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Abstract 
This letter mainly investigates a general risk model with the threshold divi-
dend strategy under assumption that the claim amounts obey a state-dependent 
switched exponential distribution. By establishing the differential-integral eq-
uations for the Gerber-Shiu discounted penalty function, and applying the 
hypergeometric functions, the closed-form absolute ruin probability is de-
rived. 
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1. Introduction 

Due to its practical importance, more and more people use the ruin probability, 
an important leading indicator, to judge whether an insurance company can sur-
vive or not. The classical risk model was introduced by Gerber [1]. The function 
is of the form 

( ) ( ) ( )
( )

0
0

, ,
N t

i
i

U t u ct S t S t X
=

= + − = ∑                 (1) 

where ( )U t  is the insurance company’s surplus at time t. c represents the risk-free 
rate. ( )S t  is the total compensation by time t; iX  is the i-th compensation; ( )N t  
means the frequency of compensation. 0u  represents the initial investment for 
an insurance company. In order to make the classical risk model more realistic, more 
and more factors have been taken into account. The aggregate premium process 
taking a linear function of time was considered by Zou, Gao and Xie [2], in which 
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the explicit solutions of ruin time were obtained under assumption that the claim 
amount obeyed exponential distribution. Yao, Yang and Wang [3] studied a dual 
risk model with fixed transaction cost, and solved the optional control problem 
by the techniques of quasi-variational inequalities. Yuen, Zhou and Guo [4] dis-
cussed the compound Poisson risk model with debit interest and dividend pay-
ments, and the explicit expressions for the Gerber-Shiu function and the optimal 
barrier with exponential claim amounts were given. When the dividend strategy 
was considered, Yin and Yuen [5] considered a dividend policy aiming to max-
imize the expected discounted value of dividend until ruin. Taking the threshold 
dividend strategy into account, two integro-differential equations for the Ger-
ber-Shiu discounted penalty function were obtained by Lin and Pavlova [6]. The 
ruin model with multiple thresholds was discussed by Lin and Sendova [7]. For 
more about the related risk model, we can refer to [8] [9] [10] [11] [12] and cited 
there in. From all the literatures mentioned above, they have a common assump-
tion that the claim sizes obey exponential distribution, i.e. ( ) e ηη −= xf x . How-
ever, in fact, different dividend levels always reflect the difference of the economic 
environment, which results in the changes of the claim sizes. In detail, when the 
surplus u is more than the threshold b, the claim sizes obey an exponential dis-
tribution where the strength is 1η ; while <u b , the claim sizes obey an exponen-
tial distribution with strength 2η . Therefore, the exponential distribution is noted 
like  

( ) { } { }
1 2

1 2e e .η ηη η− −
≥ <= +x x

u b u bf x I I                    (2) 

{}⋅I  is an indicator function, such that { } 1≥ =u bI  and { } 0< =u bI  if ≥u b . In 
order to make it more general, we set the risk model with the claim sizes obeying 
a switched exponential distribution as follows  

( ) { } { }
1 2

1 2e e ,η ηη η− −
≥ <= +x x

u b u bf x p I q I                  (3) 

where p and q are two suitable positive constants to be chosen later. Clearly, when 
we choose 1= =p q  and 1 2η η= , (3) is the standard exponential distribution ap-
plied in [2]. 

The main aim of this letter is to compute the ruin probability under assump-
tion that the claim sizes obey a switched exponential distribution (3). 

The rest of this letter is organized as follows. In Section 2, we firstly get the 
Gerber-Shiu discounted penalty functions with different surplus. Then, the ruin 
probability is calculated by assuming the claim sizes obey a switched exponential 
distribution. 

2. Closed Form Absolute Ruin Probability 

In this letter, we consider the risk model with constant interest rate 0>r  and 
debit interest ρ . Besides, the studied risk model includes a general threshold 
dividend strategy. When the surplus is over threshold dividend b, we assume the 
insurance company gets insurance premium at a constant rate 1c  and earns in-
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terest at a constant rate r. If the surplus is between zero and b, it will collect in-
surance premium at a constant rate 2c  and earns interest at a constant rate r.  

