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Abstract 
To reduce the stress of data transmission and storage for power quality (PQ) 
in smart distribution systems and help PQ analysis, a multichannel data com-
pression based on iterative PCA (principal component analysis) algorithm is 
introduced. The proposed method uses PCA to reduce the redundancy of data 
to achieve the purpose of compressing data. In order to improve the calculat-
ing speed, an iterative method is proposed to compute the principal compo-
nents of the covariance matrix. The correctness and feasibility of the proposed 
method are verified by field PQ data tests. Compared with discrete wavelet 
transform (DWT) method, the proposed method has good performance on 
compression ratio and reconstruction accuracy. 
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1. Introduction 

As the growing demand for smart distribution systems, more and more power 
quality (PQ) monitors are especially needed for the power systems with distri-
buted power sources and impulsive and sensitive loads [1] [2] [3]. In power sys-
tems, short circuit fault, capacitor switching device for power factor compensa-
tion, power electronic device for special loads etc. bring various PQ disturbances 
(PQD). With the deployment of a large number of PQ monitors, a big volume of 
data will be produced for smart distribution systems. And it becomes essential to 
compress this volume so that the data sets can be transmitted and stored 
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promptly and efficiently. Hence, PQ data compression calls more concerns than 
ever before [4]. 

The main goal of any compression method is to achieve maximum data re-
duction and preserving morphology features upon reconstruction. Data com-
pression is categorized into methods on lossless and lossy techniques. Lossless 
methods can obtain an exact reconstruction of the original signal, but high 
compression ratio (CR) cannot be obtained. In contrast, lossy methods do not 
obtain an exacter construction, but higher CR can be achieved. Consequently, 
the commonly used PQ data compression methods are lossy in nature [5] [6]. 

In general, the data compression scheme for PQ data consists of three steps: 
signal transform, quantization and encoding. With respect to quantization and 
encoding, the researchers are more concerned with signal transform. Literature 
[7] firstly started the PQD data compression by wavelet transform (WT). A 
threshold was set to eliminate small wavelet coefficients. Improved wave-
let-based methods with different threshold settings were also used in this field 
[8] [9] [10]. Currently a popular PQD data compression is the quantization me-
thod [11] [12]. These methods separate fundamental component and distur-
bance components in power signals. The fundamental component and harmonic 
components are compressed in the data form of amplitude, frequency and phase 
angle by Fourier transform (FT). While other PQD components, if there are, are 
compressed by WT. The key of the quantization methods is how to distinguish 
the PQD components and separate them with little distortion to fundamental 
and harmonic components. Since periodical PQ signal is compressed by FT, and 
the signal compressed by WT is with much less low frequency components, the 
quantization methods have much higher CR than traditional methods. Another 
interesting PQ data compression method is developed based on singular value 
decomposition (SVD) [13]. The PQ data is transformed into singular value ma-
trix that contains nonzero singular values by SVD so that the data can be com-
pressed. The method is also exploring different takeoffs between data CR and 
loss of information. However, the SVD algorithm is easily affected by the out-
liers and noises in the data. 

Most of the works found in the literatures show PQ data compression in 
stand-alone power systems. However, data compression in smart distribution 
systems should be considered more for the distributed control applications. 
Moreover, there is a lack of research works on the data compression in smart 
distribution systems. This paper presents a method based on iterative principal 
component analysis (IPCA) algorithm for PQ data compression in smart distri-
bution systems, which can compress multichannel data simultaneously. Here the 
measured data can be conveniently stored in a matrix format, which is suitable 
for the application of the principal component analysis (PCA) algorithm. PCA is 
especially useful for complex data analysis, such as face recognition and data 
compression [14] [15] [16]. By employing PCA, good takeoffs between data CR 
and loss of information can be achieved. Because the size of data matrix is gen-
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erally large, the time-consuming of the traditional PCA is very large. In order to 
improve the calculating speed, an iterative method is proposed to compute the 
principal components of the covariance matrix. 

