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Abstract 
Let F be a number field and p be a prime. In the successive approximation 
theorem, we prove that, for each integer 1n ≥ , finitely many candidates for 

the Galois group Gn
p F  of the nth stage ( )n

pF  of the p-class tower ( )
pF ∞  

over F are determined by abelian type invariants of p-class groups Cl p E  of 

unramified extensions E F  with degree 1[ : ] nE F p −= . Illustrated by the 
most extensive numerical results available currently, the transfer kernels 

( ),ker F ET  of the p-class extensions , : Cl ClF E p pT F E→  from F to 

unramified cyclic degree-p extensions E F  are shown to be capable of 
narrowing down the number of contestants significantly. By determining the 
isomorphism type of the maximal subgroups S G<  of all 3-groups G with 
coclass ( )cc 1G = , and establishing a general theorem on the connection 
between the p-class towers of a number field F and of an unramified abelian 
p-extension E F , we are able to provide a theoretical proof of the realization 

of certain 3-groups S with maximal class by 3-tower groups 3G E∞  of dihedral 
fields E with degree 6, which could not be realized up to now. 
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1. Introduction 

For a prime number p and an algebraic number field F, let ( )
pF ∞  be the p-class 

tower, more precisely the unramified Hilbert p-class field tower, that is the 
maximal unramified pro-p extension, of F. The individual stages ( )n

pF  and the 
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Galois groups ( )( )Gal n
pF F  of the tower 

( ) ( ) ( ) ( ) ( )0 1 2 n
p p p p pF F F F F F ∞= ≤ ≤ ≤ ≤ ≤ ≤   

are described by the derived quotients ( ) ( )( )/ G : Galn nn
p pF F F=G G

,
 with 

1n ≥ , of the p-class tower group ( )( ): G : Galp pF F F∞∞= =G . The purpose of this 
paper is to report on the most up-to-date theoretical view of p-class towers and 
the state of the art of actual numerical investigations. After a summary of 
algebraic and arithmetic foundations in §2, four crucial concepts will illuminate 
recent innovation and progress in a very ostensive way: 

• the Artin limit pattern ( ) ( )( ),F Fτ ∞ ∞  of the p-class tower ( )
pF ∞  in §3, 

• successive approximation and the current status of computational 
perspectives in §4, 

• maximal subgroups of 3-class tower groups with coclass one in §5, and 
• the realization of new 3-class tower groups over dihedral fields in §6. 

2. Algebraic and Arithmetic Foundations 
2.1. Abelian Type Invariants 

First, we recall the concepts of abelian type invariants and abelian quotient 
invariants in the context of finite p-groups and infinite pro-p groups, and we 
specify our conventions in their notation. 

Let 2p ≥  be a prime number. It is well known that a finite abelian group A 
with order A  a power of p possesses a unique representation 

( )1
ii

res
iA p=⊕                          (2.1) 

as a direct sum with integers 0s ≥ , 1ir ≥  for 1 i s≤ ≤ , and strictly decreasing 

1 1se e> > ≥ . 
Definition 2.1 The abelian type invariants of A  are given either in power 

form, 

( )
1

1 1

timestimes

ATI : , , , , , , ,
s

s s

rr

e ee eA p p p p
 
 =  
  



               (2.2) 

or in logarithmic form with formal exponents indicating iteration, 

( ) 1
1ATI : , , .srr

sA e e =                         (2.3) 

Let G be a pro-p group with commutator subgroup G′  and finite 
abelianization :abG G G′= . 

Definition 2.2 The abelian quotient invariants of G are the abelian type 
invariants of the biggest abelian quotient of G 

( ) ( )AQI : ATI .abG G=                     (2.4) 

2.1.1. Higher Abelian Quotient Invariants of a Pro-p Group 
Within the frame of group theory, abelian quotient invariants of higher order 
are defined recursively in the following manner. 
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Definition 2.3 The set of all maximal subgroups of G which contain the 
commutator subgroup, 

( ){ }1Lyr : | , : ,G S G G S G S p′= ≤ =                  (2.5) 

is called the first layer of subgroups of G. For any positive integer 1n ≥ , abelian 
quotient invariants of nth order of G are defined recursively by 

( ) ( ) ( ) ( ) ( )( )
1

1 1 1

Lyr
: AQI and : ; for 2.n n

S G
G G G G S nτ τ τ τ −

∈

 = = ≥ 
 

  (2.6) 

2.1.2. Higher Abelian Type Invariants of a Number Field 
Within the frame of algebraic number theory, abelian type invariants of higher 
order are defined recursively in the following way. 

Let F be an algebraic number field, denote by Cl pF  the p-class group of F, 
and by ( )1

pF  the first Hilbert p-class field of F, that is, the maximal abelian 
unramified p-extension of F. 

Definition 2.4 The set of all unramified cyclic extensions E F  of degree p 
which are contained in the p-class field, 

( ) [ ]{ }1
1Lyr : | , :pF E F E F E F p= > ≤ =                 (2.7) 

is called the first layer of extension fields of F. For any positive integer 1n ≥ , 
abelian type invariants of nth order of F are defined recursively by 

( ) ( ) ( ) ( ) ( )( )
1

1 1 1

Lyr
: ATI Cl and : ; for 2.n n

p E F
F F F F E nτ τ τ τ −

∈

 = = ≥ 
 

(2.8) 

2.2. Transfer Kernel Type 

Next, we explain the concept of transfer kernel type of finite p-groups and 
infinite pro-p groups. 

2.2.1. Transfer Kernel Type of a Pro-p Group 
Denote by 2p ≥  a prime number. Let G be a pro-p group with commutator 
subgroup G′  and finite abelianization abG G G′= . 

Definition 2.5 By the transfer kernel type of G , we understand the finite 
family of kernels, 

( ) ( )( )
1

, Lyr
: ker ,G S S G

G T
∈

=                  (2.9) 

where , :G ST G G S S′ ′→  denotes the transfer homomorphism from G to the 
normal subgroup S of finite index ( ):G S p= , as given in Formula (3.1). 

More specifically, suppose that ab
p pG C C×  is elementary abelian of rank 

two. Then 1Lyr G  has 1p +  elements 1 1, , pS S +
, the transfer kernel type of G 

is described briefly by a family of non-negative integers  

( ) ( ) [ ] 1

1 1
0, 1 p

i i p
G p +

≤ ≤ +
= ∈ +   such that 

( )
( )

,

,

0 if ker ,
:

if ker for some1 1,
i

i

G S

i

G S j

T G G

j T S G j p

 ′== 
′= ≤ ≤ +

        (2.10) 
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and the symmetric group 1pS +  of degree 1p +  acts on [ ] 10, 1 pp ++  via 
1

0:π π π−=     , for each 1pSπ +∈ , where the extension 0π  of π  to 
[ ]0, 1p +  fixes the zero. 

Definition 2.6 The orbit ( ) 1pSG +  is called the invariant type of G, but it is 
actually given by one of the orbit representatives ( )1 1i i p≤ ≤ +

 . Any two distinct 
orbit representatives ( ) 1

1 2, pSGλ λ +∈  are called equivalent, denoted by the 
symbol 1 2~λ λ . 

2.2.2. Transfer Kernel Type of a Number Field 
Let F be an algebraic number field, and denote by Cl pF  the p-class group of F. 
Definition 2.7 By the transfer kernel type of F, we understand the finite family 
of kernels, 

( ) ( )( )
1

, Lyr
: ker ,F E E F

F T
∈

=                 (2.11) 

where , : Cl ClF E p pT F E→  denotes the transfer of p-classes from F to the 
unramified cyclic extension E of degree [ : ]E F p= , which is also known as the 
p-class extension homomorphism. 

More specifically, suppose that Cl p p pF C C×
 is elementary abelian of rank 

two. Then 1Lyr F  has 1p +  elements 1 1, , pE E +
, the transfer kernel type of F 

is described briefly by a family of non-negative integers  
( ) ( ) [ ] 1

1 1
0, 1 p

i i p
F p +

≤ ≤ +
= ∈ +   such that 

( )
( ) ( )

,

,

0 if ker Cl ,
:

if ker Norm Cl for some 1 1,
i

i j

F E p

i

F E E F p j

T F

j T E j p

 == 
= ≤ ≤ +

  (2.12) 

and the symmetric group 1pS +  of degree 1p +  acts on [ ] 10, 1 pp ++  via 
1

0:π π π−=     , for each 1pSπ +∈ , where the extension 0π  of π  to 
[ ]0, 1p +  fixes the zero. 

Definition 2.8 The orbit ( ) 1pSF +  is called the invariant type of F, but it is  
actually given by one of the orbit representatives ( )1 1i i p≤ ≤ +

 . Any two distinct 

orbit representatives ( ) 1
1 2, pSFλ λ +∈  are called equivalent, denoted by the  

symbol 1 2~λ λ . 

3. The Artin Limit Pattern 

Let p be a prime number. For the recursive construction of the Artin limit 
pattern of a pro-p group G with commutator subgroup G′  and finite 
abelianization abG G G′= , we need the following considerations. 