When the surplus is between 2c
ρ

−  and zero, the insurer can borrow an amount  

of money equal to the deficit at a debit force ρ . Meanwhile, the insurer will re-
pay the debts continuously from his premium income. We denote the surplus of 
the insurer at time t with the credit interest r and debit interest ρ  by ( )U t  
which is the solution to  

( )

( ) ( )
( ) ( )

( ) ( )

1

2

2
2

d d d ; ,
d d d ; 0 ,d
d d d ; 0,

c t rU t t S t u b
c t rU t t S t u bU t

cc t U t t S t uρ
ρ

+ − ≥
 + − ≤ <= 
 + − − < <

          (4) 

where ( )
( )

0

N t

i
i

S t X
=

= ∑  is the cumulative damages in time interval [ ]0, t , ( )0c >   

represents the constant rate of premium, ( ){ }, 0N t t ≥  a Poisson process with 
intensity 0λ > , which counts the claim numbers in the interval [ ]0, t , and 
{ }, 1iX i ≥  (representing the size of claims and independent of ( ){ }, 0N t t ≥ ) is 
a sequence of independent and identically distributed nonnegative variables with 
common distribution function ( )F x  that satisfies ( )0 0F =  and has a posi-
tive mean ( )

0
dx F xµ

∞
= ∫ . Let { }( )0

, , ,t t
F F P

≥
Ω  be a filtered probability space 

containing all processes and random variables in this letter, satisfying the usual 
conditions, i.e. { } 0t t

F
≥

 is right continuous and P-complete. In order to obtain the 
expression of the ruin probability, we should work for two things. First of all, we 
should get the Gerber-Shiu discounted penalty function. Then, we calculate the ruin 
probability. So, let’s firstly define the Gerber-Shiu discounted penalty function 
( ),u bϕ .  

( ) ( ) ( )( ) ( ) ( ){ }, e , | 0 ,T
b b bu b E W U T U T R T U uβϕ − −= < ∞ =       (5) 

where T is the time of bankrupting, ( )R T < ∞  is an indicator function, which 
means ( ) 1R T < ∞ = , if the time of bankrupting is finite value. Else if  
( ) 0R T < ∞ = . ( ),W x y  is a non-negative measurable function satisfying  

( ) 2 2, , ,c cW x y
ρ ρ

   
∈ − ∞ × − ∞  
   

. ( )bU T −  is the surplus immediately before the  

company bankrupts. Next, we give the integro-differential equations for  
( ) ( ), 1, 2,3i u b iϕ = .  
Theorem 2.1. Let ( ) ( ), 1, 2,3i u b iϕ =  be the Gerber-Shiu discounted penalty 

function by the surplus u and the threshold b for model (4). Then  

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

2

2

1 1 1 10

2 3

, , , d

, d , d

, d 0, ;

u b

cu u

u b u

cu

ru c u b u b u x b F x

u x b F x u x b F x

W u x u F x u b

ρ

ρ

ϕ λ β ϕ λ ϕ

λ ϕ λ ϕ

λ

−

+

−

∞

+

′+ − + + −

+ − + −

+ − = ≥

∫

∫ ∫

∫

    (6) 
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( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( )

2

2

2 2 2 20

3

, , , d

, d

, d 0, 0 ;

u

cu

u

cu

ru c u b u b u x b F x

u x b F x

W u x u F x u b

ρ

ρ

ϕ λ β ϕ λ ϕ

λ ϕ

λ

+

∞

+

′+ − + + −

+ −

+ − = ≤ <

∫

∫

∫

      (7) 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

2

2

2 3 3 3

2

, , , d

, d 0, 0 .

cu

u

cu

u c u b u b u x b F x

cW u x u F x u

ρ

ρ

ρ ϕ λ β ϕ λ ϕ

λ
ρ

+

∞

+

′+ − + + −

 
+ − = − < < 

 