The remainder of this paper is organized as follows. The PCA algorithm is in-
troduced in Part 2; Part 3 presents the proposed method; Part 4 provides field 
PQ data to test and compare the proposed method with related works; Part 5 
summarizes the whole work.  

2. PCA Algorithm 

PCA algorithm was invented in 1901 by Karl Pearson, and it uses an orthogonal 
transformation to convert a set of measurements of possibly correlated variables 
into a set of values of linearly uncorrelated variables called principal compo-
nents. The main advantage of PCA can reduce the dimension and redundancy of 
data. The eigenvalues and eigenvectors are obtained by decomposing the cova-
riance matrix of data. Then the eigenvectors corresponding to several larger ei-
genvalues are found as the principal components, and the projection of the 
measured data to the principal components is carried out to represent the origi-
nal data, so as to achieve the reduction of dimension and redundancy of data.  

Suppose that a sample set X contains m samples, and the dimension of each 
sample is n: { }1 2, , , mx x x=X 

, ( )1 2, , , n
i i i inx x x x R= ∈ . 

Representing each sample as a row, the m n×  sample matrix S is the stack of 
all such rows, and m nR ×∈S , then the samples are processed by zero mean, that 
is, the samples are centralized, to ensure that the average value of each dimen-
sion of the matrix is zero. 

1

1 m

i
i

x x
m =

= ∑                              (1) 

i ix x x= −                              (2) 

The sample matrix composed of ix  is denoted as S , where m nR ×∈S , then 
the covariance matrix C of S  is obtained as follows: 

T T1 1
i

m

i
i

x x
m m

= = ∑C S S 

                          (3) 

where C  is a real symmetric matrix, and n nR ×∈C . T
i

x  and TS  are the 
transpose of ix  and S , respectively. According to the matrix theory, a real 
symmetric matrix can be diagonalized, therefore there is an orthogonal matrix P 
that meets T =P CP Λ . The following process is applied to obtain the matrix P. 
Firstly the matrix C is decomposed to get the diagonal matrix Λ  and the or-
thogonal matrix P. Obviously, , n nR ×∈P Λ . Then a new diagonal matrix 1Λ  is 
composed of the first k (k < n) largest eigenvalues of the matrix Λ , and a new 
orthogonal matrix P1 is composed of the k eigenvectors, which correspond to the 
above k eigenvalues. The k eigenvectors are the principal components obtained 
by the PCA. 

If T
1 1 1=P CP Λ , then 
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( )T
T

T

m m
 

= = 
 

SP SPS SP P Λ
 

 

                      (4) 

( )T

1 1
1m

=
SP SP

Λ
 

                            (5) 

Let 1 1=S SP , (5) is deformed into 

1

T
1 1

1
m

=S S Λ                              (6) 

T
1 1

ˆ =S S P                               (7) 

As known from (6), the covariance of the dimensions is zero in the matrix S1. 
Each row of the matrix S  is a sample. Furthermore each column of the matrix 
P1 is an eigenvector, and the k eigenvectors of the matrix P1 are orthogonal to 
each other. So, 1SP  is the equivalent to linear transformation of each sample of 
S  in the basis of column vectors in P1. After the transform, each row vector of 
S1 is completely irrelevant, and the dimension of each sample is k, where 

1
m kR ×∈S . If k < n, then the operation of dimension reduction is completed, 

while the internal structure of the original data is preserved with the maximum 
probability. Finally the matrix S  can be approximately recovered by (7). 

3. PQ Data Compression via IPCA 

This section presents a methodology that allows the PQ data compression in 
smart distribution systems. 

3.1. Data Matrix 

PQ data from smart distribution systems, need to be acquired and compressed, 
then transmitted through the communication network to the server of the con-
trol center for further analysis. Let the acquired data be put in the form of a ma-
trix X, shown in Figure 1. It is convenient to represent the data, and be easily 
used for data compression. Here each row of X is taken from a distributed mea-
surement point at each time instant. 

