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Abstract 
Hearing loss is a common military health problem and it is closely related to 
exposures to impulse noises from blast explosions and weapon firings. In a 
study based on test data of chinchillas and scaled to humans (Military Medi-
cine, 181: 59-69), an empirical injury model was constructed for exposure to 
multiple sound impulses of equal intensity. Building upon the empirical in-
jury model, we conduct a mathematical study of the hearing loss injury caused 
by multiple impulses of non-uniform intensities. We adopt the theoretical 
framework of viewing individual sound exposures as separate injury causing 
events, and in that framework, we examine synergy for causing injury (fati-
gue) or negative synergy (immunity) or independence among a sequence of 
doses. Starting with the empirical logistic dose-response relation and the em-
pirical dose combination rule, we show that for causing injury, a sequence of 
sound exposure events are not independent of each other. The phenomeno-
logical effect of a preceding event on the subsequent event is always immuni-
ty. We extend the empirical dose combination rule, which is applicable only in 
the case of homogeneous impulses of equal intensity, to accommodate the 
general case of multiple heterogeneous sound exposures with non-uniform 
intensities. In addition to studying and extending the empirical dose combi-
nation rule, we also explore the dose combination rule for the hypothetical 
case of independent events, and compare it with the empirical one. We meas-
ure the effect of immunity quantitatively using the immunity factor defined as 
the percentage of decrease in injury probability attributed to the sound expo-
sure in the preceding event. Our main findings on the immunity factor are: 1) 
the immunity factor is primarily a function of the difference in SELA (A- 
weighted sound exposure level) between the two sound exposure events; it is 
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virtually independent of the magnitude of the two SELA values as long as the 
difference is fixed; 2) the immunity factor increases monotonically from 0 to 
100% as the first dose is varied from being significantly below the second 
dose, to being moderately above the second dose. The extended dose-response 
formulation developed in this study provides a theoretical framework for as-
sessing the injury risk in realistic situations.  
 

Keywords 
Risk of Significant Injury, Logistic Dose-Response Relation, SELA 
(A-Weighted Sound Exposure Level), Effective SELA for Multiple  
Heterogeneous Sound Impulses, Fatigue and Immunity  

 

1. Introduction 

Hearing loss is the third most common health problem in the US and more than 
28 million Americans have lost some hearing. There are three basic types of 
hearing loss: conductive hearing loss, sensorineural hearing loss and mixed 
hearing loss [1]. This classification is based on which part of the auditory system 
is damaged. Conductive hearing loss occurs when there is damage to the 
eardrum and the tiny bones of the middle ear. It may be caused by ear infection 
or impacted earwax and it results in a reduction in the ability to hear faint 
sounds. Luckily, conductive hearing loss can often be medically or surgically 
reversed. Sensorineural hearing loss stems from damage to the inner ear or 
auditory nerve. For people with sensorineural hearing loss, sound appears 
unclear or muffled. Unfortunately, sensorineural hearing loss is permanent. It 
cannot be corrected but patients with sensorineural hearing loss can be helped 
through the use of hearing aids. When a conductive hearing loss occurs together 
with a sensorineural hearing loss, the hearing loss is called a mixed hearing loss. 
Symptoms of mixed hearing loss include sounds turning softer in volume and 
becoming more difficult to understand. One possible cause of sensorineural 
hearing loss is exposure to loud noise or blast, which is very common in a 
battlefield. In fact, hearing loss is one of the most prevalent military medical 
problems. According to the US Department of Veterans Affairs [2] [3], in 2014 
more than 933,000 Veterans have hearing loss disability, and nearly 1.3 million 
experiencing tinnitus which refers to the perception of a ringing, buzzing, or 
other kind of noise in the ears [4]. With an increasing trend in hearing loss 
among veterans, it is important to be able to assess the risk of significant hearing 
loss injury when exposed to blast explosions [5]. 

The impacts of sound waves on humans are complicated and they depend on 
the frequency, sound pressure level, and duration. In [6] Dr. Chan and co-workers 
assembled experimental data of chinchillas exposed to multiple impulse noise 
shots in the laboratory [7]. They chose chinchillas to model human hearing 
response because the size, structure, and function of the chinchilla’s ear are very 
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similar to those of humans. They used the A-weighted sound exposure level 
(SELA) as an effective single metric (the dose) for predicting the injury risk [8]. 
Based on the test data they constructed a logistic dose-response relation for 
unprotected human ears. They adopted an empirical dose combination rule to 
combine multiple identical sound impulses, uniformly distributed in time, into 
one effective combined dose [6] [9]. The injury risk over the combined event 
(i.e., over the sequence of multiple noise shots) is governed by the dose-response 
relation with the effective combined SELA as the dose. 

They also validated the dose-response curve against historical human data 
from rifle noise tests [10] and proposed a temporary threshold shift (TTS) 
recovery model in the form of a log-linear function. 

In this paper, we carry out a mathematical analysis based on the dose-response 
relation and the dose combination rule developed in [6]. The motivations of our 
analysis are: 1) to understand the risk of hearing loss injury caused by multiple 
noise impulses from the point of view of individual sound exposure events; 2) to 
extend the dose combination rule developed in [6] to accommodate the general 
case where we need to combine multiple heterogeneous impulses of non-uniform 
SELA values into one effective combined SELA value. In the framework of the 
dose-response relation and the dose combination rule, we examine the synergy 
for causing injury (fatigue) or negative synergy (immunity) or independence 
among sound exposure events. The sign and magnitude of synergy will shed 
light on the role of acoustic reflex (which tends to decrease the injury risk for 
subsequent sound exposures) and on the role of fatigue/partial damage (which 
tends to increase the injury risk for subsequent sound exposures). Our primary 
goal is to establish a unified dose-response formulation for assessing the injury 
risk of unprotected ears caused by a heterogeneous sequence of sound exposures 
with non-uniform SELA values. This extended dose-response formulation will 
provide the foundation for assessing the injury risk in realistic situations. 