∫

∫
    (8) 

the boundary conditions are given like  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 2 3 2 2 1 1, , , 0, 0 , , , , ,b b b b b b rb c b b rb c b bϕ ϕ ϕ ϕ ϕ ϕ− − −′ ′= = + = +  

( ) ( ) 2 2 2
3 2 30 , 0, , , , .c c cb b b Wϕ ϕ ϕ

ρ ρ ρ
−    ′ ′= − = −   

   
 

Proof. When u b≥ , define the cumulative value  

( ) ( )1
1 0

e e d e e 1 .
t r t srt rt rtch u c s u

r
−= + = + −∫                (9) 

Note that the Gerber-Shiu discounted penalty functions have different expres-
sion when the surplus lies within different ranges, we discuss that with the follow-
ing four cases:  

1) When ( ) 2
b

cu t
ρ

≤ − , the amount of compensation is ( )bX h U t= − . Let 

2
3 , 1c bϕ

ρ
 
− = 
 

, its counterpart in the Gerber-Shiu discounted penalty function 

is ( ) ( )2 , dch
t W h h x F x

ρ

λ
∞

+
−∫ ;  

2) When ( )2 0b
c u t
ρ

− < < , ( ) ( )
2

3 , d
ch

h
t h x b F xρλ ϕ

+
−∫ ;  

3) When ( )0 bu t b≤ < , ( ) ( )2 , d
h

h b
t h x b F xλ ϕ

−
−∫ ;  

4) When ( )bu t b≥ , ( ) ( )10
, d

h b
t h x b F xλ ϕ

−
−∫ .  

Therefore, the Gerber-Shiu discounted penalty function is given like, 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( )

2

21 3

2 10

1

, , d , d

, d , d

1 , .

ch
ch h

h h b

h b

u b t W h h x F x t h x b F x

t h x b F x t h x b F x

t h b o t

ρ

ρ

ϕ λ λ ϕ

λ ϕ λ ϕ

λ ϕ

∞ +

+

−

−

= − + −

+ − + −

+ − +

∫ ∫

∫ ∫     (10) 

For ( )1 ,h bϕ , by using Taylor expansion, we get  

( ) ( ) ( )

( )

( )
( )

( )

( ) ( ) ( ) ( )

2 2
1 12

1 1 2 2
,,

1
1 1

, ,
, ,

,
, .

u bu b

h b h bu uh b u b t t o t
u tu t

u b
u b ru c t o t

u

ϕ ϕ
ϕ ϕ

ϕ
ϕ

 ∂ ∂ ∂ ∂
= + + +     ∂ ∂∂ ∂   

∂
= + + +

∂

 (11) 

Insert (11) into (10) and divide it by t. Let 0t → , we get the desired result. Since 
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(7) and (8) can be proved by using the same method, the detail is omitted.   □ 
Next, we prove the main result on the absolute ruin probability. For convenience, 

we denote  

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

2 2
5 6

1 2 3 4

3 4 5 6

1 2 3 4

3 4 5 6

2 2
5 6

0 0 0 0

0 0

0 0 0 0 0 0
,

0 0

0 0 0 0 0 0

0 0 0 0

ρ ρ

ρ ρ

    
− −    
    

 − − 
 − −
 =
 − −
 

′ ′ ′ ′− − 
 

    ′ ′− −        



c cL L

L b L b L b L b

L L L L
M

q b q b p b p b

L L L L

c cL L

 

( ) ( ) ( ) ( )2 , 3, 4′= + =i ip u ru c L u i , ( ) ( ) ( ) ( )1 , 1, 2′= + =i iq u ru c L u i ,  
( )T

3 4 5 6 7 8, , , , ,=C C C C C C C , ( )T1,0,0,0,0,0=B . The hyper-geometric function 
used later is introduced as follows  

( ) ( )
( ) ( ) ( )1 11

0
, , e 1 d , 0,− −−Γ

= − > >
Γ − Γ ∫

b axt ab
M a b x t t t b a

b a a
       (12) 

where the Gamma function is ( ) ( )1

0
e d

∞ −−Γ = ∫ xtx t t . 