3.2. Data Compression 

After the centralization processing of the matrix X, the eigenvectors corresponding 
to the first k eigenvalues of the covariance matrix C are calculated as the principal 
components by PCA algorithm. The eigenvectors corresponding to the smaller n-k 
eigenvalues are eliminated, and the remaining ones are constructed to the matrix P1. 
Then the matrix S  is transformed into the matrix S1, which the CR is n:k. The 
 

 
Figure 1. Data matrix X. 
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original data can be reconstructed using (7), and the mean square error of the 
reconstructed data is equal to the sum of the eliminated n-k eigenvalues. How-
ever, the main difficulty of data compression based on PCA algorithm is to find 
the eigenvalues and eigenvectors of the covariance matrix. 

At present there are two kinds of conventional methods: one is firstly uses of 
0λ − =I A  to calculate the eigenvalues of the covariance matrix A, then uses

( ) 0xλ − =I A to calculate all the eigenvectors corresponding to the eigenvalues. 
Because the size of A is generally large, the computation of this method is very 
large and time-consuming. So it is not suitable for data compression. Another 
method is realized by using neural network (NN) method. This method is simp-
ler than the first method, and does not need to compute the covariance matrix. 
Taking the 32 samples as an example, the construction of the single-layer NN is 
illustrated in Figure 2. 

The weights of the network are iteratively adjusted and the iterative equation 
is as follows: 

( ) ( ) ( ) ( ) ( )
32

T

1
i i

i
y k w k x k w k x k

=

= =∑                   (8) 

( ) ( ) ( ) ( ) ( ) ( )21w k w k y k x k y k w kµ  + = + ⋅ −               (9) 

From Literature [17], finally the w converges to the eigenvector corresponding 
to the maximum eigenvalue, but its convergence speed is closely related to the  

learning factor µ . Only while 1
3 2 2 0.8899

2
µλ −

≤ ≈  ( 1λ  is the maximum  

eigenvalue of C), (9) can converge to the eigenvector corresponding to the 
maximum eigenvalue. And while 1 0.618µλ = , the convergence speed of (9) is 
the fastest. 

But 1λ  is unknown, so it may lead to poor estimation of the learning factor
µ . If the estimated µ  is too small, it will result in slow learning speed. In con-
trast, if the estimated µ  is too large, it will results in divergence of (9). There-
fore the NN method has limitations for the real applications. 

In order to solve the above problems, this paper proposes a new method for 
finding the eigenvectors of the covariance matrix. Firstly, prove a theorem as 
follows: 

 

 

Figure 2. Single-layer neural network. 
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Theorem 1. If 

( ) ( )
( )

1
,

1
n nAw k

w k R
w k

×−
= Α∈

−
                          (10) 

where A is a nonnegative symmetric matrix, ( ) 10 nw R ×∀ ∈ , ( )0w  is not per-
pendicular to the eigenvector corresponding to the largest eigenvalue of A, then 

( )
( ) { }lim s the eigenvector corresponding to the largest eigenvalue of 

k

w k
e e i A

w k→+∞
∈

(11) 

Proof. 
A is a nonnegative symmetric matrix, where n nR ×∈A . 

( ) 1
1 2 1, , , , , 1,n

n ip p p p R p×∴∃ = ∈ =P   where ip  is the eigenvector cor-
responding to the eigenvalue iλ , and any two vectors in P are orthogonal. The 
matrix P satisfies: 

T =P CP Λ                             (12) 

then ( ) 10 nw R ×∀ ∈  can be linearly expressed by ip  as follows: 

( ) 1 1 2 20 i i n nw a p a p a p a p= + + + + + 
                (13) 

Since ( )0w  is not perpendicular to the eigenvector corresponding to the 
largest eigenvalue of A, then 1 1a ≠ . 