3.1. Mappings of the Artin Limit Pattern 

Due to our assumptions, the first layer 1Lyr G  of subgroups of G is a finite set 
consisting of maximal normal subgroups S of G with abelian quotients G S . 
Consequently, the Artin transfer homomorphism from G to 1LyrS G∈  is 
distinguished by a very simple mapping law: 
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( ) ( )
2 1, 1

if \ ,
: ,

if ,
p

p

G S h h h

g S g G G S G
T G G S S g G

g S g S G
−+ + + +

 ′ ′ ′⋅ ∈′ ′ ′→ ⋅ 
′ ′⋅ ∈



  (3.1) 

where h denotes an arbitrary element in \G S  ([1], 4.1, p. 76). 
The Artin limit pattern encapsulates particular group theoretic information 

(connected with Artin transfers) about the lattice of subgroups of G, where each 
element U has at least one predecessor, except the root G itself. We select a unique 
predecessor in the following way: for 1LyrU S∈  we put ( ) :U Sπ = , and we add 
the formal definition ( ) :G Gπ = . This enables a recursive construction, as follows: 

Definition 3.1 The collection of Artin transfers up to order n of G is defined 
recursively by 

( )
( )

( ) ( ) ( )( )
1

1 1 1
, Lyr

: and : ; for 2.n n
G G S G

G T G G S nπα α α α −

∈

 = = ≥  
  (3.2) 

The limit of this infinite recursive nesting process is denoted by 
( ) ( ): lim n

n
G Gα α∞

→∞
=                        (3.3) 

and is called the Artin transfer collection of G. 
Remark 3.1 By means of the collection of Artin transfers up to order three, 

( ) ( )( ) ( )( )
11 1

3 2
, , , , LyrLyr Lyr

; ; ; ,G G G G G S S U U SS G S G
G T S T T Tα α

∈∈ ∈

    = =         
 

it should be emphasized that our definition of stepwise relative mappings ,G ST  
and ,S UT  admits finer information than the corresponding absolute mappings 

, , ,G U S U G ST T T=   ([1], Thm. 3.3, p. 72), since in general the kernel of ,S UT  
cannot be reconstructed from ,G UT  and ,G ST . 

3.2. Objects of the Artin Limit Pattern 

The infinite collection of mappings ( )Gα ∞  is only the foundation for the 
objects ( )Gτ ∞  and ( )G∞  we are really interested in. 

Definition 3.2 The iterated abelian quotient invariants up to order n of G are 
defined recursively by 

( ) ( ) ( ) ( ) ( )( )
1

1 1 1

Lyr
: AQI and : ; for 2.n n

S G
G G G G S nτ τ τ τ −

∈

 = = ≥  
 (3.4) 

Similarly, the iterated transfer kernels up to order n of G are defined 
recursively by 

( )
( )( ) ( ) ( ) ( )( )

1

1 1 1
, Lyr

: ker and : ; for 2.n n
G G S G

G T G G S nπ
−

∈

 = = ≥  
     (3.5) 

Both are collected in the nth order Artin pattern ( ) ( ) ( )( )AP : ,n n nG G Gτ=   of 
G. The limits of these infinite recursive nesting processes are called the abelian 
invariant collection of G, 

( ) ( ): lim ,n

n
G Gτ τ∞

→∞
=                        (3.6) 

and the transfer kernel collection of G, 
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( ) ( ): lim .n

n
G G∞

→∞
=                     (3.7) 

Finally, the pair ( ) ( ) ( )( )ALP : ,G G Gτ ∞ ∞=   is called the Artin limit pattern of 
G. 

Remark 3.2 For a finite p-group G, the recursive nesting processes in the 
definition of the Artin limit pattern are actually finite. 

The abelian quotient invariants are a unary concept, since  
( ) ( ) ( )1 AQI ATIG G G Gτ ′= =  depends on G only. The first order abelian  

quotient invariants ( )1 Gτ  already contain non-trivial information on the  
abelianization of G. 

The transfer kernels are a binary concept for S G< , since  
( )

( )( )1
,ker S SS Tπ=  depends on ( )Sπ  and S. The first order transfer kernel of 

G is trivial: ( )
( )( ) ( ) ( )1

,,ker ker ker id 1G G G GG GG T Tπ ′= = = = , and non-trivial 
information starts with the transfer kernels of second order  

( )
( )( ) ( )1

,,ker ker G SS SS T Tπ= =  for 1LyrS G∈  which are members of ( )2 G . 
The analogous constructions for a number field F instead of a pro-p group G, 

along the lines of §§2.1.2 and 2.2.2, lead to the Artin limit pattern  
( ) ( ) ( )( )ALP : ,F F Fτ ∞ ∞=   of F. 

3.3. Connection between Pro-p Groups and Number Fields 

Let ( )
pF ∞  be the Hilbert p-class tower of the number field F, that is, the maximal 

unramified pro-p extension of F, and denote by ( )( )G Galp pF F F∞∞ =  its Galois 
group, which is briefly called the p-tower group of F. Now we are going to 
employ the abelian type invariant collection ( )Fτ ∞  of F, and the abelian 
quotient invariant collection ( ) ( )G p Fτ ∞ ∞  of G p F∞ , i.e., the first component of 
the respective Artin limit pattern. The transfer kernel collections ( )∞  will be 
considered further in §5. 

Theorem 3.1 For each integer 1n ≥ , the abelian quotient invariants of nth 
order of the p-tower group G p F∞  of F are equal to the abelian type invariants 
of nth order of the number field F 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 G and thus G .n n
p pn F F F Fτ τ τ τ∞ ∞∞ ∞∀ ≥ = =   (3.8) 

The invariant type of the p-tower group G p F∞  of F coincides with the 
invariant type of the number field F 

( ) ( )1 1G .p pS S
p F F+ +∞ =                   (3.9) 

Even the orbit representatives of the transfer kernel types of G p F∞  and F 
coincide, 

( ) ( ) ( )( ) ( ),G , 1 11 1
G ker ker ,

ip i
p F EF U i pi p
F T T F∞

∞

≤ ≤ +≤ ≤ +

 = = = 
 

     (3.10) 

provided that the ( )1Lyr Gi pU F∞∈  and the 1LyriE F∈  are connected by 
( )( )Gali p iU F E∞= , for each 1 1i p≤ ≤ + . Otherwise, we only have equivalence 

( ) ( )G ~p F F∞  . 
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Proof. The claims are well-known consequences of the Artin reciprocity law of 
class field theory [2] [3]. 

In contrast to the full p-tower group G p F∞=G , the Galois groups 
( )( ) ( )G : Gal m mm

p pF F F= G G  of the finite stages ( )m
pF  of the p-class tower of 

F, that is, of the higher Hilbert p-class fields of the number field F, in general fail 
to reveal the abelian type invariants of nth order of the number field F. More 
precisely, there is a strict upper bound on the order n of the ATI of F which 
coincide with the AQI of order n of the mth p-class group Gm

p F  of F with a 
fixed integer 0m ≥ , namely the bound n m≤ . 

Theorem 3.2 (Successive Approximation Theorem.) 
Let F be a number field, p a prime, and m,n integers. The abelian invariant 

collection ( )Fτ ∞  of F is approximated successively by the iterated AQI of 
sufficiently high p-class groups of F: 

( ) ( ) ( ) ( ) ( )1 G .n nm
pn m n F Fτ τ∀ ≥ ∀ ≥ =           (3.11) 

However, the transfer kernel type is a phenomenon of second order: 

( ) ( ) ( )2 G ~ ,m
pm F F∀ ≥                 (3.12) 

in particular, the metabelian second p-class group 2: G pF ′′= M G G  of F is 
sufficient for determining the transfer kernel type of F. 

Proof. This is one of the main results in ([4], Thm. 1.19, p. 78) and ([5], p. 13). 
In general, the upper bound on the order n of the ATI of F in Theorem 3.2 

seems to be sharp, in the following sense, where 1m n= − . 
Conjecture 3.1 (Stage Separation Criterion.) 
Denote by pF  the length of the p-class tower of F, that is the derived length 

( )dl G p F∞  of the p-tower group of F. It is determined in terms of iterated AQI of 
higher p-class groups of F by the following condition: 

( ) ( ) ( ) ( )11 G .n nn
p pn F n F Fτ τ−∀ ≥ ≥ ⇔ <             (3.13) 

The sufficiency of the condition in Conjecture 3.1 is a proven theorem ([5], p. 
13). 

4. Successive Approximation of the p-Class Tower 
4.1. Computational Perspectives 

Our first attempt to find sound asymptotic tendencies in the distribution of 
higher non-abelian p-class groups ( )( )G Gal nn

p pF F F= , with 2n ≥ , among 
the finite p-groups was planned in 1991 already ([6], 3, Remark, p. 77). However, 
the insurmountable obstacles in the required computations limited the progress 
for twenty years. In 2012, we finally succeeded in the significant break-through 
of computing the second 3-class groups 2

3G F=M , that is, the 
metabelianizations ( )2

G G  of the 3-class tower groups ( )( )3Gal F F∞=G  of all 
4596 quadratic fields ( )F d=  with fundamental discriminants in the 
remarkable range 6 710 10d− < <  and elementary bicyclic 3-class group 
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3 3 3Cl F C C×  of rank two ([7], 6, pp. 495-499). The underlying computational 
techniques were based on the principalization algorithm via class group 
structure which we had invented in 2009 and implemented by means of the 
number theoretic computer algebra system PARI/GP [8] in 2010, as described in 
([9], 5-6, pp. 446-455). 

