ+ =   or 0λ µ+ =  , then 

[ ], , 0=   . 
For functions, f, under study will be defined in an open set Ω  of 8R  and  

take values in cO , with the form ( ) ( )7
0 i if x f x e=∑ , where ( )( )0,1, ,7if x i = 

 

are the complex-valued functions. 
Hence, we say that, a function ( ) ( ) ( )f x g x ih x= +  is left cO -analytic in an 
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open set Ω  of 8R , if ( )g x  and ( )h x  are the left O -analytic functions, 
since 

0 0,Df Dg Dh= ⇔ = =  

where 7
0 ii

i

D e
x=

∂
=

∂∑  is the Dirac operator as in Section 1. 

In the case of cO , we call ( ) ( ) ( )f x g x ih x= +  a complex Stein-Weiss 
conjugate harmonic system, if ( ) ( ),g x h x  are the Stein-Weiss conjugate 
harmonic systems. A left (right) cO -analytic functions ( )g x  also have the 
Taylor expansion as in Theorem A. 

Now we consider the product ( ) ( )f x g x  of two left cO -analytic functions 
( ) ( ),f x g x  in Ω . In general, ( ) ( )f x g x  is no longer left cO -analytic in Ω . 

But, in some particular cases, the product ( ) ( )f x g x  can maintain the 
analyticity for two left cO -analytic functions ( )f x  and ( )g x . 

Theorem 3.2. Let ( ) ( ),f x g x  be two left cO -analytic functions in Ω . 
Then ( ) ( )f x g x  is also left O -analytic in Ω  if ( ) ( ),f x g x  satisfy one of 
the following conditions: 

1) ( )f x  or ( )g x  is a complex constant function. 
2) ( )f x  is a complex Stein-Weiss conjugate harmonic system in Ω  and 
( )g x  is an cO -constant function. 
3) ( )f x  is of the form ( ) { }( )0 0 1, 2, ,7i if x f e f e i= + ∈   and ( ) ( ),f x g x  

depend only on 0x  and ix , where 0 , if f  are the complex-valued functions. 
4) ( )f x  and ( )g x  belong to the following class 

( ) ( ) ( ) ( ) ( ) ( )
7

1
1 1

1
| 0, , , .i

i
h x Dh x h x h x e h x C

=

 = = = ∈ Ω 
 

∑ CS      (3.2) 

5) ( )f x  is of the form ( ) 0 0f x f e f e f e f eα α β β γ γ= + + + ,  

0 0g c e c e c e c eα α β β γ γ= + + +  is a constant function, where ( ), ,α β γ ∈W ,  

0 , , ,c c c cα β γ ∈C  and ( )f x  depends only on 0 , , ,x x x xα β γ . 
Proof. 1) The proof is trivial. 
2) In view of Proposition 2.1 we have , , 0i je e λ  =   when 0i =  or 0j =  

or i j=  for any cλ∈O . Then we have 

( ) ( )

( )

( )

( )

7

, 0

7 7

, 0 , 0

7

, 0

1 7

, ,

, ,

, , .

j
i j

i j i

j j
i j i j

i j i ji i

j
i j

i j i

j
i j

i j i

f
D f e e

x
f f

e e e e
x x

f
Df e e

x
f

Df e e
x

λ λ

λ λ

λ λ

λ λ

=

= =

=

≤ ≠ ≤

∂
=

∂

∂ ∂
 = −  ∂ ∂

∂
 = −  ∂

∂
 = −  ∂

∑

∑ ∑

∑

∑

 

Since f  is a complex Stein-Weiss conjugate harmonic system, thus 0Df =   

and j i

i j

f f
x x
∂ ∂

=
∂ ∂

 for , 1,i j i j≥ ≠ . But , , , ,j i i je e e eλ λ   = −    , therefore 
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( )
1 7 1 7

, , , , 0.j ji
i j i j

i j i ji j i

f ffD f e e e e
x x x

λ λ λ
≤ ≠ ≤ ≤ < ≤

 ∂ ∂∂   = − = − =     ∂ ∂ ∂ 
∑ ∑  

3) Since ( ) ( ),f x g x  are only related to variables 0x  and ix , we have 

( ) ( )( )

( )

0
0

0
0

0 0

.