In view of (6), let 0β =  and ( ), 1=W x y  in the Gerber-Shiu discounted pe-
nalty function ( ) ( ), 1, 2,3ϕ =i u b i , we can get the following theorem on the ruin 
probability. 

Theorem 2.2. In model (4), the closed-form ruin probability ( ) ( )1,2,3ϕ =i u i  
are given like  

( ) ( )

( ) ( ) ( )

1 11
1 3

1 1 1 11
4

e ,1 ,

1
e ,1 , ;

η

λ

η

ηλ λϕ

η λ ηλ

−

−

+ −
= − 

 

+ + − +   
+ +   

   

u

r
u

ru cr pu C M
r r r

ru c r p ru c
C M

r r r r

  (13) 

( ) ( )

( ) ( ) ( )

2

2

2 2
2 5

2 2 2 2
6

e ,1 ,

1
e ,1 , ;

η

λ

η

ηλ λϕ

η λ ηλ

−

−

+ −
= − 

 

+ + − +   
+ +   

   

u

r
u

ru cr qu C M
r r r

ru c r q ru c
C M

r r r r

 (14) 

( ) ( )

( ) ( ) ( )

2

2

2 2
3 7

2 2 2 2
8

e ,1 ,

1
e ,1 , ;

η

λ
ρ

η

ρ ηρ λ λϕ
ρ ρ ρ

ρ η ρ λ ρ ηλ
ρ ρ ρ ρ

−

−

+ −
= − 

 

+ + − +   
+ +   

   

u

u

u cqu C M

u c q u c
C M

 (15) 

where ( )T
3 4 8, , ,= ⋅⋅⋅C C C C  is solution of =MC B .  

Proof. By Theorem 2.1, we get  

( ) ( ) ( ) ( )
( ) ( )

1 1 1 1 1

1 1

, ( ) ,

1 , 0, ;

ru c u b r ru c u b

p u b u b

ϕ λ η ϕ

λη ϕ

′′ ′+ + − + +

− − = ≥
           (16) 
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( ) ( ) ( ) ( )
( ) ( )

2 2 2 2 2

2 2

, ( ) ,

1 , 0,0 ;

ru c u b r ru c u b

q u b u b

ϕ λ η ϕ

λη ϕ

′′ ′+ + − + +

− − = ≤ <
          (17) 

( ) ( ) ( ) ( )

( ) ( )

2 3 2 2 3

2
2 3

, ( ) ,

1 , 0, 0.

u c u b u c u b
cq u b u

ρ ϕ ρ λ ρ η ϕ

λη ϕ
ρ

′′ ′+ + − + +

− − = − < <
         (18) 

The boundary conditions are  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

2
3 1 1 2 2 3

2
2 2 1 1 3 2 3

, 1, lim , 0, , , , 0, 0 , ,

, , , 0 , 0, , , 0.

u

c b u b b b b b b b

crb c b b rb c b b b b b

ϕ ϕ ϕ ϕ ϕ ϕ
ρ

ϕ ϕ ϕ ϕ ϕ
ρ

− −

→∞

− −

 
− = = = = 
 

 ′ ′ ′ ′ ′+ = + = − = 
 

 

In order to obtain the expression of ruin probabilities, we employ the confluent 
hyper-geometric function. In (16), make auxiliary function ( ) ( )1 1 eauu X uϕ =  
where a is a constant to be determined later and then  

( ) ( ) ( )( ) ( )
( ) ( ) ( )( ) ( )

1 1 1 1 1

2
1 1 1 1 1

2

1 0,

ru c X u a ru c r X u

p a ru c a r ru c X u

η λ

λη λ η

′′ ′+ + + + + −  
 + − − + + + − + + = 

    (19) 

Define 1ru c z+ = , we have  

( ) ( ) ( )

