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Abstract 
One of the most interesting applications of genetic algorithms falls into the 
area of decision support. Decision support problems involve a series of deci-
sions, each of which is influenced by all decisions made prior to that point. 
This class of problems occurs often in enterprise management, particularly in 
the area of scheduling or resource allocation. In order to demonstrate the 
formulation of this class of problems, a series of maze problems will be pre-
sented. The complexity of the mazes is intensified as each new maze is intro-
duced. Two solving scenarios are introduced and comparison results are pro-
vided. The first scenario incorporated the traditional genetic algorithm pro-
cedure for the intended purpose of acquiring a solution based upon a purely 
evolutionary approach. The second scenario utilized the genetic algorithm in 
conjunction with embedded domain specific knowledge in the form of deci-
sion rules. The implementation of domain specific knowledge is intended to 
enhance solution convergence time and improve the overall quality of 
offspring produced which significantly increases the probability of acquiring a 
more accurate and consistent solution. Results are provided below for all 
mazes considered. These results include the traditional genetic algorithm final 
result and the genetic algorithm optimization approach with embedded rules 
result. Both results were incorporated for comparison purposes. Overall, the 
incorporation of domain specific knowledge outperformed the traditional ge-
netic algorithm in both performance and computation time. Specifically, the 
traditional genetic algorithm failed to adequately find an acceptable solution 
for each example presented and prematurely converged on average within 
54% of their specified generations. Additionally, the most complex maze gen-
erated an optimal path directional sequence (i.e. N, S, E, W) via a traditional 
genetic algorithm which possessed only 50% of the required allowable path 
sequences for maze completion. The incorporation of embedded rules enabled 
the genetic algorithm to locate the optimum path for all examples considered 
within 5% of the traditional genetic algorithm computation time. 
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1. Introduction 

Decision support has developed into a broad spectrum of applications encom-
passing optimization through a variety of methods including genetic algorithms 
[1]. The traditional genetic algorithm is an evolutionary approach where prob-
lem characteristics are encoded to initially form random chromosome strings 
where strings are paired and the exchange of essential data is passed to create 
offspring. This offspring is evaluated against an objective function and potential 
optimization constraints which determine the success of the derived offspring. 
Additional key factors in the genetic algorithm evolutionary process include pe-
nalty factors which minimize the occurrence of poor offspring and mutation 
which randomly alters the encoded string to produce designs potentially unat-
tainable within a small population size. Extensive background and theory re-
garding the fundamental methodology of the genetic algorithm can be found in 
[2] and [3]. 

The aim of this research is to illustrate the use of domain specific knowledge 
to enhance the genetic algorithm search through the minimization of computa-
tion time for solution convergence. Domain specific knowledge has been intro-
duced into the genetic algorithm in the form of a two-phase rule approach to 
enhance both topological and structural optimization problems as demonstrated 
by Webb, et al. [4] and [5].  

This study determines the appropriate path sequence to effectively negotiate a 
series of mazes within this prescribed research. Similarly to this optimization in-
itiative, the use of domain specific knowledge was demonstrated by Alobaidi, et 
al. [6] to determine the optimal travel path sequences for the Traveling Salesman 
problem through the use of a rule based genetic optimization algorithm. Overall, 
the incorporation of a rule based enhancement to the genetic algorithm can be 
introduced within a variety of methods which includes a phased based rule en-
coding scheme as proposed by Sandgren et al. [7]. Phase one mimics the formu-
lation of a traditional genetic algorithm string; however the second phase utilizes 
rule based chromosome strings to determine what domain specific knowledge or 
rule executes to ultimately improve the outcome of phase one. This research ex-
poses embedded rules within the traditional genetic algorithm to further illu-
strate an alternative means for utilizing domain specific knowledge while en-
hancing the traditional genetic algorithm process.  