We organize the rest of the paper as follows. In Section 2 we review the 
relevant results in [6]. Section 3 contains an analysis of unconditional injury 
probabilities and conditional probabilities as governed by the dose-response 
relation and by the dose combination rule, with the goal of determining whether 
the interactive effect among sequential doses is immunity or fatigue. In Section 4, 
we extend the dose combination rule to the general case of a heterogeneous 
sequence of sound exposure events with non-uniform doses. We then construct 
the dose combination rules for the case of independent events and we compare 
the two rules. In Section 5, we investigate quantitatively the effect of immunity 
measured by the immunity factor defined as the percentage of decrease in the 
injury probability attributed to the sound exposure in the preceding event. We 
carefully work through the detailed behaviors of the immunity factor in four 
regimes of parameter values. Finally, we summarize the extended dose-response 
formulation and the main conclusions in Section 6, and provide a mathematical 
proof of a theorem in the Appendix. 
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2. Review of Relevant Results in [6] 

In [6], experimental data of permanent threshold shift (PTS) after exposure to 
multiple impulse noise shots was studied. A dose-response relation was con- 
structed for PTS of various cut-off levels. The empirical dose-response relation is 
expressed in the form of a logistic model:  

( )
( )( )comb

comb 50

1SELA
1 exp SELA ID

P
α

=
+ − −

           (1) 

In the dose-response relation (1): 
 combSELA  is the combined A-weighted sound exposure level, a combined 

single metric quantifying the overall effect of multiple impulse shots;  
 P  is the probability of PTS of a given cut-off level (for example, PTS > 40 

dB);  
 50ID  denotes median injury dose at which the injury risk P is 50%; and  
 α  is the coefficient describing the steepness of the curve around the median 

injury dose.  
In [6], parameters 50ID  and α  were determined from experimental data 

for individual PTS cut-off levels ranging from 1 dB to 70 dB. It was observed that 
the steepness coefficient α  remains approximately constant around  

( )0.1 dBAα =  for the whole range of PTS cut-off levels. The median injury 
dose 50ID , however, increases monotonically with respect to the PTS cut-off 
level. It goes from 50ID 136 dBA=  at 1 dB PTS cut-off to 50ID 212 dBA=  at 
70 dB PTS cut-off. For 40 dB PTS cut-off, 50ID 170 dBA= . 

Figure 1 shows the dose-response relations for PTS cut-off levels ranging 
from 5 dB to 60 dB, based on parameter values from [6]. The thick gray curve  
 

 
Figure 1. Permanent threshold shift (PTS) dose-response relations. The dose is the 
A-weighted sound exposure level (SELA); the response is the magnitude of PTS (a 
random variable), represented as the probability of PTS above a given cut-off level. The 
dose-response relations are plotted, respectively, for PTS cut-off levels 5 dB, 10 dB, 25 dB, 
40 dB, 50 dB, and 60 dB, using parameter values from [6]. The thick gray curve is for 

( )0.2 dBAα =  and 50ID 170 dBA= , demonstrating the effect of doubling steepness 

coefficient α . 
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depicts a hypothetical dose-response relation with ( )0.2 dBAα = , twice the 
value from experimental data [6]. It illustrates the effect of steepness coefficient 
α . 

In this study, we define injury as PTS above 40 dB, which has a median injury 
dose of 170 dBA. In the subsequent analysis, we shall use 50ID 170 dBA=  
unless specified otherwise. 

In the dose-response relation (1), the dose is quantified by combSELA . For a 
single shot (one impulse), the sound exposure (SE) is defined as the time integral 
of squared A-weighted sound pressure:  

( )( )2
A-weighted dE p t t= ∫                      (2) 

Conventionally, the sound exposure in the air is measured relative to the 
reference sound exposure ( )2

0 400 Pa sE ≡ µ ⋅ . The sound exposure level (SELA) 
expresses the sound exposure in the unit of dBA as  

( )( )
( )

10
0

2

10 2

SELA 10log dBA

A-weighted d
10log dBA

400 Pa s

E
E

p t t

 
=  

 
 
 =
 µ ⋅ 

∫
           (3) 

For multiple shots of equal intensity, the effective combined SELA for N shots 
is calculated using the dose combination rule described in [6]:  

comb 10SELA SELA log Nλ= +                     (4) 

where N is the number of impulses, and SELA is sound exposure level of each 
individual impulse. Here “effective combined SELA” or “dose combination” 
means “combining multiple sound exposure events into one composite event 
with an effective combined SELA value as a single metric quantifying the overall 
effect of multiple sound exposure events”. We call this “dose combination” 
instead of “dose accumulation” to distinguish it from the situation where the 
dose from a preceding sound exposure event has some positive or negative 
influence on the injury risk in a subsequent event. In summary, “combined dose” 
means the effective dose for the overall composite event, counting the injury in 
all element events. In contrast, “cumulative dose” refers to the effective dose for 
one event, counting the injury in only one event, including both the effect of the 
current event’s dose and the left-over effects from preceding events’ doses. 

To further delineate the difference between “combined dose” and “cumulative 
dose”, let us consider the simple case where all sound exposure events are 
independent of each other. In this case, the “cumulative dose” is just the dose of 
the current event since preceding events have no influence on the injury risk of 
the current event due to independence. On the other hand, the “combined dose” 
for two identical and independent events is larger than the dose of each event 
since the total injury risk in the two events is certainly larger than that in each 
individual event. 
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Before we end this section, we examine the connection between the sound 
exposure energy and the dose combination rule (4). Recall from the definition of 
SELA (3) that the sound exposure energy of each impulse is  

( )
SELA

10
0 0

SELA10 exp ln 10
10

E E E  = =  
 

              (5) 

The sound exposure energy corresponding to the effective combined SELA 
value (4) can be written out in the same fashion as above  

( )

( )

comb
comb 0

10
0

10

SELA
exp ln 10

10
SELA log

exp ln 10
10

E E

NE

E N
λ

λ

 =  
 

+ =  
 

= ⋅

            (6) 

where E is the sound exposure energy of each impulse given in (5). For 10λ = , 

combE  is simply the sum of individual energies.  

combE N E= ⋅                          (7) 

For 10λ < , combE  is less than the sum of individual energies:  

combE N E< ⋅                          (8) 

In [6], 3.44λ =  is used for 25N ≤  and 10λ =  is used for 25N > . 

3. Independence or Synergy or Negative Synergy among a  
Sequence of Doses for Causing Injury 

We study analytically the effects of multiple impulse shots based on the 
mathematical framework of the logistic dose-response relation and the dose 
combination rule proposed in [6]. The process of analysis will guide us in 
finding a self-consistent and reasonable way of extending the dose combination 
rule from the special case of multiple shots of equal intensity (“homogeneous 
doses”) [6] to the general case of multiple shots of non-uniform intensities 
(“heterogeneous doses”). 

We introduce some short notations to facilitate the discussion. 
 S : the effective combined SELA of an event where the event may be a single 

impulse or a composite event consisting of a sequence of heterogeneous 
events.  

 jS : the effective combined SELA of event j.  
 { }1 2, , , NG S S S� : the effective combined SELA for a sequence of N events, 

respectively with individual SELA values { }1 2, , , NS S S� . Here each event in 
the sequence may itself be a composite event consisting of sub-events. 
Mathematically, function { }1 2, , , NG S S S�  describes the general dose 
combination rule, which is yet to be specified.  

In [6], the dose combination rule is given for the special case where all events 
in the sequence are single impulses of the same intensity (“homogeneous doses”). 
For this special case, function { }1 2, , , NG S S S�  has the expression  
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{ } ( )10
impulses

, , , log
N

G S S S S Nλ= +
���������

�                   (9) 

One of the goals in our study is to extend the dose combination rule (9) to the 
general case where the SELA values { }1 2, , , NS S S�  are not all equal. In the 
dose-response relation developed in [6], the dose is fully characterized by the 
effective combined SELA calculated based on the dose combination rule (9), 
without distinguishing whether or not the event is a single impulse or a sequence 
of impulses. This assumption is at least self-consistent. 