i i i
i

i
i i i i i

i i i

D fg e f f e g
x x

f ff g gg e e g f e f f e
x x x x x

 ∂ ∂
= + + 

∂ ∂ 
    ∂ ∂∂ ∂ ∂

= + + + + +     ∂ ∂ ∂ ∂ ∂    

 

By Lemma 3.1 it follows that 

0 0i i
i i i i i

i i i i i

f f f f fe e g e e g e g
x x x x x

        ∂ ∂ ∂ ∂ ∂
+ = + =           ∂ ∂ ∂ ∂ ∂        

 

and 

( ) ( )( ) ( )( ) ( )0 0 0 0 .i i i i i i i i i i i i
i i i i

g g g ge f f e e f f e f f e e f f e e
x x x x

   ∂ ∂ ∂ ∂
+ = + = + = +   

∂ ∂ ∂ ∂   
 

Thus we get 

( ) ( ) ( )
0 0

0.i i
i i

f f g gD fg g e g f f e Df g f Dg
x x x x

   ∂ ∂ ∂ ∂
= + + + = + =   
∂ ∂ ∂ ∂   

 

4) Let ( ) 7
0 0 11 iif x f e f e

=
= +∑  and ( ) 7

0 0 11 iig x g e g e
=

= +∑ , then we have 

( ) ( )( )
7 7 7

0 0 1 0 0 1
0 1 1

7 7 7
0 1

0 0 0 1
0 1 1

7 7 7
0 1

0 0 1 0
0 1 1

.

j i i
j i ij

j i i
j i ij j

j i i
j i ij j

D f x g x e f e f e g e g e
x

f fe e e g e g e
x x

g ge f e f e e e
x x

= = =

= = =

= = =

 ∂   = + +   ∂    

  ∂ ∂   = + +    ∂ ∂    

  ∂ ∂  + + +    ∂ ∂   

∑ ∑ ∑

∑ ∑ ∑

∑ ∑ ∑

 

By Lemma 3.1 we get 

7 7
0 1

0 0 0 1
1 1

j i i j
i ij j j

f f fe e e g e g e e g
x x x= =

    ∂ ∂ ∂  + + =        ∂ ∂ ∂     
∑ ∑  

and 

7 7
0 1

0 0 1 0
1 1

7 7
0 1

0 0 0 1
1 1

.

j i i
i ij j

j i i
i ij j

j
j

g ge f e f e e e
x x

g ge e e f e f e
x x

ge f
x

= =

= =

  ∂ ∂  + +    ∂ ∂   
  ∂ ∂   = + +    ∂ ∂    

 ∂
=   ∂ 

∑ ∑

∑ ∑  

Hence we obtain 
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( ) ( )( ) ( ) ( )
7

0
0.j j

j j j

f gD f x g x e g e f Df g Dg f
x x=

    ∂ ∂
 = + = + =       ∂ ∂    

∑  

5) This case is equivalent to a left quaternionic analytic function right- 
multiplying by a quaternionic constant, the analyticity is obvious since the 
multiplication of the quaternion is associative. 

The proof of Theorem 3.2 is complete.  
From Theorem 3.2(d), if ( ) ( ),f x g x ∈S , then ( ) ( )f x g x ∈S ; that is, the 

multiply operation in S  is closed. Also, the division operation is closed in S .  
Actually, let ( ) ( ) ( )7

0 11 iif x f x f x e
=

= + ∈∑ S , assume 2 2
0 17 0f f+ ≠ , then 

( )( ) ( )1 0 1 1 2 7
2 2

0 1

.
7

f f e e e
f x

f f
− − + + +
=

+



 

Thus we have 

( )( ) ( )( )

( ) ( )

( )( ) ( )

( ) ( )( )( )

1
71

0

7 12 2 0 1
0 1 1 2 7

0

22 20 1
0 1 1 2 7 0 1 0 1

7 22 2 2 20 1
1 7 1 0 0 1 1 7 0 1

0

7

2 14 7

7 2 7

i
i i

i
i i i

i i

i
i i i

f x
D f x e

x

f fe f f e e e
x x

f ff f e e e f f f f
x x

f fe e e f f f f e e f f
x x

−
−

=

−

=

−

−

=

∂
=

∂

  ∂ ∂
= + − + + +   ∂ ∂ 

 ∂ ∂
− − + + + + +   ∂ ∂  

  ∂ ∂
= + + + − + + + +   ∂ ∂  

∑

∑

∑





  