2. Traditional Genetic Optimization Approach 

Traditional genetic optimization or scenario one began with a series of encoded 
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strings which represents the framework of a maze under investigation. These 
encoded strings allow the genetic algorithm to determine whenever a move is 
selected (i.e. N, E, S, W) that the move is a legitimate move within the maze. A 
maze essentially is a predefined amount of space where a grid or lattice is formed 
which represents a series of rows and columns of square blocks. Each block 
formed within the lattice represents a “cell”. The surrounding walls of user spe-
cified cells are removed and the formation of a maze becomes apparent. The 
strings within this input file are four characters long which represent the direc-
tions of north, east, south and west respectively. Each character within the string 
can either represent the values of “0” or “1” to appropriately define each cell. A 
value of “0” for the first character within the first row indicates that there is a 
north wall within the first cell of the grid. Conversely, a value of “1” for the first 
character within the first row indicates an absence of a north wall within the first 
cell of the lattice. Each cell is labeled throughout the maze where the first block 
or entrance of the maze is designated by (1, 1), meaning row one, column one, 
and is located at the lower left corner as illustrated by the example in Figure 1. 
The exit or last cell for the maze illustrated in Figure 1 is numerically identified 
by (10, 10) which is the upper right corner of the maze. Strings within the initial 
maze input file are read in left to right and row by row beginning with the first 
cell block. All mazes investigated began with the starting cell of (1, 1) and exited 
at the last cell of the grid. These constant start and end locations were imposed 
since this generated the longest and most difficult search solution possible for 
the genetic algorithm. The objective was to locate the travel route which con-
nected the start cell with the end cell. The function of the genetic algorithm was 
to generate an initial travel sequence string based upon travel directions of 
north, east, south, and west. The amount of characters which composed of a 
maximum travel sequence was equal to the number of cells generated by the im-
plementation of a grid. Each character within the travel sequence is assigned a 
numeric value within a range of four possible values. Table 1 provides the possi-
ble values for which a character within the travel sequence string could potentially 
represent. Additionally, Table 2 illustrates the genetic algorithm parameters 
 

 
Figure 1. 10 × 10 grid maze. 
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Table 1. Character representation values for travel sequence string. 

Character Value Representation 

1 North 

2 East 

3 South 

4 West 

 
Table 2. Genetic input parameters. 

GENETIC INPUT PARAMETERS 

Population Size = Maze Grid Size * 10 

Probability of Mutation = 0.02 

Number of Generations = (5 * Maze Grid Size) + Number of Best Generation  
Members to Pass to the Next Generation 

Penalty Factor = 10 

Multiplier of Penalty Factor = 2 

Number of Best Generation Members to Pass to the Next Generation = 2 

Number of Generations Between Penalty Factor Updates = 10 

 
utilized in the problem formulation for all mazes considered. 

A random population of travel sequences is generated and evaluated by the 
objective function as illustrated in Equation (1). If deemed a legitimate move 
within the maze, the objective function calculates the total distance of each travel 
sequence, however the final result is path and distance weighted as illustrated in 
Equation (2), for the directional moves within the travel sequence are theoreti-
cally legitimate, but actual distances may not be calculated in the event N-S or 
E-W moves are introduced into the travel sequence. Once evaluated by the ob-
jective function, the best travel sequences are selected and placed within a mat-
ing pool, where travel sequences are randomly paired and genetic chromosome 
cross over commences. Chromosome cross over is the process of mating two 
parent travel sequence strings by the random selection of a numbered character 
shared by both strings. Once a shared character between both strings is selected, 
each chromosome string exchanges characteristics the right of the selected gene 
until the end of both chromosome strings has been reached. Subsequent to ge-
netic cross over, each offspring produced is evaluated by the objective function, 
where directional moves within the new travel sequence are only implemented if 
legitimate within the maze. Illegitimate moves within travel sequences are simp-
ly ignored by the objective function and the travel sequence string is reduced in 
total length. This process continues until a predetermined number of genera-
tions of offspring have been produced. Mutation, or the random alteration of 
genes of a parent travel sequence string within the mating pool occurs, however 
the probability is minimal. Mutation introduces randomness, which provides the 
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design or decision chromosomes with characteristics normally unattainable 
subsequent to a number of generated offspring. Upon the completion of a user 
specified number of generations, the genetic algorithm has potentially created a 
travel sequence string which encompasses the total or partial path which unites 
both start and end cells.  