The self-consistency can be seen by considering a sequence of 2N impulses, 
each with SELA value S. Let us call it view #1. The sequence can also be viewed 
as two big events, each big event consisting of N impulses and each big event 
having the effective combined SELA value ( )10logS Nλ+ . Let us call this view 
#2. The effective combined SELA value calculated using (9) is the same for both 
view #1 and view #2:  

{ } ( )10
2 impulses

View #1: , , , log 2
N

G S S S S Nλ= +
���������

�  

{ } { }

{ } ( )

( )( ) ( ) ( )

impulses impulses

10
impulses

10 10 10

View #2 : , , , , , , ,

, , , log 2

log log 2 = log 2

N N

N

G G S S S G S S S

G S S S

S N S N

λ

λ λ λ

  
 
  

= +

= + + +

��������� ���������

���������

� �

�  

For the purpose of extending the formulation to the general case of hete- 
rogeneous events, we need to bring events with different doses into a problem 
that can be solved in the special case of homogeneous events. We consider a 
sequence of ( )m n+  impulses of equal intensity, each with SELA value S. We 
group the first m impulses into a composite event 1E ; and group the rest n 
impulses into a composite event 2E . Thus, the sequence of ( )m n+  homo- 
geneous impulses can be viewed as two composite events 1E  and 2E  with 
different effective combined SELA values.  

1 2Event Event

impulses impulses

, , , , , , ,
E E

m n

S S S S S S
����� �����

� ������ �����  

The effective combined SELA value of event 1E  is given by (9)  

( )
1 10logES S mλ= +                       (10) 

The effective combined SELA value of event 2E  is  

( )
2 10logES S nλ= +                       (11) 

The effective combined SELA value of events 1E  and 2E  is  

( )
1 2 10logE ES S m nλ+ = + +                   (12) 

With the effective combined SELA values, the injury risks in these composite 
events are given by the dose-response relation:  
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( )( )1

1 50

1
1 exp ID

E
E

P
Sα

=
+ − −

                 (13) 

( )( )2

2 50

1
1 exp ID

E
E

P
Sα

=
+ − −

                 (14) 

( )( )1 2

1 2 50

1
1 exp ID

E E
E E

P
Sα

+

+

=
+ − −

              (15) 

Notice that each injury probability above is directly from the dose-response 
relation using the SELA value of the event, not including effects from any other 
events. This is for the case where the event under consideration is treated as a 
stand-alone event, i.e., not preceded by any other event(s). 

While event 1E  and event ( )1 2E E+  are indeed stand-alone, event 2E  is 
not. Event 2E  occurs after event 1E  in the sequence of events 1E  and 2E . If 
events 1E  and 2E  are independent of each other, then the three injury pro- 
babilities should satisfy the relation  

( ) ( )( )1 2 1 2
1 1 1 0E E E EP P P+− − − − =                   (16) 

The independence implies that the probability of no injury in the composite 
event is the product of no-injury probabilities in individual element events. 

If the probability of no injury in the composite event is more than the product 
of no-injury probabilities in individual element events,  
( ) ( )( )1 2 1 2
1 1 1 0E E E EP P P+− − − − > , then it rules out the independence and indica- 

tes some kind of negative synergy in the injury mechanism among individual 
element events (i.e., immunity passed onto subsequent events). Here immunity 
means that having experienced the sound exposure but not injured in event 1E  
increases one’s conditional probability of escaping injury in the sound exposure 
of event 2E , and thus, increases the overall no-injury probability of the composite 
state 1 2E E+ . 

Conversely, if the probability of no injury in the composite event is less than 
the product of no-injury probabilities in individual element events,  
( ) ( )( )1 2 1 2
1 1 1 0E E E EP P P+− − − − < , then it also rules out the independence. In this 

case, it indicates some kind of positive synergy in the injury mechanism among 
individual element events (i.e., fatigue damage passed onto subsequent events). 
Here fatigue damage means that even if the sound exposure (dose) in event 1E  
does not directly cause injury, it nevertheless weakens the subject or otherwise 
makes the subject more vulnerable so as to increase the subject's conditional 
injury probability in the sound exposure of event 2E , and thus decreases the 
overall no-injury probability of the composite state 1 2E E+ . 

We examine the sign of ( ) ( )( )1 2 1 2
1 1 1E E E EP P P+− − − −  to assess the indepen- 

dence, immunity, or fatigue. First we express 
1EP  as  

( )( )1
50 111

ID ln1050

1 1 1
11 exp ID

1 10
E

E
S EE

P
WS αλ η

λ

α − −
−

= = ≡
++ − −  

 +
 
 

      (17) 
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Parameter η  and intermediate variable 
1EW  are defined as  

,
ln10
αλ

η ≡                            (18) 

( )
50 501

1 1

ID ID

10 10
ES S

E EW W S mλ λ

− −

= ≡ = ⋅                 (19) 

where we have used the expression of 
1ES  given in (10). In a similar fashion, we 

can write 
2EP  and 

1 2E EP +  as  
50

2 2
2

ID1 , 10
1

S

E E
E

P W n
W

λ
η

−

−= = ⋅
+

                  (20) 

( )
50

1 2 1 2
1 2

ID1 , 10
1

S

E E E E
E E

P W m n
W

λ
η

−

+ +−
+

= = + ⋅
+

             (21) 

Notice directly from (19), (20) and (21) that quantities 
1EW , 

2EW  and  

1 2E EW +  are related by a simple additive relation  

1 2 1 2E E E EW W W+ = +                         (22) 

We replace 
1 2E EW +  by 

1 2E EW W+  and write ( ) ( )( )1 2 1 2
1 1 1E E E EP P P+− − − −  as  

( ) ( )( )

( ) ( )
( )( )( )( )

1 2 1 2

1 2 1 2

1 2 1 2 1 2

1 2 1 2

1 1 1

1 1 11 1 1
1 ( ) 1 1

1 1 1

E E E E

E E E E

E E E E E E

E E E E

P P P

W W W W

W W W W W W

W W W W

η η η

η ηη η

η η η

+

− − −

− − − −

    
= − − − −        + + + +    

+ − + +
=

+ + + +

         (23) 

Since the denominator is always positive, it follows that the numerator 
determines the sign of ( ) ( )( )1 2 1 2

1 1 1E E E EP P P+− − − − . We introduce a theorem. 
Theorem 1: When 1η < , we always have  

( ) ( )1 2 1 2 1 2
0E E E E E EW W W W W W

η ηη η+ − + + >               (24) 

for all 
1

0EW >  and 
2

0EW > . 
The proof of the theorem is presented in Appendix. From Theorem 1, we see 

that when the parameter 
ln10
αλ

η ≡  is less than 1, the quantity  

( ) ( )( )1 2 1 2
1 1 1E E E EP P P+− − − −  is always positive, which clearly rules out the 

independence and indicates negative synergy (immunity) in the injury 
mechanism between preceding and subsequent events. In [6], the logistic 
dose-response relation based on experimental data has 0.1α =  and 3.44λ =   

or 10. For these parameter values, the quantity 
ln10
αλ

η ≡  is 0.15 or 0.34, well  

within the range of 1η < . Therefore, in the framework of the logistic dose- 
response relation and the dose combination rule [6], we draw two conclusions: 

1) a subsequent event is not independent of the presence of preceding 
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event(s), and  
2) the effect of a preceding event on the subsequent events is manifested in the 

form of immunity instead of fatigue; that is, a sequence of sound exposure 
events demonstrates negative synergy in causing injury.  