 

( ) ( )( )( )

( )( ) ( )( )( )

7 22 2 2 20 1
1 7 1 0 0 1 1 7 0 1

0

22 2 2 2
1 0 0 1 1 7 0 1

7 2 7

7 2 7

0.

i
i i i

f fe e e f f f f e e f f
x x

Df x f f f f e e f f

−

=

−

  ∂ ∂
= + + + − + + + +   ∂ ∂  

= − + + + +

=

∑  


 

An element belongs to S  is the exponential function: 

( ) ( ) ( ) ( )1 7
0 0 1 7 0

1exp e cos 7 sin 7 .
7

x xx x e e e x+ +   
= + − + +  

  


      (3.3) 

The results in Theorem 3.2 also hold on octonions(no complexification), since 
cO  contains O . If one switch the locations of ( ) ( ),f x g x , and the “left” 

change into “right” in Theorem 3.2, then this theorem is also true, since left and 
right is symmetric. These principles also hold in the rest of this paper. 

4. Necessary and Sufficient Conditions 

If we consider the product of a left cO -analytic function and an cO -constant, 
we can get the necessary and sufficient conditions for the analyticity(these 
results obtained in this section for O -analytic functions are also described in 
[19]). 

Applying Theorem 3.2(a) and (b), if ( )f x  is a left cO -analytic function 
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and λ  is a complex constant, or ( )f x  is a complex Stein-Weiss conjugate 
harmonic system and λ  is an cO -constant, then ( )f x λ  is a left cO - 
analytic function. In what follows we will see that these conditions are also 
necessary in some sense. 

Theorem 4.1. Let cλ∈O , then f λ  is a left cO -analytic function for any 
left cO -analytic functions f  if and only if λ∈C . 

Proof. We only prove the necessity. Taking a left cO -analytic function 

1 2 0 3f x e x e= − , then 

( ) [ ] [ ]

[ ] [ ] [ ] [ ]

7 7 7
2

2 1 2 1
, , 0 1 41

4 2 1 4 5 2 1 5 6 2 1 6 7 2 1 7

4 7 5 6 6 5 7 4

, , , , , ,

, , , , , , , ,
2 2 2 2 .

j
k i j k k k k k

i j k k ki

f fD f e e e e e e e e e
x x

e e e e e e e e e e e e
e e e e

λ λ λ λ

λ λ λ λ

λ λ λ λ

= = =

∂ ∂ = − = = ∂ ∂

= + + +

= − + − +

∑ ∑ ∑

 

Thus 4 5 6 7 0λ λ λ λ= = = = . A similar technique yields 1 2 3 0λ λ λ= = = . 
Hence λ∈C .  

Theorem 4.2. Let ( )1 , cf C∈ Ω O . Then ( ) 0D f λ =  for any cλ∈O  if and 
only if f  is a complex Stein-Weiss conjugate harmonic system in Ω . 

Now we postpone the proof of Theorem 4.2 and consider a problem under 
certain conditions weaker than Theorem 4.2. In [2] the authors proposed an 
open problem as follows: 

Find the necessary and sufficient conditions for an cO -valued function f , 
such that the equality ( ), , 0f x Dλ =    holds for any constant cλ∈O . 

Note that this problem is of no meaning for an associative system, but 
octonions is a non-associative algebra, therefore we usually encounter some 
difficulties while disposing some problems in octonionic analysis. In [2] the 
authors added the condition ( ), , 0f x Dλ =    for ( )f x  to study the Cauchy 
integrals on Lipschitz surfaces in octonions and then prove the analogue of 
Calderón’s conjecture in octonionic space. 