Objective Function:  

( ) ( ) ( )( )2 2
actual final actual finalf x x x y y= − + −              (1) 

Weighted objective function ( )Weightedf x  

( ) ( ) ( )( ) ( )2
actual final actual finalWeighted 1 2 3f x W W x x y y W npath C = − ∗ − + − − ∗ − 

 
 

(2) 

where, npath =  total number of paths each cell move possesses that culminates 
the defined path.  

actualx , actualy , finalx , & finaly  are parameters which represent the start and 
end point locations of travel sequences for each maze considered which deter-
mine overall travel distance  

W1, W2, & W3 are relevant weighting factors to balance out the outcome of 
the objective function with the number of moves required utilizing constant 
factor C. The use of a weighted objective function accounts for directional moves 
within the travel sequence; however actual distance values may not be calculated 
in the event N-S or E-W moves are introduced into the travel sequence  

3. Genetic Optimization via Embedded Rules 

Domain specific knowledge in the form of rules were embedded within scenario 
one. These rules are governed by each travel sequence and the travel sequence is 
controlled by the genetic algorithm.  

The cells which compose of the maze are initially predefined by how many ex-
its each cell possesses and if the cell possesses only one exit, information is pro-
vided to which direction the available exit is located (i.e. N, E, S or W). When a 
cell is located within the travel sequence and only one exit is available, the ge-
netic code is provided with what direction out the cell possesses. With this in-
formation, a wall is created to block off the cell, creating a block, so that no fu-
ture travel sequences may enter. All cells are updated with the creation of this 
new wall and the process continues whenever a travel sequence encounters a one 
exit cell. This prescribed embedded rule is attributed by prior knowledge ac-
quired from Williams [8]. Additionally, when the objective function evaluates 
each move within a specific travel sequence, redundant moves are removed such 
as N-S and E-W, so that every move accepted creates an actual distance.  

The implementation of rules within the objective function subroutine which 
eliminate redundant moves before being drawn is controlled by the genetic code, 
since the travel sequence is governed by the genetic algorithm and rules are ap-
plied as travel sequences are introduced to the embedded rules. This also holds 
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true for walls created when travel sequences encounter a cell with only one exit. 
The rule for the implementation of a wall is only executed if the genetic code 
generates a travel sequence which leads to a cell with only one exit. Computation 
time for solving all mazes considered was minimal with the inclusion of embed-
ded rules.  

4. Results 

Three mazes were investigated and solved by the use of both a traditional genetic 
algorithm and a genetic algorithm with embedded rules. Each maze scenario 
presented was programmed in Visual Basic [9]. Genetic algorithm parameters 
utilized in the formulation of the provided results are illustrated in Table 3. The 
mazes constructed were 10 × 10, 20 × 20, and 50 × 50 cell mazes, which demon-
strated a gradual progression in maze complexity as each maze was examined 
and solved. Overall, the genetic algorithm which incorporated embedded rules 
was the most effective optimization approach. The injection of domain specific 
knowledge into a genetic algorithm significantly enhanced computation time 
and the quality of genetic offspring produced. Genetic results for both optimiza-
tion approaches initially appear at the end of the second generation, for both op-
timization techniques generated new offspring travel sequence strings imme-
diately following the construction of the initial random population. The genera-
tion of new offspring subsequent to the creation of an initial random population 
was implemented to immediately reduce any extraneous travel sequence strings 
from the random population to potentially improve genetic offspring and com-
putation time. Lastly, graphical representations of objective function versus gen-
eration were constructed for each maze solving procedure considered.  

Function evaluations considered are derived via Equation (3) below 

Size SizeFunction Evaluations Population Generation= ∗           (3) 

5. Example One: 10 × 10 Cell Maze 

Below illustrated in Figure 2 is the initial 10 × 10 cell maze before the com-
mencement of genetic optimization. Notice that the complexity of the maze is 
fairly straightforward, but results below confirm that a conventional genetic al-
gorithm was unable to locate an acceptable solution.  