To further distinguish the dose combination rule (4) from the case of 
independent events, we consider a sequence of N impulse shots, each with SELA 
value S. We look at the difference between these two cases in the probability of 
no injury as a function of N. For each individual shot, when viewed as a 
stand-alone event, the probability of no injury is given by the dose-response 
relation (1):  

( ) ( )50ID

11
e 1S

P S
α −

− =
+

 

In the case of independent events, the probability of no injury for the whole 
sequence is  

( )( ) ( )50ID

11
e 1

N
N

S
P S

α −

 − =  + 
                 (25) 

When we use the dose combination rule (4) to combine the N impulse shots 
into one effective SELA value ( )comb 10logS S Nλ= + , the probability of no 
injury has the expression  

( ) ( ) ( )comb 50 50comb ID ID

1 11
e 1 e 1S S

P S
Nα αη− −

− = =
+ ⋅ +

          (26) 

where η  is given in (18). Figure 2 displays the plots of no-injury probability vs 
N for these two cases, which clearly demonstrates the difference. In the case of 
independent events, the no-injury probability decays exponentially with respect 
 

 
Figure 2. Comparison of the dose combination rule in [6] and the case of independent 
events. Plots of no-injury probability vs N for a sequence of N impulse shots, each with 
SELA = 170 dBA. The probability is shown in the logarithmic scale. The parameters used 
are 0.1α = , 50ID 170 dBA= , 3.44λ =  from [6]. 
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to the number of shots N. In the logarithmic scale, the exponential decay yields a 
downward constant slope. In sharp contrast, the no-injury probability corres- 
ponding to the dose combination rule in [6] has a much slower decrease with 
respect to N. 

4. Dose Combination Rules 

Building on the insight gained in the analysis above, we extend the dose 
combination rule for a homogeneous sequence of impulse shots [6], to the 
general case of N sound exposure events of non-uniform SELA values where 
each event in the sequence may be a composite event consisting of sub-events. 
Then we construct the dose combination rule for the case of independent events 
and compare the two rules. 

4.1. Extension of the Dose Combination Rule to the General Case  
of Multiple Heterogeneous Doses 

In Equations (17), (20), and (21) above, we wrote the dose-response relation in 
terms of an intermediate variable ( )W S . When we divide a long sequence of 
impulses of the same intensity into two segments and treat each segment as a 
composite event, the two segments and the whole sequence are each described 
by its effective combined SELA value ( )1 2 1 2

, ,E E E ES S S + . In particular, the injury 
probability of each segment is described by the dose-response relation with the 
effective combined SELA value (when it is treated as a stand-alone composite 
event, excluding the effects of sound exposure in preceding events) . While it is 
not directly obvious how we can combine 

1ES  and 
2ES  to obtain 

1 2E ES + , in 
the analysis above a key observation is that the intermediate variable ( )W S  is 
additive:  

( ) ( ) ( )1 2 1 2E E E EW S W S W S+ = +                   (27) 

Thus, we propose to extend the dose combination rule by summing the 
intermediate variable ( )W S  over all events in the sequence. More specifically, 
consider a sequence of N sound exposure events where each event in the 
sequence may be a composite event consisting of sub-events. Each sound 
exposure event in the sequence is described by its effective combined SELA value. 
The whole sequence is specified by SELA values of the N events: { }, 1, 2, ,jS j N= � . 
When we view the sequence as an overall composite event, the effective 
combined SELA value for the whole sequence is denoted by { }1 2, , , NG S S S� . 
Mathematically, function { }1 2, , , NG S S S�  is specified via the corresponding  

intermediate variable { }( )
{ }1 2 50, , , ID

1 2, , , 10
NG S S S

NW G S S S λ
−

≡
�

� , which is given as 

the sum of ( )jW S  over individual events in the sequence.  

{ }( ) ( )1 2
1

, , ,
N

N j
j

W G S S S W S
=

= ∑�                (28) 

This relation on the intermediate variable W leads to the generalized dose 
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combination rule:  

{ }
50ID

1 2 10 50
1

, , , log 10 ID
jSN

N
j

G S S S λλ
−

=

 
= +  

 
∑�              (29) 

Note that when all jS ’s are equal to S, (29) is reduced to  

{ } 10, , , log ,G S S S S Nλ= +�                     (30) 

Therefore, the generalized dose combination rule (29) is consistent with the 
special case dose combination rule described in [6]. 

The generalized dose combination rule, as given in (29), appears to be affected 
by the median injury dose 50ID . Actually it is not affected by 50ID . We can get 
rid of 50ID  from (29). Let max maxk kS S≡ . We re-write the generalized dose 
combination rule as  

{ }
max

1 2 max 10
1

, , , log 10 ,
jS SN

N
j

G S S S S λλ
−

=

 
= +   

 
∑�            (31) 

where max max kk
S S≡ . 

Let us look at a few examples of combining two sound exposure events.  

{ } ( ) ( )10, log 2 0.3 dBG S S S Sλ λ= + = +  

( ){ } ( )

( )
( )

3

10, 3 3 log 1 10

3 0.19, 3.44
3 1.76, 10

G S S S

S
S

λλ

λ
λ

− 
+ = + + +  

 
 + + ==  + + =

 

The effective combined SELA of two events with S and (S + 3) dB is 0.19 dB 
and 1.76 dB above the larger one, respectively for 3.44λ =  and 10λ = . In 
terms of SELA values, 3 dB difference means a factor of 2 in sound exposure 
energy.  

( ){ } ( )

( )
( )

10

10, 10 10 log 1 10

10 0.002, 3.44
10 0.41, 10

G S S S

S
S

λλ

λ
λ

− 
+ = + + +  

 
 + + ==  + + =

 

The effective combined SELA of two events with S and (S + 10) dB is 0.002 dB 
and 0.41 dB above the larger one, respectively for 3.44λ =  and 10λ = . In 
terms of SELA values, 10 dB difference means a factor of 10 in sound exposure 
energy. In general, for S λ∆ ≥ , the effective combined SELA of two events with 
S and S S+ ∆  is approximately  

( ){ } ( )

( ) ( )

10, log 1 10

10
ln 10

S

S

G S S S S S

S S

λ

λ

λ

λ

−∆

−∆

 
+ ∆ = + ∆ + +  

 

≈ + ∆ +
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For moderately large S λ∆ , the combined SELA is just the larger one of the 
two event. 