Next we give the answer to the Open Problem as follows. 
Theorem 4.3. Let ( )1 , cf C∈ Ω O . Then [ ] [ ]( ), , 0 , , 0D f f Dλ λ= =  for any 

cλ∈O  if and only if 

, , 1, 2, ,7.ji

j i

ff i j
x x

∂∂
= =

∂ ∂
                     (4.1) 

Proof. By Proposition 2.1, we have 

[ ]
7

, 0 1 7
, , , , , , .j j i

i j i j
i j i ji i j

f f fD f e e e e
x x x

λ λ λ
= ≤ < ≤

 ∂ ∂ ∂
   = = −     ∂ ∂ ∂ 

∑ ∑  

If f  satisfies (4.1), then [ ], , 0D f λ = . 
Inversely, let ( ), ,α β γ ∈W , { } { } { }1 2 3 41, 2, ,7 \ , , , , ,t t t tα β γ =

 and 

1 2 2 1 3 4 4 3
, .t t t t t t t te e e e e e e e e eγ γ= = − = = −  

From Propositions 2.1 and 2.2 we have , , 0te e eα β  =   and  

( ), , 2 2t t te e e e e e e eα β α β γ  = =   when , ,t α β γ=  and 1 2 3 4, , ,t t t t t= , respectively. 
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Hence, taking 
1t

eλ =  it follows that 

1

1

34
1 3 4 1

23 4

34
2

23 4

1 7

, ,

, ,

, , , ,

2 .

t

j i
i j t

i j i j

tt
t t t t s s

s tt t

tt
t s s

s tt t

D f e

f f
e e e

x x

fff f
e e e e e e g e

x x x x

fff f
e g e

x x x x

β α
α β

α β

β α

α β

≤ < ≤

≠

≠

  
 ∂ ∂  = −    ∂ ∂ 

   ∂∂∂ ∂   = − + − +         ∂ ∂ ∂ ∂   
 ∂∂∂ ∂

= − + − +  ∂ ∂ ∂ ∂ 

∑

∑

∑

   (4.2) 

Similarly, we take 
3t

eλ = , then 

2 1
3 4

41 2

, , 2 ,t t
t t s s

s tt t

f ff fD f e e h e
x x x x
β α

α β ≠

 ∂ ∂∂ ∂  = − + − +    ∂ ∂ ∂ ∂ 
∑      (4.3) 

Also we can get 

[ ] 32 1 4

1 2 3 4

, , 2 .tt t t
s s

st t t t

ff f f
D f e e y e

x x x xα β
β≠

 ∂∂ ∂ ∂
= − + − +  ∂ ∂ ∂ ∂ 

∑      (4.4) 

If we require [ ], , 0D f λ =  for any constants cλ∈O , from (4.2), (4.3) and 
(4.4) we obtain 

34

3 4

2 1

1 2

32 1 4

1 2 3 4

0,

0,

0.

tt

t t

t t

t t

tt t t

t t t t

fff f
x x x x

f ff f
x x x x

ff f f
x x x x

β α

α β

β α

α β

 ∂∂∂ ∂
− + − =

∂ ∂ ∂ ∂
 ∂ ∂∂ ∂ − + − =
∂ ∂ ∂ ∂

 ∂∂ ∂ ∂
 − + − =
∂ ∂ ∂ ∂

 

Combining above three equations with the randomicity of ( ), ,α β γ  we have 
(4.1) holds.  

Proof of Theorem 4.2. The sufficient from Theorem 3.2(b). Inversely, if we 
take 1λ =  in ( ) 0D f λ =  it follows that f  is a left cO -analytic function. 
Thus for any cλ∈O , we have 

( ) ( ) [ ] [ ], , , , 0.D f Df D f D fλ λ λ λ= − = − =  

By Theorem 4.3 we get that f  satisfies (4.1). On the other hand, 

( ) 0
0 0

0 0 0

0.
ffDf f f f f f

x x x
∂  ∂∂

= +∇ + = −∇ ⋅ + +∇ +∇× = 
∂ ∂ ∂ 

     (4.5) 

From (4.1) it easily to get 0f∇× = , again by (4.5) it follows that 

0
0

0 0

0,
ff f f

x x
∂∂

−∇ ⋅ + +∇ =
∂ ∂

 

namely 

0
0

0 0

0, 0.
ff f f

x x
∂∂

−∇ ⋅ = +∇ =
∂ ∂
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Combining this with (4.1) it shows that f  is a complex Stein-Weiss 
conjugate harmonic system in Ω .  

5. Some Applications and Relations with the C-K Products 

From Theorem A we can see that ( )
1 kl lV x


 are the basic components for (left) 
O -analytic functions. It is proved in [13] that the polynomials ( )

1 kl lV x


 are all 
O -analytic functions, therefore they are the suitable substitutions of the 
polynomial kz  in C . 