Throughout this paper, isomorphism classes of finite groups G are 
characterized uniquely by their identifier in the SmallGroups Database [10] [11], 
which is denoted by a pair ,o i  consisting of the order ( )ordo G=  and a 
positive integer i, delimited with angle brackets. The counter ( )1 i N o≤ ≤  is 
unique for a fixed value of the order o. In the computational algebra system 
MAGMA [12] [13] [14], the upper bound ( )N o  can be obtained as return 
value of the function NumberOfSmallGroups(o), provided that 
IsInSmallGroupDatabase(o) returns true. The identifier of a given finite group G 
can be retrieved as return value of the function IdentifyGroup(G), provided that 
Can IdentifyGroup(o) returns true. 

4.2. Trivial Towers with pF = 0  

For the decision if the p-class tower of a number field F is trivial with length 
0p F =  it suffices to compute the class number ( )h F  of the field. 

Theorem 4.1 (Trivial p-class tower.) 
The p-class tower of a number field F is trivial, ( )

pF F∞ = , with length 
0pF =

, if and only if the class number ( ) ( )#Clh F F=  is not divisible by p, i. 
e., the p-class number is 1ph F = . 

Proof. The proof consists of a sequence of equivalent statements: The class 
number satisfies ( )p h F . ⇔ The p-valuation of ( )h F  is ( )( ) 0pv h F = . ⇔ 
The p-class number is ( )( )#Cl 1pv h F

p pF h F p= = = . ⇔ The p-class group  

Cl 1pF =  is trivial. ⇔ The p-class rank ( ) ( )( )dim Cl Cl
p

p
p F Fρ =   is equal  

to zero. ⇔ The number of unramified cyclic extensions E F  of degree p is  
01 1 1 1 0

1 1 1

pp p
p p p

ρ − − −
= = =

− − −
. ⇔ The maximal unramified p-extension ( )

pF ∞  of F  

coincides with F. ⇔ The Galois group ( )( ) ( )G Gal Gal 1p pF F F F F∞∞ = = =  is 
trivial. ⇔ The length of the p-class tower is ( ) ( )dl G dl 1 0p pF F∞= = = . 

Already C. F. Gauss was able to compute class numbers ( )h F  of quadratic 
fields ( )F d=  , at a time when the concept of class field theory was not yet 
coined. Nowadays, there exist extensive tables of quadratic class numbers which 
even contain the structures of the associated class groups ( )Cl F . In 1998, 
Jacobson [15] covered all real quadratic fields with positive discriminants in the 
range 90 10d< < , and in 2016, Mosunov and Jacobson [16] investigated all 
imaginary quadratic fields with negative discriminants 1210 0d− < < . Now we 
apply these results to class field theory. 

Corollary 4.1 (Statistics for 3p = .) The asymptotic proportion of 
imaginary quadratic fields ( )F d=  , with negative discriminants 0d < , 
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whose class number ( )h F  is, respectively is not, divisible by 3p =  is given as 
43.99%, respectively 56.01%, by the heuristics of Cohen, Lenstra and Martinet. 
In Table 1, the approximations of these theoretical limits by relative frequencies 
in various ranges 0L d< <  are shown. 

Proof. The heuristic asymptotic limits are given in ([17], 2, (1.1.c), p. 126). 
Their approximation by discriminants 0L d< <  with 610L = −  in ([18], 
Example, p. 843) and ([6], 2, Remark, and 3, Remark, p. 77), where  
118455 3190 121645+ = , is still rather far away from the limits. In contrast, the 
approximations associated with the bounds 1110L = −  and 1210L = −  in ([16], 
p. 2001) are very close already. 

4.3. Abelian Single-Stage Towers with pF 1=  

The first stage ( )1
pF of the p-class tower of a number field F is determined by the 

structure of the p-class group Cl pF  of F as a finite abelian p-group. This is 
exactly the first order Artin pattern 

( ) ( ) ( )( ) ( ) ( )( )1 1 1
,AP , ATI Cl , ker ,p F FF F F F Tτ= =  (4.1) 

since the trivial ( ),ker 1F FT =  does not contain information. However, only in 
the case of p-class rank one, ( ) ( )( )dim Cl Cl 1

p

p
p F Fρ = = , it is warranted 

that the exact length of the tower is 1pF =
. A statistical example ([6], 2, 

Remark, p. 77) is shown in Table 2. 
Theorem 4.2 A number field F with non-trivial cyclic p-class group Cl p F  

has an abelian p-class tower of exact length 1p F =
, in fact, the Galois group 

1G G Clp p pF F F∞
   is cyclic. 

Proof. Suppose that Cl 1pF >  is non-trivial and cyclic. If the p-class tower 
had a length 2p F ≥

, the second p-class group 2G pF=M  would be a 
 
Table 1. Imaginary quadratic fields F with non-trivial, resp. trivial, 3-class tower. 

L ( )( )# 3 | h F  rel. fr. ( )( )# 3 h F  rel. fr. w. r. t. #total 

−106 121645 40.02% 182323 59.98% 303968 

−1011 13206088529 43.45% 17190266523 56.55% 30396355052 

−1012 132584350621 43.62% 171379200091 56.38% 303963550712 

 
Table 2. Imaginary quadratic fields F with cyclic 3-class tower for 610 0d− < < . 

3Cl F   abs. fr. rel. fr. w. r. t. ( )3# 1ρ =  

3C  80115 67.63% 118455 

9C  26458 22.34% 118455 

27C  8974 7.58% 118455 

81C  2472 2.09% 118455 

243C  393 0.33% 118455 

729C  43 0.04% 118455 
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non-abelian finite p-group with cyclic abelianization Cl pF′
M M . However, 

it is well known that a nilpotent group with cyclic abelianization is abelian, 
which contradicts the assumption of a length 2pF ≥

. 
Remark 4.1 We interpret the computation of abelian type invariants ( )1 Fτ  of 

the Sylow 3-subgroup 3Cl F  of the ideal class group ( )Cl F  of a quadratic 
field ( )F d=  as the determination of the single-stage approximation 

1
3 3G ClF F′

 G G  of the 3-class tower group 3G F∞=G  of F. This step yields 
complete information about the lattice of all unramified abelian 3-extensions 
E F  within the Hilbert 3-class field ( )1

3F  of F. 

4.4. Metabelian Two-Stage Towers with pF 2=  

According to the Successive Approximation Theorem 3.2, the second stage ( )2
pF  

of the p-class tower of a number field F is determined by the second order Artin 
pattern 

( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )

11

2 2 2

, , LyrLyr

AP ,

ATI Cl ; ATI Cl , ker ; ker .p p F F F E E FE F

F F F

F E T T

τ

∈∈

=

    =        


 (4.2) 

The determination of ( )2AP F  for a quadratic field F with 3-class rank 

3 2ρ =  requires the computation of four 3-class groups 3Cl iE  of unramified 
cyclic cubic extensions 1 4, ,E E  and of four transfer kernels ( ),ker

iF ET . 
Whereas Mosunov and Jacobson [16] were able to determine the class groups 
( )Cl F  of more than 300 billion, precisely 303963550712, imaginary quadratic 

fields F with discriminants 1210 0d− < <  by parallel processes on multiple 
cores of a supercomputer in several years of total CPU time, it is currently 
definitely out of scope to compute the class groups ( )Cl ,1 4iE i≤ ≤ , for the 
22757307168 unramified cyclic cubic extensions iE F , of absolute degree six, 
of the 5689326792 imaginary quadratic fields F with discriminants  

1210 0d− < <  and 3-class rank 3 2ρ = . 
Therefore, it must not be underestimated that Boston, Bush and Hajir [19] 

succeeded in completing this task for the smaller range 810 0d− < <  with 
461925 imaginary quadratic fields F having 3-class rank 3 2ρ = , and 1847700 
associated totally complex dihedral fields iE  of degree six ([7], Prp. 4.1, p. 482). 
For this purpose the authors used the computational algebra system MAGMA 
[12] [13] [14] in a distributed process involving several processors with multiple 
cores. 276375 of these quadratic fields F have a 3-class group 3 3 3Cl F C C× . 

Imaginary quadratic fields ( )F d=  with negative discriminants 0d <  
are the simplest number fields with respect to their unit group FU , which is a 
finite torsion group of Dirichlet unit rank zero. This fact has considerable 
consequences for their p-class tower groups, according to the Shafarevich 
theorem [20], corrected in ([21], Thm. 5.1, p. 28), [22]. 

Theorem 4.3 Among the finite 3-groups G with elementary bicyclic 
abelianization 3 3G G C C′ ×  of rank two, there exist only two metabelian 
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groups with GI-action (generator inverting action). and relation rank 2 2d G =  
(so-called Schur σ-groups [23] [19]), namely 243,5  and 243,7 . 

1) These are the groups of smallest order which are admissible as 3-class tower 
groups 3GG F∞

  of imaginary quadratic fields F with 3-class group  

3 3 3Cl F C C× . 
2) Generally, for any number field F, these groups are determined uniquely by 

the second order Artin pattern. 
(a) If ( ) ( ) ( )( )2 2 3AP 1 ; 21,21,1 ,21 , 1; 2241F  =      then 3G 243,5F∞

 . 
(b) If ( ) ( ) ( )( )2 2 3 3AP 1 ; 1 ,21,1 ,21 , 1; 4224F  =      then 3G 243,7F∞

 . 
3) The actual distribution of these 3-class tower groups G among the 276375 

imaginary quadratic fields ( )F d=  with 3-class group 3 3 3Cl F C C×  
and discriminants 810 0d− < <  is presented in Table 3. 