5.1. Traditional Genetic Algorithm Result (Scenario One) 

The traditional genetic algorithm result is shown below in Figure 3. Upon the  
 
Table 3. Maze genetic parameters. 

Maze Grid Size Population Size Generation Size Function Evaluations 

10 × 10 100 52 5200 

20 × 20 200 102 20,400 

50 × 50 500 252 126,000 
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Figure 2. 10 × 10 cell maze. 

 

 
Figure 3. Genetic algorithm result. 

 
completion of fifty two generations and an initial population size of one hun-
dred, the genetic algorithm was unable to locate an acceptable solution. Popula-
tion and generation sizes must be largely increased to potentially locate the maze 
solution. The objective function versus generation graph provided in Figure 4 
revealed an overall steady increase in objective function until generation forty 
five and remained constant throughout the remainder of the fifty two specified 
generations. An increase in these genetic input parameters would significantly 
hinder computation time, and would further reinforce the necessity to refine the 
genetic algorithm procedure. Theoretically, once a considerable number of gen-
erations of offspring have been produced an acceptable solution would be 
achieved. However, genetic input parameters were increased on several occa-
sions, but an acceptable solution was still not acquired. 

5.2. Genetic Algorithm with Embedded Rules Result  
(Scenario Two) 

Below illustrated in Figure 5 is the final result of the 10 × 10 cell maze which 
was solved by the use of a genetic algorithm with embedded domain specific  
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Figure 4. Objective function versus generation. 

 

 
Figure 5. Embedded rules final result. 

 
knowledge. Genetic input parameters were identical to the traditional genetic 
optimization result illustrated in Figure 3. An examination of Figure 5 revealed 
that not all travel paths were blocked, which clearly indicated for even the least 
complex of mazes that the embedded rules are travel sequence dependent, where 
each travel sequence is controlled by the genetic algorithm. Furthermore, the 
objective function versus generation graph illustrated in Figure 6 revealed that a 
solution was found upon the conclusion of the second generation of offspring 
produced. In comparison to Figure 4, the traditional genetic optimization ap-
proach spawned fifty two generations of offspring, yet was incapable of generat-
ing an acceptable solution. Clearly this approach is the optimal method for solv-
ing this class of problems.  

6. Example Two: 20 × 20 Cell Maze 

Figure 7 represents the 20 × 20 cell maze before genetic optimization has com-
menced. In comparison to the previously illustrated 10 × 10 maze, the complex-
ity has significantly increased, which requires larger genetic input parameters for 

Objective Function Versus Generation                            
Scenario One - 10x10 Maze
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Figure 6. Objective function versus generation. 

 

 
Figure 7. 20 × 20 cell maze. 

 
the traditional genetic algorithm technique, for the genetic algorithm is a global 
search method based upon an evolutionary approach.  

6.1. Traditional Genetic Algorithm Result (Scenario One) 

Illustrated within Figure 8 is the traditional genetic algorithm result. Genetic 
input parameters consisted of a population size of two hundred with one hun-
dred-two generations. Notice that an acceptable solution was unable to be lo-
cated upon the conclusion of one hundred-two generations. Population and 
generation genetic input parameters were manipulated on several instances but, 
an acceptable solution remained unachievable. 

An examination of Figure 9 revealed a steady increase in objective function 
over a period of eighty generations, however inactivity was apparent throughout 
the remaining twenty two generations.  

6.2. Genetic Algorithm with Embedded Rules Result  
(Scenario Two) 

The illustration within Figure 10 represents the final result which utilized the 

Objective Function Versus Generation                    
Scenario Two - 10x10 Maze
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Figure 8. Genetic algorithm result. 

 

 
Figure 9. Objective function versus generation. 

 

 
Figure 10. Embedded rules final result. 