The generalized dose combination rule (31) is an extension of the rule from 
[6], which is based on empirical data. For that reason, and for distinguishing 
different rules of combining doses, we shall refer to (31) as the extended 
empirical dose combination rule (or just simply, empirical rule), and specifically 
denote it as { }Empr 1 2, , , NG S S S�  when necessary. This will set up the proper 
notation framework allowing us to discuss the dose combination rule for 
independent events and compare it with the empirical rule, which is the subject 
of the next subsection. 

4.2. Dose Combination Rule for the Case of Independent  
Events and Comparison with the Empirical Rule 

We study the hypothetical situation where all sound exposure events are 
independent of each other. We want to write out and examine the dose 
combination rule corresponding to this situation. Consider a sequence of N 
sound exposure events { }, 1, 2, ,jSEQ E j N= = �  with individual SELA values 

{ }, 1, 2, ,jS j N= � . The probability of no injury in each individual event is 
calculated from the dose-response relation (1):  

( )( ) ( )( )50 50

1 11 1
1 exp ID exp ID 1jEP

S Sα α
− = − =

+ − − − +
 

When all events are independent of each other, the probability of no injury for 
the whole sequence is the product of no-injury probabilities of individual events  

( )
( )( )( )1

50
1

11 1
exp ID 1

j

N

SEQ E N
j

j
j

P P
Sα=

=

− = − =
− +

∏
∏

          (32) 

On the other hand, the probability of no injury for the whole sequence is 
governed by the dose-response relation with the effective combined dose 
denoted by { }Indp 1 2, , , NG S S S� , which is what we want to find. Here we use the 
subscript “Indp” to empasize that the function refers to the case of independent 
events.  

{ }( )( )Indp 1 2 50

11
exp , , , ID 1

SEQ
N

P
G S S Sα

− =
− +�

          (33) 

Mathematically, function { }Indp 1 2, , , NG S S S�  is defined by equating (32) 
and (33).  

{ }( )( ) ( )( )( )Indp 1 2 50 50
1

exp , , , ID exp ID 1 1
N

N j
j

G S S S Sα α
=

− = − + −∏�   (34) 

Solving for { }Indp 1 2, , , NG S S S� , we arrive at:  

{ } ( )( )( )Indp 1 2 50 50
1

1, , , ln exp ID 1 1 ID
N

N j
j

G S S S Sα
α =

 
= − + − + 

 
∏�    (35) 
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(35) is the dose-combination rule for the case of independent events. We 
compare (35) to the empirical rule (31). We first look at the dependence on N 
for a homogeneous sequence of N events, each with SELA value S. The empirical 
rule is a linear function of ( )10log N .  

{ } ( )Empr 10, , , logG S S S S Nλ= +�  

For large N, the combined dose of independent events asymptotically behaves 
like  

{ } ( )( )50ID
Indp 50

1, , , ln e 1 IDSG S S S N α

α
−≈ ⋅ + +�  

Figure 3 compares the dependence on N of these two dose combination rules. 
Unlike the empirical rule (31), the combined dose of independent events (35) 

does depend on the median injury dose 50ID . To see the dependence on 50ID , 
we examine the combined dose of two independent events ( 2N = ), each with 
SELA value S.  

{ } ( )( )
( ) ( )

( )

( ) ( )

50ID
Indp

50

50

50 50 50

1, ln e 2

1 ln 2 , ID moderately large, negative

1 ln 3 , ID

2 ID ID , ID moderately large, positive

SG S S S

S S

S S

S S

α

α

α
α

α
α

−= + +

 + −
≈  + =
 − + −

  (36) 

 

 
Figure 3. Comparison of the two dose combination rules, IndpG  and EmprG  for a  

sequence of N impulse shots, each with SELA = 160 dBA. Plots of the effective combined 
dose vs N, respectively, for the two cases, along with the asymptotic approximation for 
independent events. For large N, the combined dose of independent events asymptotically 
approaches a linear function of N while the empirical rule is a linear function of 

( )10log N . 
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For S moderately below the median injury dose 50ID , the combined dose of 
independent events behaves the same way as the empirical rule with the  

increment for empirical rule ( )10log 2λ  replaced by ( )1 ln 2
α

. Recall that 

parameters α  and λ  are related by parameter η  defined in (18):  

( )ln 10
αλ

η = . As a result, the two increments are related by  

( ) ( )10
1 1ln 2 log 2λ
α η

= ×  

Thus, for η  significantly below 1, the increment for independent events is 
significantly higher than that in the empirical rule. For example, for 0.15η = , 
the two increments differ by a factor of 6.67. 

For S moderately above the median injury dose 50ID , however, the combined 
dose for independent events behaves very differently from the empirical rule. 
Instead of adding a fixed increment of ( )10log 2λ , the combined dose for 
independent events doubles the amount of S above the median injury dose 

50ID . 
To illustrate the behaviors of { }Indp ,G S S  described in (36), we plot 

{ }( )Indp ,G S S S− , the resulting increment in combining two independent events 
of equal SELA values (S). Figure 4 shows { }( )Indp ,G S S S−  vs S and its 
asymptotic approximations respectively for low S and high S, along with 

{ }( )Empr ,G S S S−  vs S, the corresponding plot for the empirical rule. The 
median injury dose 50ID  is indicated by the dotted gray vertical line in Figure 4. 
Notice that for S above 50ID , the combined dose { }Indp ,G S S  is significantly  
 

 
Figure 4. Comparison of the two dose combination rules: { }Indp ,G S S  and { }Empr ,G S S . 

Plot of { }( )Indp ,G S S S−  vs S, its asymptotic approximations respectively for low S and 

high S, and plot of { }( )Empr ,G S S S−  vs S. The parameters used are 3.44λ = , 0.1α = , 

50ID 170 dBA=  from [6]. The gray dotted vertical line indicates the median injury dose. 
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higher than S and the increment { }( )Indp ,G S S S−  is approximately ( )50IDS − . 
For S below 50ID , the increment { }( )Indp ,G S S S−  is approximately constant 
with respect to S but is much higher than that for the empirical rule. 

To demonstrate the dependence on the median injury dose 50ID , in Figure 5, 
we plot the combined dose of two events with equal SELA value ( )160 dBAS = , 
as a function of 50ID , respectively for the two combination rules. The combined 
dose of independent events is a decreasing function of 50ID ; the empirical rule 
has no dependence on 50ID . 