Proof. All finite 3-groups G with abelianization 3 3G G C C′ ×  are vertices 
of the descendant tree ( )R  with abelian root 3 39, 2R C C= × . A search 
for metabelian vertices with relation rank 2 2d G =  in this tree yields three hits 

27,4 , 243,5 , and 243,7 , but only the latter two of them possess a 
GI-action. 

The abelianization G G′  of a finite 3-group G which is realized as the 
3-class tower group G p F∞  of an algebraic number field F is isomorphic to the 
3-class group 3Cl F  of F. When F is imaginary quadratic, it possesses signature 
( ) ( )1 2, 0,1r r =  and torsionfree Dirichlet unit rank 1 2 1 0r r r= + − = . If  

3 3 3ClG G F C C′ ×  , then the generator rank of G is 1 2d G =  and the  
Shafarevich theorem implies bounds for the relation rank  

1 2 12 2d G d G d G r= ≤ ≤ + = . 
The entries of Table 3 have been taken from [19]. 
More recently, Boston, Bush and Hajir [24] used MAGMA [14] for computing the 

class groups of the 481756 real quadratic fields F having 3-class rank 3 2ρ =  and 
discriminants in the range 90 10d< < , and the class groups of the 1927024 
associated totally real dihedral fields iE  of degree six, arising from unramified 
cyclic cubic extensions iE F  ([7], Prp. 4.1, p. 482). 415698 of these quadratic 
fields F have a 3-class group 3 3 3Cl F C C×  (415699 according to( [15], Tbl. 7)). 

Real quadratic fields ( )F d=  with positive discriminants 0d >  are the 
second simplest number fields with respect to their unit group FU , which is an 
infinite group of torsionfree Dirichlet unit rank one. Again, there are remarkable 
consequences for their p-tower groups, by the Shafarevich theorem ([21], Thm. 
5.1, p. 28). 

Theorem 4.4 Among the finite 3-groups G with elementary bicyclic 
abelianization 3 3G G C C′ ×  of rank two, there exist infinitely many 
 
Table 3. Frequencies of metabelian 3-class tower groups G for 810 0d− < < . 

G   abs. fr. rel. fr. w. r. t. rel. fr. w. r. t. measure [19] 
min

d  

243,5  83353 30.16% 276375 18.04% 461925 128 729 17.56%≈  4027 

243,7  41398 14.98% 276375 8.96% 461925 64 729 8.78%≈  12131 
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metabelian groups with RI-action and relation rank 2 3d G =  (so-called Schur + 
1 σ-groups [24]), but only three of minimal order 34, namely 81,7 , 81,8  
and 81,10 . 

1) These are the groups of smallest order which are admissible as 3-class tower 
groups 3GG F∞

  of real quadratic fields F with 3-class group 3 3 3Cl F C C× . 
2) Generally, for any number field F, these groups are determined uniquely by 

the second order Artin pattern. 

(a) If ( ) ( ) ( )( )2 2 3 2 2 2AP 1 ; 1 ,1 ,1 ,1 , 1; 2000F  =      then 3G 81,7F∞
 . 

(b) If ( ) ( ) ( )( )2 2 2 2 2AP 1 ; 21,1 ,1 ,1 , 1; 2000F  =      then 3G 81,8F∞
 . 

(c) If ( ) ( ) ( )( )2 2 2 2 2AP 1 ; 21,1 ,1 ,1 , 1; 1000F  =      then 3G 81,10F∞
 . 

3) The actual distribution of these 3-class tower groups G among the 415698 
real quadratic fields ( )F d=  with 3-class group 3 3 3Cl F C C×  and 
discriminants 90 10d< <  is presented in Table 4. Additionally, the frequencies 
of the groups 243,5  and 243,7  in Theorem 4.3 are given. 

Proof. A search for metabelian vertices G of minimal order with relation rank 

2 3d G =  in the descendant tree ( )R  with abelian root 3 39, 2R C C= ×  
yields three hits 81,7 , 81,8 , and 81,10 . All of them possess a RI-action. 

The abelianization G G′  of a finite 3-group G which is realized as the 
3-class tower group G p F∞  of an algebraic number field F is isomorphic to the 
3-class group 3Cl F  of F. When F is real quadratic, it possesses signature  
( ) ( )1 2, 2,0r r =  and torsionfree Dirichlet unit rank 1 2 1 1r r r= + − = . If 

3 3 3ClG G F C C′ ×  , then the generator rank of G is 1 2d G =  and the 
Shafarevich theorem implies bounds for the relation rank  

1 2 12 3d G d G d G r= ≤ ≤ + = . 
The entries of Table 4 have been taken from [24]. 
In [24], Boston, Bush and Hajir only computed the first component of the 

second order Artin pattern ( ) ( ) ( )( )2 2 2AP ,F F Fτ=   in Formula (4.2), that is, 
the abelian type invariants ( )2 Fτ  of second order of real quadratic fields F with 
discriminants 90 10d< < . Determining the second component ( )2 F , the 
transfer kernel type of F, is considerably harder with respect to the 
computational expense. Consequently, the most extensive numerical results on 
transfer kernels available currently, have been computed by ourselves for the 
smaller ranges 80 10d< <  in [25] [26], and, even computing third order Artin 

 
Table 4. Frequencies of metabelian 3-class tower groups G for 90 10d< < . 

G   abs. fr. rel. fr. w. r. t. rel. fr. w. r. t. measure [24] mind  

81,7  122955 29.58% 415698 25.52% 481756 1664 6561 25.36%≈  142097 

81,8  or 208236 50.09% 415698 43.22% 481756 8320 19683 42.27%≈  32009 

81,10         

243,5  13712 3.30% 415698 2.85% 481756 1664 59049 2.82%≈  422573 

243,7  6691 1.61% 415698 1.39% 481756 832 59049 1.41%≈  631769 
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patterns, for 70 10d< <  in [27] [28]. With the aid of these results, we now 
illustrate that the transfer kernels ( ),ker F ET  of 3-class extensions  

, 3 3: Cl ClF ET F E→  from real quadratic fields F to unramified cyclic cubic 
extensions E F  are capable of narrowing down the number of contestants for 
the 3-tower group 3G F∞  significantly, and thus of refining the statistics in [24]. 

Corollary 4.2 

1) If ( ) ( ) ( )( )2 2 2 2 2AP 1 ; 32,1 ,1 ,1 , 1; 1000F  =      then 3G 729,96F∞
 . 

2) If ( ) ( ) ( )( )2 2 2 2 2AP 1 ; 32,1 ,1 ,1 , 1; 2000F  =      then 3G 729,F i∞
  with 

{ }97,98i∈ . 

3) If ( ) ( ) ( )( )2 2 2 2 2 2AP 1 ; 2 ,1 ,1 ,1 , 1; 0000F  =      then 3G 729,F i∞
  with 

{ }99,100,101i∈ . 
The actual distribution of these 3-class tower groups G among the 34631, 

respectively 2576, real quadratic fields ( )F d=  with 3-class group 

3 3 3Cl F C C×  and discriminants 80 10d< < , respectively 70 10d< < , is 
presented in Table 5. 

4.5. Non-Metabelian Three-Stage Towers with pF 3=  

According to the Successive Approximation Theorem 3.2, the third stage ( )3
pF  

of the p-class tower of a number field F is usually determined by the third order 
Artin pattern 

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )
1 1

3 3 3 1 2 1 2

Lyr Lyr
AP , ; , ; .

E F E F
F F F F E F Eτ τ τ

∈ ∈

    = =         
    (4.3) 

It is interesting, however, that there are extensive collections of quadratic 
fields F with 3-class towers of exact length 3 3F = , which can be characterized 
by the second order Artin pattern already. We begin with imaginary quadratic 
fields ( )F d=  with discriminants 0d < . 

Theorem 4.5 Among the finite 3-groups G with elementary bicyclic 
abelianization 3 3G G C C′ ×  of rank two, there exist infinitely many non- 
 
Table 5. Frequencies of metabelian 3-class tower groups G for 80 10d< < , resp. 107. 

G   abs. fr. rel. fr. w. r. t. mind  

81,7  10244 29.58% 34631 142097 

81,8  10514 30.36% 34631 32009 

81,10  7104 20.51% 34631 72329 

729,96  242 0.70% 34631 790085 

729,97  or 713 2.06% 34631 494236 

729,98      

729,99  66 2.56% 2576 62501 

729,100  42 1.63% 2576 152949 

729,101  42 1.63% 2576 252977 
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metabelian groups with GI-action and relation rank 2 2d G =  (so-called Schur 
σ-groups [19] [23]), but only seven of minimal order 38, namely 6561, i  with 

{ }606,616,617,618,620,622,624i∈ . 
1) These are the groups of smallest order which are admissible as non- 

metabelian 3-class tower groups 3GG F∞
  of imaginary quadratic fields F with 

3-class group 3 3 3Cl F C C× . 
2) Exceptionally, for an imaginary quadratic field F, the trailing six of these 

groups are determined by the second order Artin pattern already. 