Again from Theorem A, since ( )
1 1k kl l l lV x λ
 

 is an item in the Taylor 
expansion of a left O -analytic function, ( )

1 1k kl l l lV x λ
 

 should be also a left O
analytic function. Applying Theorem 4.2, the conjugate of ( )

1 kl lV x


 is probably 
a Stein-Weiss conjugate harmonic system. The following theorem prove this is 
true. 

Theorem 5.1. For any combination ( )1, , kl l
 of k  elements out of 

{ }1, ,7
 repetitions being allowed, ( )

1 kl lV x


 is a Stein-Weiss conjugate 
harmonic system in 8R . 

Proof. Let ( )1, ,7is i = 
 be the appearing times of i  in ( )1, , kl l

. Hence 
the following equality 

( ) ( )
1 1 7kl l s sV x D x= Φ
 

                     (5.1) 

shows that ( )
1 kl lV x


 is a Stein-Weiss conjugate harmonic system in 8R , where 

( ) ( )
( ) ( )1 7

22 12 7
0

0 1
1, ,7

1 !
2 1 ! ! 2 !

i
j j

i

s
s
j

s s
j j j j

i

xx
x

s

κκ κ

κ

κ
κ κ κ

 
−  + 

= =
=

 − Φ =  
+ −  

∑ ∏




 

is a real-valued harmonic function of order ( )1 2 7 1s s s+ + + +
 with  

7
1 iiκ κ
=

=∑ . 

Actually, put 0 0x = , the both sides of (5.1) equal to 71
1 7

1 2 7

1
! ! !

ssx x
s s s





. On  

the other hand, ( )
1 kl lV x


 is left O -analytic in 8R . Thus by Proposition 2.4 we 
have (5.1) holds.  

Combining Theorem 3.2(b) and Theorem 5.1 it really shows that all the 
( )

1 1k kl l l lV x λ
 

 are left cO -analytic functions for any 
1 k

c
l lλ ∈


O . Hence the 
following series 

( )
( )

1 1
10 , ,

k k
k

l l l l
k l l

V x λ
∞

=
∑ ∑

 



                    (5.2) 

is a left cO -analytic function in some open neighborhood Λ  of the origin if 

{ }1 kl lλ


 satisfies certain bounded conditions. 
Theorem 5.2. For any combination ( )1, , kl l

 of k elements out of { }1, ,7
  

repetitions being allowed, let 
1

,
k

c
l l kλ ∈ ∈


O N . If 
( ) 1

1

7lim sup
! k

k

k

l lk l lk
λ γ

→∞
= < ∞





,  

then the series (5.2) converges to a left cO -analytic function ( )f x  in the 
following region 
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8 2 2
0

1: , 1, 2, ,7 .ix x x iγ γ
 

Λ = ∈ + < = 
 

R  

More over, ( )
1 1

0
k l lkl l x x fλ = ∂ ∂



  Particularly, if 
( ) 1

1

sup
k

k
l l

l l
k

Cλ
∈

≤ < ∞




N

, then 
f  will be a left cO -entire function. 

Proof. Let 

( )
( )

( )
1 1

10 , ,
, .

k k
k

N

N l l l l
k l l

S x V x Nλ
=

= ∈∑ ∑
 



N  

For any 7
0 i ix x e γ= ∈Λ∑ , there exists γ γ′ >  such that  

2 2
0

1 , 1, 2, ,7ix x i
γ

+ < =
′

 . Thus 

( ) ( )

( )
( )

( )( )

1 1
1

1 1
1

1

, ,

7

, , 1

sup

sup

1sup
!

7 1 0 inf , .
!

k k
k

k k
k

k

N M
x

N

l l l l
x k M l l

N

l l l l
x k M l l

kN

l lk
k M

S x S x

V x

z z
k

M N
k

γ

γ

γ

λ

λ

λ
γ

′

′

′

∈Λ

∈Λ =

∈Λ = =

=

−

≤

≤

≤ → →∞
′

∑ ∑

∑ ∑

∑

 











 

From Weierstrass Theorem on octonions [13] and the analyticity of 
( )

1 1k kl l l lV x λ
 

, then there exists a left cO -analytic function f  in γΛ  such 
that 

( ) ( )
( )

( )
1 1

10 , ,
lim ,

k k
k

N l l l lN k l l
f x S x V x λ

∞

→∞ =

= =∑ ∑
 



 

and the series uniformly converges to ( )f x  in each compact subset K γ⊂ Λ . 
Again from the expansion of ( )f x  we easily get that ( )

1 1
0

k l lkl l x x fλ = ∂ ∂


 . 