5. Behaviors of Immunity in the Extended Empirical  
Dose-Response Formulation 

We start this section by summarizing the extended empirical dose-response 
formulation for multiple sound exposure events with heterogeneous SELA 
values { }1 2, , , NS S S� . The formulation contains two components: 1) the rule 
for combining the heterogeneous doses { }1 2, , , NS S S�  into one effective dose 

combS  and 2) the dose-response relation mapping the effective dose combS  to 
the occurrence probability of injury.  
 The extended empirical dose combination rule:  

max

comb max 10 max
1

log 10 , max
jS SN

kkj
S S S Sλλ

−

=

 
= + ≡  

 
∑          (37) 

 The dose-response relation:  

( )
( )( )comb

comb 50

1
1 exp ID

P S
Sα

=
+ − −

               (38) 

 

 
Figure 5. Comparison of the two dose combination rules: { }Indp ,G S S  and { }Empr ,G S S . 

Plot of { },G S S  at 160S =  as a function of the median injury dose 50ID . The 

parameters used are 3.44λ = , 0.1α =  from [6]. 
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In this section, we study the immunity in the dose-response formulation (37) 
and (38). We consider the case of two composite sound exposure events 1E  and 

2E , respectively with effective combined SELA values 
1ES  and 

2ES . In the 
previous section, we wrote the dose-response relation (38) in terms of interme-  

diate variable ( )
50ID

10
S

W S λ
−

≡  and parameter 
( )ln 10
αλη ≡ .  

( )
( )

( ) ( )
50ID1 , 10 ,

ln 101

S

P S W S
W S

λ
η

αλη
−

−= ≡ ≡
+

           (39) 

We examine several probabilities via intermediate variable ( )W S .  

( ) ( )
( )

( )1 1

1

1 1
1

1 1Pr no injury in 1 ,
11

E E

E

E P S W W S
WW S

η η= − = = ≡
++

 

( )

( )
( )

( )1 2 2

1 2

2
1 2

Pr no injury in and no injury in
11 ,

1
E E E

E E

P S W W S
W W η+= − = ≡

+ +

 

( )
( )

( )
( )
( ) ( )

1 2

1

2 1

1 2

1

1

1 2

Pr no injury in | no injury in

Pr no injury in and no injury in
Pr no injury in

1 1
1 1

E E

E

E E

E E
E

P S W
P S W W

η

η

+

=

− +
= =

− + +

              (40) 

When we treat 2E  as a stand-alone event (i.e. excluding any effect left over 
from the sound exposure in the preceding event 1E ), the probability of no 
injury in event 2E  is  

( )

( )2

2 1

2

Pr no injury in ,excluding the effect of
11

1E

E E

P S
Wη= − =

+

            (41) 

From Theorem 1 in Section 3, we have  

( ) ( )1 2 1 2 1 2W W WW W Wη ηη η+ + > +                   (42) 

Adding 1 to each side of the inequality and then factoring the left-hand side, 
we obtain  

( )( ) ( )1 2 1 21 1 1W W W W ηη η+ + > + +                   (43) 

which yields  

( )
1

21 2

1 1
11

W
WW W

η

η η

+
>

++ +
                      (44) 

Comparing (40) and (41) gives us  

( )
( )

2 1

2 1

Pr no injury in | no injury in

Pr no injury in ,excluding the effect of

E E

E E>
            (45) 
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Therefore, we conclude that the effect of sound exposure in 1E  provides an 
immunity in the subsequent event 2E . We assess the effect of immunity 
quantitatively as a percentage of decrease in probability of injury in event 2E  
due to the preceding event 1E , and call it the immunity factor of event 1E  on 
event 2E . Mathematically, the immunity factor is defined as  

( ) ( )
( )1 2

2 1

2 1

Pr injury in | no injury in
, 1

Pr injury in ,excluding the effect ofE E
E E

S S
E E

φ ≡ −       (46) 

In terms of immunity factor φ , the conditional probability of injury given the 
prior sound exposure and the unconditional probability of injury are related by  

( )
( ) ( )

2 1

2 1

Pr injury in E | no injury in

1 Pr injury in ,excluding the effect of

E

E Eφ= − ×
        (47) 

Below we study the behavior of immunity factor in four regimes of doses. 
We write probabilities in terms of intermediate variable ( )W S , and express 

the immunity factor as a function of 1W  and 2W :  

( ) ( )

( ) ( )
( )

1 2

1

2 1 2

2

1 2 1 2 1 2

2 1 2

111 1
1 1

, 11
1

1

E E

W
W W W

S S

W

W W W W WW

W W W

η

η η

η

η ηη η

ηη

φ

   +
 − − −   + + +   =
−

+

+ − + +
=

 + + 

          (48) 

We consider regimes described in terms of intermediate variable  

( )
50ID

10
S

W S λ
−

≡ . 

• ( )1W O= : 
The corresponding SELA value has the range ( )( )50 10ID log 1S Oλ= +  which 

is a small neighborhood around 50IDS =   
• ( )W O=  : 
The corresponding SELA value has the range ( )( )50 10ID log 1S Oλ= −   

which is moderately below the median injury dose 50ID .  
• ( )1W O=  : 
The corresponding SELA value has the range ( )( )50 10ID log 1S Oλ= −   

which is moderately above the median injury dose 50ID   

In the analysis below, we assume 
( )

1
ln 10
αλ

η ≡ < . In particular, we will look at 

the case of 0.15η = , corresponding to 0.1α =  and 3.44λ = , the parameter 
values from [6]. 

Regime 1: The second dose (
2ES ) is moderately above the first dose (

1ES ).  

( )( )2 1 10log 1E ES S Oλ− =   

which in turn yields  

( )
1 2

1

2

10 small
E ES SW O

W
λ

−

= = =  
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We use the small parameter ( )1

2

W O
W

=   to derive an asymptotic expression 

for the immunity factor φ . In the expression of φ  given in (48), dividing both 

the numerator and the denominator by 2Wη , we write φ  as a function of 1

2

W
W

 

and 2W  as follows:  

( )
( )

1 2

1 1
2

2 2

1
2

2

1 1 1
,

1 1
E E

W WW
W W

S S
WW
W

η η
η

η
η

φ

   
+ + − +   

   =
 

+ + 
 

             (49) 

Using the Taylor expansion 1 1

2 2

1 1W W
W W

η

η
 
+ = + + 

 
� , and noticing that for 

1η < , we have ( ) ( )1 1

2 2

W WO O
W W

η
η  

= =  
 

�  , we obtain  

( )
( )

( )

( )

1 2

1 2

1 1
2

2 2

1
2

2

1
2

2 1

22

1 1 1
,

1 1

1

1

10 small
E E

E E

S S

W WW
W W

S S
WW
W

W W
W W

WW

O

η
η

η

η
η

η

η

η ηλ

η
φ

η

−

   
+ + − + +   

   =
 

+ + + 
 

 
+ +    = = + + +  

= + = =

�

�

�
�

�

� 

 

Conclusion for Regime 1: The immunity caused by the preceding dose on the 
subsequent dose of moderately higher SELA value, is small. 