(a) If ( ) ( ) ( )( )2 2 3AP 1 ; 32,21,1 ,21 , 1; 1313F  =      then 3G 6561,616F∞
 . 

(b) If ( ) ( ) ( )( )2 2 3AP 1 ; 32,21,1 ,21 , 1; 2313F  =      then 3G 6561,F i∞
  with 

{ }617,618i∈ . 

(c) If ( ) ( ) ( )( )2 2AP 1 ; 32,21,21,21 , 1; 1231F  =      then 3G 6561,622F∞
 . 

(d) If ( ) ( ) ( )( )2 2AP 1 ; 32,21,21,21 , 1; 2231F  =      then 3G 6561,F i∞
  with 

{ }620,624i∈ . 
3) The actual distribution of these 3-class tower groups G among the 24476 

imaginary quadratic fields ( )F d=  with 3-class group 3 3 3Cl F C C×  
and discriminants 710 0d− < <  is presented in Table 6. 

Proof. By a similar but more extensive search than in the proof of Theorem 
4.3. Data for Table 6 has been computed by ourselves in June 2016 using 
MAGMA [14]. 

Remark 4.2 It should be pointed out that items (1) and (2) of Theorem 4.5 are 
not valid for real quadratic fields, as documented in ([29], Thm. 7.8, p. 162, and 
Thm. 7.12, p. 165). 

The group 6561,606  belongs to the infinite Shafarevich cover of the 
metabelian group 729,45  with respect to imaginary quadratic fields ([30], 
Cor. 6.2, p. 301), [31]. It shares a common second order Artin pattern with all 
other elements of the Shafarevich cover. Third order Artin patterns must be used 
for its identification, as shown in ([29], Thm. 7.14, p. 168). 

Now we turn to real quadratic fields ( )F d=  with discriminants 0d > . 
Theorem 4.6 Among the finite 3-groups G with elementary bicyclic 

abelianization 3 3G G C C′ ×  of rank two, there exist infinitely many non- 
 

Table 6. Frequencies of non-metabelian 3-class tower groups G for 710 0d− < < . 

G   abs. fr. rel. fr. w. r. t. type   min
d  

6561,616  760 3.11% 24476 E.6 (1313) 15544 

6561,617  or 1572 6.42% 24476 E.14 (2313) 16627 

6561,618        

6561,622  798 3.26% 24476 E.8 (1231) 34867 

6561,620  or 1583 6.47% 24476 E.9 (2231) 9748 

6561,624        
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metabelian groups with RI-action and relation rank 2 3d G =  (so-called Schur + 
1 σ-groups [24]), but only nine of minimal order 37, namely 2187, i  with 

{ }270,271,272,273,284,291,307,308,311i∈ . 
1) These are the groups of smallest order which are admissible as non- 

metabelian 3-class tower groups 3GG F∞
  of real quadratic fields F with 3- 

class group 3 3 3Cl F C C× . 
2) Exceptionally, for a real quadratic field F, four of these groups are 

determined by the second order Artin pattern already. 
(a) If ( ) ( ) ( )( )2 2 2 3AP 1 ; 2 ,21,1 ,21 , 1; 0313F  =      then 3G 2187,F i∞

  with 
{ }284,291i∈ . 

(b) If ( ) ( ) ( )( )2 2 2AP 1 ; 2 ,21,21,21 , 1; 0231F  =      then 3G 2187,F i∞
  

with { }307,308 .i∈  
3) The actual distribution of these 3-class tower groups G among the 415698 

real quadratic fields ( )F d=  with 3-class group 3 3 3Cl F C C×  and 
discriminants 91 10d< <  is presented in Table 7. 

Proof. The claims for transfer kernel type c.18, ( ) ( )~ 0313F , are a 
consequence of ([21], Prp. 7.1, p. 32, Thm. 7.1, p. 33, and Rmk. 7.1, p. 35), those 
for type c.21, ( ) ( )~ 0231F , have been proved in ([21], Prp. 8.1, p. 42, Thm. 
8.1, p. 44, and Rmk. 8.2, p. 45). A slightly stronger result is the Main Theorem 
([21], Thm. 2.1, p. 22). 

Remark 4.3 The groups 2187, i  with { }270,271,272,273i∈  are elements 
of the infinite Shafarevich cover of the metabelian group 729,45  with respect 
to real quadratic fields. 

The group 2187,311  belongs to the infinite Shafarevich cover of the 
metabelian group 729,57  with respect to real quadratic fields. 

These five groups share a common second order Artin pattern with all other 
elements of the relevant Shafarevich cover. Third order Artin patterns must be 
employed for their identification, as shown in ([29], Thm. 7.13, p. 167, and Thm. 
7.15, p. 169). 

5. Maximal Subgroups of 3-Groups of Coclass One 

Let ( )( ) 1i i
Gγ

≥
 be the descending lower central series of the group G, defined 

recursively by ( )1 :G Gγ =  and ( ) ( )1: ,i iG G Gγ γ −=     for 2i ≥ , in particular, 
( )2 G Gγ ′=  is the commutator subgroup of G. A finite p-group G is nilpotent 

with ( ) ( ) ( ) ( )1 2 1 1c cG G G Gγ γ γ γ +> > > > =  for some integer 1c ≥ , which is 
 
Table 7. Frequencies of non-metabelian 3-class tower groups G for 90 10d< < . 

G   abs. fr. rel. fr. w. r. t. type   mind  

2187,284  or 4318 1.04% 415698 c.18 (0313) 534824 

2187,291        

2187,307  or 4377 1.05% 415698 c.21 (0231) 540365 

2187,308        
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called the nilpotency class ( )cl G c=  of G. When G is of order np , for some 
integer 1n ≥ , the coclass of G is defined by ( )cc :G n c= −  and ( )lo :G n=  is 
called the logarithmic order of G. 

Finite 3-groups G with coclass ( )cc 1G =  were investigated by N. Blackburn 
[32] in 1958. All of these CF-groups, which exclusively have cyclic factors 
( ) ( )1i iG Gγ γ +  of their descending central series for 2i ≥ , are necessarily 

metabelian with second derived subgroup 1G′′ =  and abelian commutator 
subgroup G′  and possess abelianization 3 3G G C C′ × , according to 
Blackburn [33]. 

For the statement of Theorem 5.1, we need a precise ordering of the four 
maximal subgroups 1 4, ,H H  of the group ,G x y= , which can be generated 
by two elements ,x y , according to the Burnside basis theorem. For this purpose, 
we select the generators ,x y  such that 

2
1 2 3 4, , , , , , , ,H y G H x G H xy G H xy G′ ′ ′ ′= = = =  (5.1) 

and ( )1 2H Gχ= , provided that G is of nilpotency class ( )cl 3G ≥ . Here we 
denote by 

( ) ( )( ) [ ] ( ){ }2 2 4: | ,G g G h G g h Gχ γ γ= ∈ ∀ ∈ ∈           (5.2) 

the two-step centralizer of G′  in G. 

Parametrized Presentations of Metabelian 3-Groups 

The identification of the groups will be achieved with the aid of parametrized 
polycyclic power-commutator presentations, as given by Blackburn [32], Miech 
[34], and Nebelung [35]: 

( ) [ ] ( ) [ ] [ ]

( ) [ ] ( )
2 1 2 3 1 2 1

1 3 3 3 3 3 3 3 3
3 1 2 3 1 2 1 2 2 1

, : , , , , | , , , , 1, , ,

, 1, , , 1, 1 ,

n n a
a n i i i n n

n w z n
i i n n i i i i n n

G z w x y s s s y x s s x s y s s

y s x s y s s s s s s s s

− = − −

− −
= − − = + + − −

= = ∀ = = =

∀ = = = ∀ = = =



(5.3) 

where { }0,1a∈  and { }, 1,0,1w z∈ −  are bounded parameters, and the index of 
nilpotency ( ) ( ) ( ) ( )( ) ( )3cl 1 cl cc log ord : lon G G G G G= + = + = =  is an 
unbounded parameter. 

The following lemma generalizes relations for second and third powers of 
generators in ([27], Lem. 3.1), [28]. 

Lemma 5.1 Let ,G x y=  be a finite 3-group with two generators ,x y G∈ . 
Denote by [ ]2 : ,s y x=  the main commutator, and by [ ]3 2: ,s s x=  and 

[ ]3 2: ,t s y=  the two iterated commutators. Then the second and third power of 
the element xy , respectively 2xy , are given by 

( ) ( )

( ) ( )

2 32 2 3 3 3 2
2 3 2 3 3

2 32 2 4 2 2 2 3 6 6 2 2
2 3 2 3 3

and , respectively

and ,

xy x y s t xy x y s s t

xy x y s t xy x y s s t

= =

= =
    (5.4) 

provided that ( )3t Gζ∈  is central, 3
3 1t = , and [ ]3, 1s y = . 