If 
( ) 1

1

sup
k

k
l l

l l
k

Cλ
∈

≤ < ∞




N

, then 8
γΛ = R , since 

7lim 0
!

k

k k→∞
= . Therefore f  is a  

left cO -entire function.  
Example. Taking 

1
1

kl lλ ≡


 for all k∈N  in (5.2), then 

( )
( )

1
1

0 , , k
l lk

k l l
V x

∞

=
∑ ∑





                     (5.3) 

is an O -entire function. In fact, (5.3) is the Taylor expansion of the exponential 
function ( )exp x  as in (3.3). From (3.3) we can find ( )exp x  satisfies 

( ) ( ) ( ) ( ) ( ) ( )exp 0 1, exp exp exp exp exp .x y x y y x= + = ⋅ = ⋅  

Corollary 5.3. For any left cO -analytic function f , if the coefficients in its 
Taylor series about the origin satisfy 

( )
( )

1

0 , , 1, 2, ,7

0 , otherwise.

k
i

l lk

ix

x x

f e k i

f

∂ ∈ + ∈ =

∂ ∂ ∈





C C N

C
            (5.4) 

Then f  is a complex Stein-Weiss conjugate harmonic system. 
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Proof. From (5.4), we easily obtain that all the conjugates of  
( ) ( )

1 1
0

k l lkl l x xV x f∂ ∂


  are complex Stein-Weiss conjugate harmonic systems. 
Hence by Weierstrass Theorem, f  also is a complex Stein-Weiss conjugate 
harmonic system in its convergent area.  

Combining Theorem 3.2(b), Theorems 5.1 and 5.2, by an analogous method 
in [6] we can define the Cauchy-Kowalewski product for any two left cO
analytic functions f and g in Ω  which containing origin. We let their Taylor 
expansions be 

( )
( )

( ) ( )
1 1

10 , ,
0

k l lk
k

l l x x
k l l

f x V x f
∞

=

= ∂ ∂∑ ∑




  

and 

( )
( )

( ) ( )
1 1

10 , ,
0 .

t s st
t

s s x x
t s s

g x V x g
∞

=

= ∂ ∂∑ ∑




  

Then the (left) Cauchy-Kowalewski product of f and g is defined by 

( )

( )
( )

( ) ( ) ( ) ( )( )1 1 1 1
1
1

7

, 0 , , =1
, ,

!
0 0 ,

! ! k t l l s sk t
k
t

L

i i
l l s s x x x x

k t l l i i i
s s

f g x

n n
V x f g

n n

∞

=

′ +
= ∂ ∂ ⋅∂ ∂  ′ 
∑ ∑ ∏

 







 

 

where in  and in′  are the appearing times of i in ( )1, , kl l
 and ( )1, , ts s

, 
respectively. 

We have the following relation for the product and the left Cauchy-Kowalewski 
product between two left cO -analytic functions. 

Theorem 5.4. Let ( ) ( ),f x g x  be two left cO -analytic functions in Ω  
which containing origin. If ( ) ( )( ) 0D f x g x =  then 

( ) ( ) ( ).Lf x g x f g x= 
 

Proof. It is easy to see that ( ) ( ) ( )Lf x g x f g x= 
, then by Proposition 2.4 

and the analyticity of ( ) ( )f x g x  and ( )Lf g x
 we get  

( ) ( ) ( )Lf x g x f g x= 
.  

Remark. In this paper we study the analyticity of the product of two left cO
-analytic functions. Theorem 3.2 give some sufficient conditions for the product 
of two left cO -analytic functions is also a left cO -analytic function. From 
Theorem 5.4 we can see that ( ) ( )( ) 0D f x g x =  for two left cO -analytic 
functions ( ) ( ),f x g x  if and only if this product is just equal to their left 
Cauchy-Kowalewski product. Since ⊆H O , our result is also true for 
quaternionic cases. 
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