Regime 2: The second dose (
2ES ) is moderately below the first dose (

1ES ). 

( )( )2 1 10log 1E ES S Oλ− = −   

which leads to  

( )
2 1

2

1

10 small
E ES SW O

W
λ

−

= = =  

We use the small parameter ( )2

1

W O
W

=   to derive an asymptotic expression 

for the immunity factor φ . Dividing both the numerator and the denominator 

by 1Wη  in the formula of φ  in Equation (48), we express φ  in terms of 2

1

W
W

 

and 1W :  

( )
( )

1 2

2 2
1

1 1

2 2
1

1 1

1 1 1
,

1 1
E E

W WW
W W

S S
W WW
W W

η η
η

η η
η

φ

   
+ + − +   

   =
    
 + +   
     

            (50) 
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Substituting in the Taylor expansions ( )22 2

1 1

1 1W W O
W W

η

η
 
+ = + + 

 
 , and 

dividing the numerator and the denominator by ( )2
1

1

1W W
W

η
η 

+ 
 

, we get  

( )
( ) ( )

( ) ( )

( )

( )

1 2

22 2
1

1 1

22 2
1 1

1 1

1 2
2

11 1

21 2

11

1
,

1

1
1 1

1
1

E E

W WW O
W W

S S
W WW W O
W W

OW
WW W

W W O
WW

η
η

η
η η

η η

η η

η

η

η
φ

η

η

η

− −

 
+ − + 

 =
    

+ + +    
    

 
− + + + =

 
+ + +  









          (51) 

Applying the expansion ( )1 1
1

z
z

  = − + + 
�  to the denominator, we arrive 

at  

( )1 2

1

2 1 2

1 11 1

1

2 2

1 1

, 1
1 1

11
1

E E
W W WS S
W WW W

W W
W W

η η

η η

η η

η

η
φ η

η

−

−

 
= − − + + + 

   +
= − +   +   

�

�

           (52) 

When 
1ES  and 

2ES  move together from low to high with the difference 

( )2 1E ES S−  unchanged, the pair ( )1 2,W W  increases in magnitude from small  

to large with the ratio 
2 1

2

1

10
E ES SW

W
λ

−

=  fixed. As a result, the factor 2

1

1
1

W
W

η

η

 +
 
+ 

 

varies from 1 at low ( )1 2
,E ES S  to ( )2

1

W O
W

η
η 

= 
 

  at high ( )1 2
,E ES S .  

( )

( )

1 2

1 2

50

2

21 50
1

1, , moderately below ID
1
1 , , moderately above ID

E E

E E

S S
W

WW S S
W

η
η

η


+ ≈  +  
 

         (53) 

With the result of (53), we write the immunity factor as  

( )
( ) ( )

( )

2 1

1 2

1 2
2 1

1 2

1

50

50

1 10 , , moderately below ID
,

1 10 , , moderately above ID

E E

E E

S S

E E

E E S S

E E

S S
S S

S S

η
λ

λ

η
φ

η

−
−

−


−≈ 


−

 

Conclusion for Regime 2: The immunity caused by the preceding dose on the 
subsequent dose of moderately lower SELA value, is large and approaches 100%. 

We numerically demonstrate the asymptotic behaviors of regime 1 and regime 
2. In Figure 6, we plot the immunity factor ( )1 2

,E ES Sφ  vs ( )2 1E ES S−  and the 
two asymptotic solutions, respectively, for low 

2 1E ES S−  and for high 
2 1E ES S− .  
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Figure 6. Immunity factor caused by preceding dose 

1ES  on subsequent dose 
2ES . Plot 

of ( )1 2
,E ES Sφ  vs ( )2 1E ES S−  at 

1
160 dBAES = , and asymptotic approximations 

respectively for low ( )2 1E ES S−  and for high ( )2 1E ES S− . The parameters used are 

3.44λ = , 0.1α = , 50ID 170 dBA=  from [6]. 

 
From Figure 6, it is clear that the two asymptotic approximations are already 
very accurate even at 

2 1
4 dBAE ES S− = ± . Although only the plot at  

1
160 dBAES =  is shown, we observe that the plot of ( )1 2

,E ES Sφ  vs  

( )2 1E ES S−  is almost invariant with respect to 
1ES ; plots with different values 

of 
1ES  virtually coincide with each other (not shown in Figure 6). To see the 

invariance with respect to 
1ES , in Figure 7 we plot ( )1 2

,E ES Sφ  vs 
1ES  res- 

pectively at several fixed values of ( )2 1E ES S− . Figure 7 confirms that  

( )1 2
,E ES Sφ  is virtually independent of 

1ES  provided that 
2ES  is varied along 

with 
1ES  to make the difference ( )2 1E ES S−  fixed. This observation 

corresponds to the result we obtain in Regime 3 below. 
Regime 3: The two doses are close to each other. 

( )( )2 1
log 1E ES S O− =  

which is equivalent to ( )1

2

1W O
W

= . 

We start with the expression of the immunity factor φ  given in (49) as a 

function of 1

2

W
W

 and 2W . In Regimes 1 and 2, we see that when the ratio 1

2

W
W

 

is varied from small (Regime 1) to large (Regime 2), the immunity factor 

changes dramatically from 0φ ≈  to 100%φ ≈ . When 1

2

W
W

 is fixed (Regime 3), 

however, the immunity factor φ  varies much slower with respect to 2W . Now 

we prove that when the ratio 1

2

W
W

 is fixed, the immunity factor φ  increases 

monotonically with respect to 2W . 
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Figure 7. Immunity factor caused by preceding dose 

1ES  on subsequent dose 
2ES . Plot 

of ( )1 2
,E ES Sφ  vs 

1ES  at several fixed values of ( )2 1E ES S− . While ( )1 2
,E ES Sφ  varies 

widely from 0 to 1 with ( )2 1E ES S− , it is virtually independent of 
1ES . The parameters 

used are 3.44λ = , 0.1α = , 50ID 170 dBA=  from [6]. 

 
To facilitate the mathematical analysis, let us introduce variables  

1
2

2

,Wr u W
W

η≡ ≡  

The immunity factor as a function of ( ),r u  has the expression  

( ) ( )
( )

1 1 1

1 1

r u r

u r

ηη

ηφ
+ + − +

=
+ +

                    (54) 

Taking the derivative of φ  with respect to u, yields  

( ) ( )

( )
2

1 1 1d 0
d 1 1

r r r

u u r

η ηη

η

φ    + − + −   = >
 + + 

 

This tells us immediately that the immunity factor φ  is an increasing 
function of 2W . The range of φ  with respect to 2W  is readily obtained from 
expression (54).  