( ) ( )
( )

( ) ( )
( )1

1 0
1 0

k

k

w k w
w k w k

w k w−

−
= ⇒ =

−

A
A

A
              (14) 

( ) ( )
( )1 1 1

1
0

k
n n k

w k a p a p
w−

= + +A
A

                (15) 

( )
( )1 1 1 1

1

1
0

k
k n

n n k
w k a p a p

w
λ

λ
λ −

   = + +      A
             (16) 

Because A is nonnegativedefinite matrix, let  

1 2 1 0i i nλ λ λ λ λ+= = = > ≥ ≥ ≥  , then 
1

lim 0, 1, , .
k

m

k
m i n

λ
λ→+∞

 
= = + 

 
  

Let 
1 1

1 1 1 1
1 1

k k
i n

i i n nk ka p a p a p
λ λ

β
λ λ

+ +

+ += + + + +  , then 
( )
( )

lim lim
k k

w k
w k

β
β→+∞ →+∞

=  

1 1 2 2lim ,i ik
a p a p a p i nβ

→+∞
= + + + <   

( )
( )

1 1 2 2

1 1 2 2

lim lim i i

k k
i i

w k a p a p a p
a p a p a pw k

β
β→+∞ →+∞

+ + +
∴ = =

+ + +




        (17) 

where 1 2, , ip p p are the eigenvectors corresponding to the largest eigenvalue 

1λ , so the sum of them multiplied by a scalar is still the eigenvector correspond-
ing to the largest eigenvalue 1λ  of the matrix A. 

The covariance matrix C of PQ data can meet the above conditions of the 
theorem. This method is to calculate principal components of the covariance 
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matrix: firstly calculate the eigenvector 1e  corresponding to the largest eigen-
value 1λ  using (10), then calculate the eigenvector 2e , because of 

T

1

n

i i i
i

A e eλ
=

= ∑ , let ( )T T
1 1 1 1 1 1,B A e e e Aeλ λ= − = , so the eigenvalues of B are sorted 

by size to 2 1 0k n nλ λ λ λ +≥ ≥ ≥ ≥ ≥ =  . It can be seen that if A is replaced by 
B, the second principal component can be calculated, and then the other prin-
cipal components can be calculated by this method in turn. 

The following simplified steps are applied to PQ data compression based on 
the IPCA: 

Step 1. Get PQ data. 
Step 2. Calculate the mean of PQ data using (1). 
Step 3. Subtract the mean from PQ data using (2). 
Step 4. Construct the covariance matrix of the subtract data using (3). 
Step 5. Calculate eigenvectors and eigenvalues of the covariance matrix using 

the iterative method.  
Step 6. Choose principal components and preserve the k (the desired number) 

principal components which correspond to the larger eigenvalues. 
Step 7: Quantization and encoding: preserve the quantized principal compo-

nents and their indices as the compressed coefficients. 
The PQ data compression scheme based on the PCA algorithm is shown in 

Figure 3. 

4. Data Test, Discussion and Comparison 

IPCA and discrete wavelet transform (DWT), both methods are capable of mul-
tichannel PQ data compression. PQ data are collected from various measure-
ment points in the smart distribution system to test the methods. The PQ data 
are sampled at 12.8 kHz and quantized with 16 bits. Here there are 32-channel 
PQ data, and each channel data consists of 1536 samples. The tested PQ matrix 
is formed as m nR × , where m is the number of sample channels and n is the 
number of samples of each channel PQ data. The CR of the proposed method is 
 

 
Figure 3. PQ data compression scheme based on 
the PCA algorithm. 
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given as (18). By determining different number of principal components, differ-
ent CRs can be obtained. 

Number of data without compression
Number of data after transformation

=CR              (18) 

Mean absolute error (MAE) and mean percentage error (MPE) shown as (19) 
and (20) respectively are used to evaluate the reconstruction accuracy of PQ da-
ta. 