Objective Function Versus Generation                       
Scenario One - 20x20 Maze
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genetic algorithm with an embedded rules approach applied to the 20 × 20 cell 
maze. Notice that all routes were not blocked, for the genetic algorithm found 
the optimal path without traveling to every available location, which further 
reinforced that the rules embedded are executed based upon travel sequences 
controlled by the genetic algorithm. Figure 11 revealed that a solution was 
found within the second generation of offspring produced. A comparison with 
the result illustrated in Figure 8 showed that the traditional genetic algorithm 
solution generated a final result which was incomplete, and furthermore failed to 
locate the correct travel path concluding one hundred-two generations of 
offspring. Failure to locate the correct travel path upon the conclusion of the 
conventional genetic algorithm method further reinforces the necessity of a rule 
based scenario to enhance the traditional genetic algorithm. Potentially large 
phase two population and generation sizes would be considered to further refine 
this conventional genetic algorithm result, for a vast variety of rule sequences 
must be generated to correct the inadequately generated travel path.  

7. Example Three: 50 × 50 Cell Maze 

The final maze investigated consisted of a 50 × 50 cell maze [10]. This maze in-
corporated the highest level of complexity among the mazes previously ex-
amined. Twenty five hundred cell blocks were manipulated in the formation of 
the maze illustrated below in Figure 12. The ability to utilize domain specific 
knowledge within a genetic algorithm to enhance solution time and the quality 
of offspring generated, while demonstrating that an acceptable solution can be 
located at this level of complexity, settles any disputes with regard to the need 
for rules within a genetic algorithm.  

7.1. Traditional Genetic Algorithm Result (Scenario One) 

The traditional genetic algorithm approach was unable to locate an acceptable 
solution shown in Figure 13 however unlike the 20 × 20 cell maze traditional  
 

 
Figure 11. Objective function versus generation. 
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Figure 12. 50 × 50 cell maze. 

 

 
Figure 13. Genetic algorithm result. 

 
genetic algorithm result; the genetic algorithm was able to locate a portion of the 
optimal path. Genetic input parameters consisted of a population size of five 
hundred and a generation size of two hundred fifty-two. Since an acceptable 
portion of the path was located, an increase in genetic input parameters would 
potentially improve the probability of locating a more acceptable solution in 
comparison to the previous 20 × 20 and 10 × 10 maze results. Surprisingly, the 
conventional genetic algorithm procedure failed to locate the complete travel 
path for each maze considered.  

An examination of Figure 14 shows a steady but minimal increase in objective 
function over a period of one hundred eighty-seven generations, yet remained 
inactive throughout the remaining sixty five generations. 
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Figure 14. Objective function versus generation. 

7.2. Genetic Algorithm with Embedded Rules Result  
(Scenario Two) 

The genetic algorithm which incorporated embedded rules was utilized to solve 
the 50 × 50 cell maze. Genetic input parameters remained identical to its coun-
terpart. This optimization approach effectively solved the maze illustrated in 
Figure 15. Similar to previous results, this optimization approach successfully 
located the maze exit without traveling to every possible location within the 
maze, but only by travel sequences created by the genetic algorithm. The objec-
tive function versus generation graph within Figure 16 revealed that the final 
solution was located upon the completion of four generations of offspring. A 
comparison with Figure 14 clearly indicates that the incorporation of embedded 
rules significantly decreases computation time and enhances the quality of ge-
netic offspring produced, since only four generations of offspring were required 
to achieve a solution, where two hundred fifty-two generations were completed 
using a traditional genetic algorithm approach, yet a complete solution remained 
unattainable.  

8. Concluding Remarks 

The implementation of embedded rules within a genetic algorithm based upon 
domain specific knowledge significantly decreases computation time and en-
hances the quality of offspring produced during each generation. A complete 
and accurate solution was located for all mazes investigated which employed the 
use of domain specific knowledge within a conventional genetic algorithm. The 
traditional genetic algorithm approach failed to solve each maze provided, while 
subjected up to extensively larger generations than its counterpart approach. 
Lastly, the genetic algorithm with embedded rules required only 5% of the solution 
time for all mazes considered in comparison to the traditional genetic algorithm  

Objective Function Versus Generation                              
Scenario One - 50x50 Maze
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Figure 15. Embedded rules result. 

 

 
Figure 16. Objective function versus generation. 

 
to locate an acceptable solution which effectively solved each maze. 
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