Proof. We begin by preparing three commutator relations: 

[ ] [ ] [ ]2 2 2 2 2 3 2 2 2 2 3, , , and , .yx xy y x xys s x xs s x xs s s y ys s y ys t= = = = = =  (5.5) 
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Now we prove the power relations by expanding the power expressions by 
iterated substitution of the commutator relations in Formula (5.5), always 
observing that 3t  belongs to the centre, 3

3 1t = , and 3 3s y ys=  commute: 

( )2 2 2 2
2 2 3 2 3, and thusxy xyxy xxys y x yys t x y s t= = = =  

( )3 2 2 2 2 2 2 2
2 3 2 3 2 3 3 2 2 3 3

2 3 2 3 2 4
2 2 2 3 3 3 2 3 2 3 2 3 3 2 2 2 3 3

3 2 2 3 3 3 2
2 3 2 3 3 2 3 3

( )

, respectively

xy xy xy x y s t xy x y s xyt x yyxs s yt x yxys s ys t

x xys ys ys t s t x yys t ys t s s t x y s ys s s t

x y ys t s s t x y s s t

= = = = =

= = =

= =

 

( )22 2 2 2 2
2 2 2 3 2 3 2 3 2 2 3 3

2 2 3 2 3 2 3 2 4 2 2
2 3 2 3 2 2 3 2 3 2 3 2 3 , and thus

xy xyyxyy xyxys yy xxys yys t y x yys t ys yt x y s yys t t

x y ys t ys t x y s ys t x y ys t s t x y s t

= = = = =

= = = =
 

( ) ( )3 22 2 2 2 4 2 2 2 2 4 2 2 4 2
2 3 2 2 3 2 2 3 3

2 2 2 2 2 2 2 3
2 3 2 3 3 2 2 2 3 3 3 2 2 2 3 2 3 3

2 2 4 2 2 2 2
2 2 3 2 3 2 2 3 3 3 2 2 3 2 2 3 2 3 2 3 3

3

xy xy xy x y s t xy x y s s xyyt x y s xs s yyt

x yyyyxs s s yys t x yyyxys s ys t ys t x yyxys ys ys t s ys t

x yxys yys t ys t s ys t s t x xys yys t ys ys t ys t s s t

x y

= = = =

= = =

= =

= 3 2 2 3 3 2 2 2 2
2 3 2 2 3 2 3 2 3 3 2 2 2 3 2 2 3ys t ys yys t s t ys s t x y s ys yys t s ys s=

 

3 2 2 2 2 3 3 2 3 3 2
2 3 2 3 2 3 2 3 2 3 2 2 3 2 3 2 3

3 3 2 3 2 3 4 4 3 2 3 4 4 2
2 3 2 3 2 3 2 3 2 2 2 3 2 3 2 2 2 3 3

3 4 4 2 3 4 4 2 2 3 4 4 2 2
2 2 3 2 3 3 2 2 2 3 3 2 3 2 3 2 3 3

3 5
2

x y ys t ys t ys t ys t s s x y s ys t ys yt s s

x y ys t s t yys t s s x y s s yys t s s x y s s yys s t

x y s ys t ys s t x y s ys ys s t x y ys t ys t s s t

x y s ys

= =

= = =

= = =

= 2 4 2 2 3 5 5 2 4 3 6 6 2 2
2 3 2 3 3 2 3 2 3 3 2 3 3 .t s s t x y ys t s s t x y s s t= =

 

Theorem 5.1 Let ( ), ,n
aG x y G z w=   be a finite 3-group of coclass 

( )cc 1G =  and order 3nG =  with generators ,x y  such that ( )2y Gχ∈  is 
contained in the two-step centralizer of G, whereas ( )2\x G Gχ∈ , given by a 
polycyclic power commutator presentation with parameters { }0,1a∈ , 

{ }, 1,0,1w z∈ − , and index of nilpotency 4n ≥ . 
Then three of the four maximal subgroups, 2 ,i

iH xy G G− ′= < , 2 4i≤ ≤ , 
are non-abelian 3-groups of coclass ( )cc 1iH = , as listed in Table 8 in 
dependence on the parameters , , ,n a z w . 

The supplementary Table 9 shows the abelian maximal subgroups of the 
remaining two extra special 3-group of coclass ( )cc 1G =  and order 33G = . 

Proof. For an index of nilpotency 4n ≥ , the first maximal subgroup 
 
Table 8. Non-abelian maximal subgroups iH G<  of 3-groups G of coclass 1. 

G   n a z w 2 ,H x G′=  3 ,H xy G′=  2
4 ,H xy G′=  

( )0 0,0nG  ≥4 0 0 0 ( )1
0 0,0nG −

  ( )1
0 0,0nG −

  ( )1
0 0,0nG −

  

( )0 0,1nG  ≥4 0 0 1 ( )1
0 0,1nG −

  ( )1
0 0,1nG −

  ( )1
0 0,1nG −

  

( )0 1,0nG  ≥4 0 1 0 ( )1
0 0,0nG −

  ( )1
0 0,1nG −

  ( )1
0 0,1nG −

  

( )0 1,0nG −  ≥4 0 −1 0 ( )1
0 0,0nG −

  ( )1
0 0,1nG −

  ( )1
0 0,1nG −

  

( )1 0, 1nG −  ≥5 1 0 −1 ( )1
0 0,1nG −

  ( )1
0 0,0nG −

  ( )1
0 0,0nG −

  

( )1 0,0nG  ≥5 1 0 0 ( )1
0 0,0nG −

  ( )1
0 0,1nG −

  ( )1
0 0,1nG −

  

( )1 0,1nG  ≥5 1 0 1 ( )1
0 0,1nG −

  ( )1
0 0,1nG −

  ( )1
0 0,1nG −

  
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Table 9. Abelian maximal subgroups iH G<  of extra special 3-groups G. 

G   n a z w 1 ,H y G′=  2 ,H x G′=  3 ,H xy G′=  2
4 ,H xy G′=  

( )3
0 0,0G  3 0 0 0 3 3C C×  3 3C C×  3 3C C×  3 3C C×  

( )3
0 0,1G  3 0 0 1 3 3C C×  9C  9C  9C  

 

1 ,H y G′=  of G coincides with the two-step centralizer ( )2 Gχ  of G, which 
is a nearly homocyclic abelian 3-group ( )3, 1A n −  of order 13n− , when 0a = . 
For 1a = , we have ( )1 1 3, 1H H A n′ − . 

We transform all relations of the group ( ),n
aG G z w  into relations of the 

remaining three maximal subgroups ( )1 ,nH Gα ζ ω−
  of G. 

The polycyclic commutator relations [ ]2 ,s y x= , [ ]1,i is s x−=  for 3 i n≤ ≤ , 
and the nilpotency relation 1ns =  for the group ,G x y= , with lower central 
series 1,i i iG s Gγ γ +=  for 2i ≥ , can be used immediately for the subgroup 

2 2, ,H x G x s′= =  with lower central series 2 1 2,i i iH t Hγ γ += , where 

1:i it s +=  for 2i ≥ , and 1 1nt − = . 
For the lower central series of 3 ,H xy G′=  and 2

4 ,H xy G′= , we must 

employ the main commutator relation [ ]2 1, a
ny s s −= , and [ ], 1iy s =  for 3i ≥ . 

According to the right product rule for commutators, we have  

[ ] [ ] [ ] [ ]1 1 1, , , 1 , 1y y
i i i i i i i is xy s y s x s s s y s s− − −= ⋅ = ⋅ = = ⋅ = , for 4i ≥ , but  

[ ] [ ] [ ] [ ]2 2 2 1 3 1 3 3 1 3, , , ,y a y a a
n n ns xy s y s x s s s s s y s s− − −
− − −= ⋅ = = = , and in a similar fashion 

[ ] [ ] [ ]2
1 1 1, , , 1 , 1y y

i i i i i i i is xy s y s xy s s s y s s− − −  = ⋅ = ⋅ = = ⋅ =  , for 4i ≥ , but again 

exceptionally [ ] [ ]2 1 2
2 2 2 1 1 3 1 3 1 3, , , y a a a a

n n n ns xy s y s xy s y s s y s s s s− − − −
− − − −  = ⋅ = = =  . For 

1a = , the left product rule for commutators shows  
31 1 1 1 1

1 3 1 3 4, , ,
s

n ns s xy s xy s xy s± ± ±
− −     = ⋅ =     
  , that is, the slight anomaly for the 

main commutator disappears in the next step. Thus, the lower central series is 

1,i j i i jH t Hγ γ +=  for 2i ≥ , 3 4j≤ ≤ , where generally 1:i it s +=  for 3i ≥ , and 

2 3:t s=  for 0a = , 2
2 1 3: j

nt s s−
−=  for 1a = . In particular, 3 2,H xy s=  and 

2
4 2,H xy s= . 

The main commutator relation for all three subgroups 2 3 4, ,H H H  of any 
group ( ),n

aG G z w  with 4n ≥  is [ ]2 2 2, 1 ns t tα−= = , that is 0α = , generally, 
and it remains to determine ,ζ ω . 

For this purpose, we come to the power relations of G, 3
1

w
nx s −= ,  

3 3
2 3 1

z
ny s s s −= , and 3 3

1 2 1i i is s s+ + =  for 2i ≥ , supplemented by (5.4):  

( )3 3 3 3 2 2
2 3 1 1 1 1

a w z a
n n n nxy x y s s s s s s− −
− − − −= =  and ( ) ( )3 22 3 3 3 2 2 2

2 3 1 1 1 1
a w z a

n n n nxy x y s s s s s s− −
− − − −= = , 

and we use these relations to determine ,ζ ω  in dependence on , ,w z a . 