1

1 ˆ
n

i i
i

MAE x x
n =

= −∑                       (19) 

1

ˆ1 100
n

i i

i i

x x
MPE

n x=

−
= ×∑                    (20) 

where ˆix  is the reconstructed data corresponding to the original data ix  of 
each channel. 

In order to compare the performance of data compression using the IPCA, 
DWT is proposed to carry out for the compression of the same dataset. Table 1 
shows results obtained with the IPCA and with Debaucheries 4 wavelet (db4) 
and four levels of decomposition [7]. Different thresholds have been set, aiming 
to retain the number of wavelet coefficients that would result in the same CRs 
shown for the IPCA. 

It can be seen from Table 1 that the IPCA is capable of achieving better tra-
deoff for higher CRs. The MAE and MPE of reconstructed data by the IPCA are 
lower than those of reconstructed data by the DWT. So the performance of data 
compression using the IPCA is better than that using the DWT. 

Figure 4 shows the original PQ data of the first three channels. Figures 5-8 il-
lustrate the decompressed PQ data of the first three channels, which use the ex-
traction of 2, 4, 8 and 16 principal components by the IPCA. 

It can be found from Figures 5-8 that while the 2 or 4 or 8 eigenvectors are 
retained, there is no difference in visual reconstruction effect of the original PQ 
data. The CR can be as high as 8, and the more the principal components are ex-
tracted, the better the reconstruction effect is. But when the CR arrives with 16, 
it may lead to serious distortion of the reconstructed data.  

 
Table 1. Performances comparison of IPCA and DWT (db4). 

IPCA DWT(db4) 

CR MAE MPE (%) CR MAE MPE (%) 

32:1 0.151 3.091 32.3:1 0.418 8.063 

16:1 0.118 2.335 16.4:1 0.282 3.787 

8:1 0.083 1.105 8.3:1 0.177 1.866 

4:1 0.036 0.567 4.1:1 0.109 0.976 

2:1 0.015 0.108 2.1:1 0.049 0.340 
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Figure 4. The original PQ data of the first three channels. 

 

 
Figure 5. The reconstructed PQ data of the first three channels (CR = 2). 
 

Figure 9 shows a comparison of the number of iterations for calcu-
lating their principal components of the tested PQ matrix by the IPCA 
and NN-PCA. The horizontal axis is the number of eigenvectors and the 
vertical axis is the number of iterations. It can be found from Figure 9 
that, in the same number of principal components extracted, the  
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Figure 6. The reconstructed PQ data of the first three channels (CR = 4). 

 

 
Figure 7. The reconstructed PQ data of the first three channels (CR = 8). 
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Figure 8. The reconstructed PQ data of the first three channels (CR = 16). 

 

 
Figure 9. Comparison about the number of iterations by the IPCA and 
NN-PCA. 

 
number of iterations obtaining principal components by the proposed method is 
obviously less than that by the NN-PCA. So, the efficiency by the IPCA is better 
than that by the NN-PCA. 
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5. Conclusions 

In summary, the benefits of PCA algorithm are used to reduce the redundancy 
of data. Because PCA algorithm is the optimal transform with the minimum 
mean square error, according to the requirements, the larger eigenvalues are re-
served, and the smaller eigenvalues are omitted to reduce the dimensionality, 
simplify the model or compress the data. With these characteristics, PCA algo-
rithm can be applied to be good for data compression. This paper proposes a 
multichannel PQ data compression algorithm via IPCA. PQ data is preprocessed 
to form the matrix. Then IPCA is used to compress the matrix and yields the 
compressed data. Field PQ data tests validate that the proposed method is cha-
racterized with high CR, accurate reconstruction, and low computation com-
plexity. And the iterative method is especially easy to be programmed in com-
puter. 

Because the test data is not particularly sufficient, and there are differences of 
the covariance matrices of the original data, the number of iterations will appear 
very different using the proposed method. The number of iterations has a great 
relationship with the construction of the initial vector. How to construct the ini-
tial vector and reduce the number of iterations according to the different PQ da-
ta needs further study. 
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