( )
2 0 1 1W r r ηηφ
=
= + − +  

( )2 1W

r
r

η

ηφ
=∞

=
+

 

In the case of 0.15η =  and 1

2

1Wr
W

≡ = , the range ( )
2 20 ,W Wφ φ
= =∞

 is fairly 

tight:  

2 0 2 2 0.8904W
ηφ

=
= − =                       (55) 
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2
2 0.9013W

ηφ −
=∞

= =                        (56) 

Conclusion for Regime 3: The immunity caused by the preceding dose on the 
subsequent dose of similar magnitude (small difference measured in dBA), is 
significant and fairly large. The immunity factor remains almost unchanged as 
the two SELA values (

1ES  and 
2ES ) are varied from being significantly below 

the median injury dose 50ID  to being significantly above 50ID  as long as the 
two doses are varied together with the difference 

1 2E ES S−  fixed. 

With the expression of φ  in terms of 1

2

Wr
W

≡  and 2u Wη≡  given in (54),  

we continue to explore the immunity factor φ  as a function of r while u is 
fixed. 

Regime 4: Instead of focusing on a small parameter region that gives a 
particular asymptotic value of the immunity factor, here we consider the trend 
behavior of the immunity factor when the first dose (

1ES ) is varied from low to 
high while the second dose (

2ES ) is fixed. 
Differentiating (54) with respect to r, we get  

( ) ( ) ( )
( )

1 11 1

2

1 1d 1
d 1 1

r r ur r
u

r u r

η ηη η

η

φ
η

− −− −− + + +
= +

 + + 

             (57) 

Since parameter η  is less than 1, we have 1 0η − < , and it follows that 
( ) 11 1 0r r ηη −− − + >  holds for all positive r. Applying this result to the numerator 

of (57) gives us  
d 0, for 0 and 0
d

r u
r
φ
> > >                    (58) 

The range of φ  with respect to 1

2

Wr
W

=  is calculated from (54).  

0 0rφ
=
=  

1rφ
=∞

=  

Therefore, we conclude that when 2W  is fixed, the immunity factor φ  
increases monotonically with respect to 1W . Below, we recast this statement in 
terms of the SELA values of the two events. 

Conclusion for Regime 4: The immunity caused by the preceding dose on the 
subsequent dose increases monotonically with respect to the first dose while the 
second dose is fixed. It goes from near 0 when the first dose is significntly below 
the second dose, to near 100% when the first dose is raised to above the second 
dose. 

We numerically visualize the trend behavior predicted in Regime 4. In Figure 
8, we plot the immunity factor ( )1 2

,E ES Sφ  as a function of the first dose 
1ES  

while the second dose 
2ES  is fixed. Figure 8 shows that ( )1 2

,E ES Sφ  is always 
an increasing function of 

1ES ; for 
1ES  significantly below 

2ES , ( )1 2
,E ES Sφ  is 

near zero; as 
1ES  approaches and goes above 

2ES , ( )1 2
,E ES Sφ  climbs to its 

maximum value 1. 
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Figure 8. Immunity factor caused by preceding dose 

1ES  on subsequent dose 
2ES . Plot 

of ( )1 2
,E ES Sφ  vs 

1ES  at several fixed values of 
2ES . The parameters used are  

3.44λ = , 0.1α = , 50ID 170 dBA=  from [6]. 

6. Concluding Remarks 

We have theoretically examined the results in [6] to establish an extended 
empirical dose-response formulation that governs the probability of injury 
caused by multiple heterogeneous sound exposure events with non-uniform 
SELA values. The formulation consists of two steps: 1) the dose combination 
rule combines multiple heterogeneous doses into one effective dose; 2) the 
dose-response relation maps the effective dose to the injury probability. Our 
analysis revealed that in the empirical logistic dose-response relation with the 
empirical dose combination rule in [6], a pair of preceding and subsequent 
sound exposure events are not independent of each other; a preceding sound 
exposure always provides a net effect of immunity to the subsequent sound 
exposure. This result indicates that the interaction between preceding and 
subsequent events is dominated by the effect of immunity instead of by that of 
fatigue, suggesting that the acoustic reflex, for example, may play a significant 
role. Acoustic reflex is an involuntary muscle contraction in the middle ear 
triggered by high-intensity sound. During acoustic reflex, due to muscle 
contraction, the transmission of vibrational energy to the cochlea is reduced and 
the ear gets protected from the subsequent sound exposure. The effect of 
immunity was already implicitly contained (hidden) in the experimental data 
behind the empirical models in [6]. It was not hypothetically created or added in 
our study. Rather, our study simply discovered it through a detailed analysis on 
the empirical models, with the approach of viewing individual sound exposures 
as separate injury causing events. In the framework of empirical logistic 
dose-response relation in [6], we constructed the dose combination rule for the 
case where individual sound exposure events are independent of each other. We 
found that for a sequence of N homogeneous impulse shots, the combined SELA 
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value for the case of independent events is asymptotically a linear function of N 
for large N. In comparison, the empirical dose combination rule is a linear 
function of ( )10log N , much smaller than that for independent events. 

We also studied the effect of immunity quantitatively via the immunity factor 
defined as the percentage of decrease in the injury probability attributed to the 
sound exposure in the preceding event. Our main results on immunity are: 1) 
the immunity factor is primarily a function of the difference in SELA value 
between the two sound exposure events; it is virtually independent of the 
magnitude of the two SELA values as long as the difference between the two is 
fixed; 2) the immunity factor increases monotonically with respect to the 
difference in SELA values; 3) when the first dose (SELA) is significantly below 
the second dose, the immunity factor is close to 0; 4) when the two doses are 
comparable, the immunity factor is fairly large, approaching 100%; 5) when the 
first dose is moderately above the second dose, the immunity factor is close to 
100%. 

Our extended empirical dose-response formulation provides the theoretical 
foundation for assessing the injury risk in realistic situations where the sound 
exposure consists of multiple heterogeneous noise impulses with non-uniform 
SELA values. Future sound exposure experiments are needed for testing, 
validating and refining the extended empirical dose-response formulation. 
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Appendix 

Here we give a proof of Theorem 1 appeared in Section 3. 

For 
( )

1
ln 10
αλ

η ≡ < , we have ( )1 0η − < . Consider function  

( ) ( )1 1E Eg w W w W w
ηη η= + − +  

It satisfies  

( )0 0g =  

( ) ( )1

11 0 for all 0Eg w w W w w
ηηη
−− ′ = − + > >  

 

It follows that ( ) 0g w >  for all 0w > . Or, equivalently,  

( ) ( )1 2 1 2 2 1
0 for all 0 and 0E E E E E EW W W W W W

ηη η+ − + > > >  

From this, we see that  

( )1 2 1 2 1 2 1 2
0 for all 0 and 0E E E E E E E EW W W W W W W W

ηη η η η+ − + + > > >  

which completes the derivation. 
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