Generally, we have 3 3 3 3
2 2 3 2 3 4 1s t t s s s= =  for 0a = ,  

( )3 23 3 3 3 3 3
2 2 3 2 1 3 4 2 3 4 1j

ns t t s s s s s s s−
−= = =  for 1a = , and thus uniformly 0ζ = . 

For ( )0 0,0nG , we uniformly have ( ) ( )333 2 1x xy xy= = = , and thus 0ω =  
for all three subgroups. For ( )0 0,1nG , we uniformly have  
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( ) ( )333 2
1nx xy xy s −= = = , and thus 1ω =  for all three subgroups. For 

( )0 1,0nG ± , we have 3 1x = , but ( )3 1
1nxy s±−= , ( )32 2 1

1 1n nxy s s±
− −= =  , and thus 

0ω =  for 2H  but 1ω =  for 3 4,H H , since ( ) ( )0 00, 1 0,1n nG G−  . 

For ( )1 0, 1nG − , we have 3 1
1nx s−−= , but ( ) ( )33 2 3

1 1nxy xy s−−= = = , and thus 

1ω =  for 2H  but 0ω =  for 3 4,H H . For ( )1 0,0nG , we have 3 1x = , but 

( ) ( )33 2 2
1 1n nxy xy s s−
− −= = = , and thus 0ω =  for 2H  but 1ω =  for 3 4,H H . 

For ( )1 0,1nG , we have 3
1nx s −= , ( ) ( )33 2 1

1nxy xy s−−= = , and thus 1ω =  for all 

three subgroups, again observing that ( ) ( )0 00, 1 0,1n nG G−  . 

The only 3-groups G of coclass ( )cc 1G =  and order 33G =  are the two 
extra special groups ( )3

0 0,0G  and ( )3
0 0,1G . Since 2 3 1t s= = , all their four 

maximal subgroups, 1 2,H y s= , 2 2,H x s= , 3 2,H xy s= , 2
4 2,H xy s= , 

are abelian. For 0w z= = , 2s  is independent of the other generator, and 

3 3iH C C×  for 1 4i≤ ≤ . However, for 1w = , 0z = , we have  

( ) ( )333 2
2x xy xy s= = = , 3

2 1s = , and thus 2 3 4 9H H H C   , whereas  

1 3 3H C C× . 

6. A General Theorem for Arbitrary Base Fields 

Suppose that p is a prime, F is an algebraic number field with non-trivial p-class 
group Cl 1p F > , and E is one of the unramified abelian p-extensions of F. We 
show that, even in this general situation, a finite p-class tower of F exerts a very 
severe restriction on the p-class tower of E. 

Theorem 6.1 Assume that F possesses a p-class tower ( ) ( )n
p pF F∞ =  of exact 

length p F n=  for some integer 1n ≥ . Then the Galois group ( )( )Gal pE E∞  
of the p-class tower of E is a subgroup of index :E F  of the p-class tower 
group ( )( )Gal pF F∞  of F and the length of the p-class tower of E is bounded by 

p E n≤ . 
Proof. According to the assumptions, there exists a tower of field extensions, 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 2 2 1< ,n n n
p p p p p p pF E F E F E F E F +≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤  

where p F n=  enforces the coincidence ( ) ( ) ( )1n n n
p p pF E F += =  of the trailing 

three fields. Since ( )( ) ( )( ) ( )Gal Gal Galn n
p pF F F E E F , the group index of 

( )( ) ( )( )Gal Galn n
p pE E F E=  in ( )( )Gal n

pF F  is equal to the field degree  

[ ]:E F  and ( )( ) ( )( )Gal Gal n
p pE E E E∞ =  is a subgroup of index [ ]:E F  of  

( )( ) ( )( )Gal Galn
p pF F F F∞= . The equality ( ) ( )1n n

p pE E +=  implies the bound 

p E n≤ . 

We shall apply Theorem 6.1 to the situation where 3p = , 2n = , and E is an  

unramified cyclic cubic extension of F, whence ( )( )3Gal E E∞  is a maximal 
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subgroup of ( )( )3Gal F F∞ . 

6.1. Application to Quadratic Base Fields 

Proposition 6.1 Let G be a finite 3-group with elementary bicyclic  
abelianization 3 3G G C C′ × . Then the following conditions are equivalent: 

1) The transfer kernel type of G is D.10, ( ) ( )~ 2241G . 
2) The abelian quotient invariants of the four maximal subgroups 1 4, ,H H  

of G are ( ) ( )3~ 21,21,1 ,21Gτ . 
3) The isomorphism types of the four maximal subgroups of G are  

4
1 2 4 3 ,3H H H    and 4

3 3 ,13H  . 
4) The group G is isomorphic to the Schur σ-group 53 ,5  with relation rank 

2 2d = . 
Proof. We put : 243,5G =  and use the presentation [14] 

3 3
2 3 3 2 3 2 3 2 3 3, , , , | [ , ], [ , ], [ , ], , .G x y s s t s y x s s x t s y x s y s= = = = = =  

Then we obtain the maximal subgroups 

1 2 3, , ,H y G y s s′= = , since [ ]3 2 ,t s y= , 

2 2 3, , ,H x G x s t′= = , since [ ]3 2 ,s s x= , 

3 2 3, , ,H xy G xy s s′= = , since [ ]2 3 3,s xy s t= , 
2 2

4 2 3, , ,H xy G xy s s′= = , since 2 2
2 3 3,s xy s t  =  . 

Using Lemma 5.1, and comparing to the abstract presentations [14] 
[ ] 3

2 281,3 , , , | , ,ξ υ σ τ σ υ ξ τ ξ= = =  and 

[ ] 3 3 3
2 2 281,13 , , , | , , , 1ξ υ ζ σ σ υ ξ ξ σ υ ζ= = = = = , 

we conclude 

1 2 3 2, , , 81,3H y s s y s= =  , since [ ]3
3 2 3,y s s y t= ≠ = , 

2 2 3, , 81,13H x s t=  , since [ ]3
3 2 ,x s s x= = , 

3 2 3 2, , , 81,3H xy s s xy s= =  , since ( ) [ ]3 2
3 2 3 3,xy t s xy s t= ≠ = , 

2 2
4 2 3 2, , , 81,3H xy s s xy s= =  , since ( )32 2 2 2 2

3 3 2 3 3,xy s t s xy s t = ≠ =  . 

Theorem 6.2 Let ( )F d=  be a quadratic field with elementary bicyclic 
3-class group 3 3 3Cl F C C× . Then the following conditions are equivalent: 

1) The transfer kernel type of F is D.10, ( ) ( )~ 2241F . 
2) The abelian type invariants of the 3-class groups 3Cl iE  of the four 

unramified cyclic cubic extensions iE F  are ( ) ( )3~ 21,21,1 ,21Fτ . 
3) The second 3-class group 2

3G F  of F has the maximal subgroups 
4

1 2 4 3 ,3H H H    and 4
3 3 ,13H  . 

4) The 3-class tower group 3G F∞  of F is the Schur σ-group 53 ,5  with 
relation rank 2 2d = . 

Proof. The claims follow from Proposition 6.1 by applying the Successive 
Approximation Theorem 3.2 of first order. 

Corollary 6.1 Let F be a quadratic field which satisfies one of the equivalent 
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conditions in Theorem 6.2. Then the length of the 3-class tower of F is 3 2F = . 
The four unramified cyclic cubic extensions iE F  are absolutely dihedral of 
degree 6, with torsionfree Dirichlet unit rank 2r ≥ , and possess 3-class towers 
of length 3 2iE = . More precisely, 3 3 3 3 3Cl E C C C× ×  and 4

3 3G 3 ,13E∞
  

with relation rank 2 5d = , but 3 9 3Cl iE C C×  and 4
3G 3 ,3iE∞

  with 
relation rank 2 4d =  for { }1,2,4i∈ . 

Proof. This is a consequence of Theorems 6.1 and 6.2, satisfying the 
Shafarevich theorem. 

Proposition 6.2 Let G be a finite 3-group with elementary bicyclic 
abelianization 3 3G G C C′ × . Then the following conditions are equivalent: 

1) The transfer kernel type of G is D.5, ( ) ( )~ 4224G . 
2) The abelian quotient invariants of the four maximal subgroups 1 4, ,H H  

of G are ( ) ( )3 3~ 1 ,21,1 ,21Gτ . 
3) The isomorphism types of the four maximal subgroups of G are 

4
1 3 3 ,13H H   and 4

2 4 3 ,3H H  . 
4) The group G is isomorphic to the Schur σ-group 53 ,7  with relation 

rank 2 2d = . 
Proof. We put : 243,7G =  and use the presentation [14] 

[ ] [ ] [ ] 3 3 2
2 3 3 2 3 2 3 2 3 3, , , , | , , , , , , , .G x y s s t s y x s s x t s y x s y s= = = = = =  

Similarly as in Proposition 6.1, we obtain the maximal subgroups 

1 2 3, , ,H y G y s s′= = , 2 2 3, , ,H x G x s t′= = , 

3 2 3, , ,H xy G xy s s′= = , and 2 2
4 2 3, , ,H xy G xy s s′= = . 

Using Lemma 5.1, and comparing to the abstract presentations 
[ ] 3

2 281,3 , , , | , ,ξ υ σ τ σ υ ξ τ ξ= = =  and 
[ ] 3 3 3

2 2 281,13 , , , | , , , 1ξ υ ζ σ σ υ ξ ξ σ υ ζ= = = = = , 

we conclude 

1 2 3 2, , , 81,3H y s s y s= =  , since [ ]3 2
3 2 3,y s s y t= ≠ = , 

2 2 3, , 81,13H x s t=  , since [ ]3
3 2 ,x s s x= = , 

3 2 3 2, , , 81,3H xy s s xy s= =  , since ( ) [ ]3 2
3 3 2 3 3,xy s t s xy s t= ≠ = , 

2
4 2 3, , 81,13H xy s s=  , since ( )32 2 2

3 3 2 ,xy s t s xy = =   . 

Theorem 6.3 Let ( )F d=  be a quadratic field with elementary bicyclic 
3-class group 3 3 3Cl F C C× . Then the following conditions are equivalent: 

1) The transfer kernel type of F is D.5, ( ) ( )~ 4224F . 
2) The abelian type invariants of the 3-class groups 3Cl iE  of the four 

unramified cyclic cubic extensions iE F  are ( ) ( )3 3~ 1 ,21,1 ,21Fτ . 
3) The second 3-class group 2

3G F  of F has the maximal subgroups  
4

1 3 3 ,13H H   and 4
2 4 3 ,3H H  . 

4) The 3-class tower group 3G F∞  of F is the Schur σ-group 53 ,7  with 
relation rank 2 2d = . 

Proof. The claims follow from Proposition 6.2 by applying the Successive 
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Approximation Theorem 3.2 of first order. 
Corollary 6.2 Let F be a quadratic field which satisfies one of the equivalent 

conditions in Theorem 6.3. Then the length of the 3-class tower of F is 3 2F = . 
The four unramified cyclic cubic extensions iE F  are absolutely dihedral of 
degree 6, with torsionfree Dirichlet unit rank 2r ≥ , and possess 3-class towers 
of length 3 2iE = . More precisely, 3 3 3 3Cl iE C C C× ×  and 4

3G 3 ,13iE∞
  

with relation rank 2 5d =  for { }1,3i∈ , but 3 9 3Cl iE C C×  and 
4

3G 3 ,3iE∞
  with relation rank 2 4d =  for { }2,4i∈ . 

Proof. This is a consequence of Theorems 6.1 and 6.3, satisfying the 
Shafarevich theorem. 

6.2. Application to Dihedral Fields 

We recall that a dihedral field E of degree 6 is an absolute Galois extension 
E   with group ( ) 3 2 1Gal , | 1,E σ τ σ τ στ τσ −= = = = . It is a cyclic cubic 
relative extension E F  of its unique quadratic subfield F Eσ= , and it 
contains three isomorphic, conjugate non-Galois cubic subfields L Eτ= , Lσ , 

2
Lσ . The conductor c of E F  is a nearly squarefree positive integer with 
special prime factors, and the discriminants satisfy the relations 4 3

E Fd c d=  and 
2

L Fd c d= . Here, we shall always be concerned with unramified extensions, 
characterized by the conductor 1c = , and thus 3

E Fd d= , a perfect cube, and 
equal L Fd d= . 

6.2.1. Totally Complex Dihedral Fields 
The computational information on 3-tower groups 3: GG F∞=  of imaginary 
quadratic fields F in Table 3 admits the purely theoretical deduction of 
impressive statistics for 3-tower groups 3: GS E∞=  of totally complex dihedral 
fields E in Table 10 by means of the Corollaries 6.1 and 6.2. We use the crucial 
new insight that the groups S G  are maximal subgroups of G, because the 
extensions E F  are unramified cyclic of degree 3. 

6.2.2. Totally Real Dihedral Fields 
The computational information on 3-tower groups 3: GG F∞=  of real quadratic 
fields F in Table 4 admits the purely theoretical deduction of impressive statistics for 
3-tower groups 3: GS E∞=  of totally real dihedral fields E in Table 11 by means of 
Theorem 5.1. Again, we use the innovative result that the groups S G  are 
maximal subgroups of G, since the extensions E F  are unramified cyclic cubic. 
 
Table 10. Frequencies of dihedral 3-class tower groups S for 2410 0Ed− < < . 

G   ( )1 Gτ  abs. fr. S   ( )1 Sτ  abs. fr. 
minEd  

243,5  12 83353 81,3  21 250059 40273 

243,5  12 83353 81,13  13 83353 40273 

243,7  12 41398 81,3  21 82796 121313 

243,7  12 41398 81,13  13 82796 121313 
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Table 11. Frequencies of dihedral 3-class tower groups S for 270 10Ed< < . 

G   ( )1 Gτ  abs. fr. S   ( )1 Sτ  abs. fr. ( )minEd  

81,7  12 122955 27,3  12 122955 1420973 

81,7  12 122955 27,4  12 245910 1420973 

81,7  12 122955 27,5  12 122955 1420973 

 
The first row of Table 11 reveals extensive realizations of the extraspecial 

group 27,3S =  as 3-tower group of dihedral fields. This is the first time that 
27,3S =  occurs as a 3-tower group. It is forbidden for quadratic fields, and it 

did not occur for cyclic cubic fields and bicyclic biquadratic fields, up to now. 
Theorem 6.4 (A new realization as 3-tower group.) The extraspecial 

3-group 27,3S =  of coclass 1 and exponent 3 occurs as 3-class tower group 

3G E∞  of totally real dihedral fields E of degree 6. 
Proof. The group 27,3S =  possesses the relation rank 2 4d S = . 

According to the Shafarevich Theorem, it is therefore excluded as 3-tower group 

3G F∞  of both, imaginary and real quadratic fields F. However, the combination 
of Theorem 5.1 and Theorem 6.1 proves its occurrence as 3-class tower group 

3G E∞  of totally real dihedral fields E of degree 6, as visualized in Table 11. 
Theorem 6.5 (3-class tower groups of totally real dihedral fields.) Let 

( )F d=  be a real quadratic field with 3-class group 3 3 3Cl F C C×  and 
fundamental discriminant 1d > . Suppose the second order Artin pattern 

( ) ( ) ( ) ( ) ( )( )2 2 2AP ,F F Fτ=   is given by the abelian type invariants  
( ) ( ) ( )2 2 2 2 2 21 ; 2 ,1 ,1 ,1Fτ  =    and the transfer kernel type ( ) ( ) ( )2 1; 0000F =    . 

Let 2 3 4, ,E E E  be the three unramified cyclic cubic relative extensions of F with 
3-class group 3 3 3Cl iE C C× . 

Then iE   is a totally real dihedral extension of degree 6, for each 2 4i≤ ≤ , 

and the connection between the component ( ) ( ) ( )1
3

3

,
# #ker

ii E F
F T =  

 
  of the 

third order transfer kernel type ( ) ( )3 F  and the 3-class tower group  

( )( )( )3 3
Gali i i iS G E E E∞∞= =  of iE  is given in the following way: 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

3

3

# 3 243,27 with 1000 ,

# 9 243,26 with 0000 .

i ii

i ii

F S S

F S S

= ⇔ =

= ⇔ =





 

 
       (6.1) 

Proof. This theorem was expressed as a conjecture in [27] [28], and is now an 
immediate consequence of Theorems 6.1 and 5.1. 

Remark 6.1 Recall that each unramified cyclic cubic relative extension iE F , 
1 4i≤ ≤ , gives rise to a dihedral absolute extension iE   of degree 6, that is an 

3S -extension ([7], Prp. 4.1, p. 482). For the trailing three fields iE , 2 4i≤ ≤ , 
in the stable part of ( ) ( ) ( )2 2 2 2 2 21 ; 2 ,1 ,1 ,1Fτ  =   , i.e. with 3 3 3Cl iE C C× , we 
have constructed the unramified cyclic cubic extensions ,i j iE E , 1 4j≤ ≤ , and 
determined the Artin pattern ( )2AP iE  of iE , in particular, the transfer kernel 
type of iE  in the fields ,i jE  of absolute degree 18. The dihedral fields iE  of 
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degree 6 share a common polarization ( )1
,1 3iE F= , the Hilbert 3-class field of F, 

which is contained in the relative 3-genus field ( )iE F ∗ , whereas the other 
extensions ,i jE  with 2 4j≤ ≤  are non-abelian over F, for each 2 4i≤ ≤ . 
Our computational results underpin Theorem 6.5 concerning the infinite family 
of totally real dihedral fields iE  for varying real quadratic fields F. 

7. Conclusion 

Guided by the Successive Approximation Theorem 3.2 in terms of the Artin 
limit pattern, we have given a most up-to-date survey concerning the finite 
3-groups which are populated most densely by 3-class tower groups 3G F∞  of 
quadratic number fields ( )F d=  in Sections 4.2-4.5. In particular, the 
discovery of non-metabelian 3-class towers with exact length 3 3F = , which is 
currently the maximal proven finite length, in Theorems 4.5 and 4.6, is entirely 
due to our cooperation with M. R. Bush, initiated by our joint paper [36]. With 
Theorems 5.1 and 6.1, we have finally presented a new technique for deriving 
theoretical conclusions on 3-class towers of dihedral fields with degree six from 
corresponding results for quadratic fields. 
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