1 1 1
1 1

2 1
1 1 12

21

1 1 0.

z c a z czX z X
r r r r

z cp a r a a z X
rr

ηλ

λη λ η

− + −     ′′ ′+ − +     
     

−  + − − + − + + =    

      (20) 

By choosing 1a η= − ,  

1 1 1 1 1
1 1 11 0,z c z c z cp rzX z X X

r r r r r r r
η ηλ λ− − −−         ′′ ′+ − − + ⋅ =         

         
 (21) 

Define 1 z v
r
η

= , we have by (21)  

1 1 1 1 1 1
1 1 1

1 1 1

1 0,rv c rv c rv cp rvX v X X
r r r r r
η η ηλ λ
η η η

     − − −−   ′′ ′+ − − + =        
        

 (22) 

Let ( )1 1
1 1

1

rv cX Y v
r
η
η

 −
= 

 
, (22) can be rewritten as  

( ) ( ) ( )1 1 11 0,r pvY v v Y v Y v
r r
λ λ−   ′′ ′+ − − − =   

   
           (23) 

By using the first kind of confluent hypergeometric function, we obtain that  

( ) ( ) ( )
1 3 4

1
,1 ; ,1 ; ,r

r pr pY v C M v C v M v
r r r r

λ λλ λ λ+ − − = − + +  
   

 (24) 

where 3C  and 4C  are constants. Without extra claims, iC  are constants for 
3i ≥  in the following. 

Next, the same method can be used to calculate (17) and (18). In (17), set  

( ) ( )2 2 eauu X uϕ = , 2ru c z+ = , 2a η= − , 2 z v
r
η

=  and ( )2 2
2 2

2

rv cX Y v
r
η
η

 −
= 

 
, 
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then we have  

( ) ( ) ( )2 2 21 0,r qvY v v Y v Y v
r r
λ λ−   ′′ ′+ − − − =   

   
            (25) 

The solution of (25) has the form  

( ) ( ) ( )
2 5 6

1
,1 ; ,1 ; .r

r qr qY v C M v C v M v
r r r r

λ λλ λ λ+ − − = − + +  
   

    (26) 

Similarly, the solution of (18) is  

( ) ( ) ( )
3 7 8

1
,1 ; ,1 ; ,

qqY v C M v C v M v
λ
ρ

ρ λρ λ λ λ
ρ ρ ρ ρ

+ −  −
= − + +  

   
   (27) 

In the sequel, we turn to compute the expression of ruin probability. Inserting  

1v z
r
η

=  and ( )1 1
1 1

1

rv cX Y v
r
η
η

 −
= 

 
 into (24) yields that  

( )

1 1
1 3

1 1
4

,1 ;

1
,1 ; .

r

z c zr pX C M
r r r r

r pz zC M
r r r r

λ

ηλ λ

λη ηλ

− −   = −   
   

+ −  + +  
   

        (28) 

Denote 1ru c z+ = , then (28) yields that  

( ) ( )

( ) ( ) ( )

1 1
1 3

1 1 1 1
4

,1 ;

1
,1 ; .

r

ru cr pX u C M
r r r

ru c r p ru c
C M

r r r r

λ

ηλ λ

η λ ηλ

+ −
= − 

 

+ + − +   
+ +   

   

    (29) 

Define ( ) ( ) 1
1 1 e uu X u ηϕ −= , we have by (29)  

( ) ( )

( ) ( ) ( )

1

1

1 1
1 3

1 1 1 1
4

e ,1 ;

1
e ,1 ; .

u

r
u

ru cr pu C M
r r r

ru c r p ru c
C M

r r r r

η

λ

η

ηλ λ
ϕ

η λ ηλ

−

−

+ −
= − 

 

+ + − +   
+ +   

   

   (30) 

Then we can use the same method to solve (26) and (27) like that  

( ) ( )

( ) ( ) ( )

2

2

2 2
2 5

2 2 2 2
6

e ,1 ,

1
e ,1 , ;

u

r
u

ru cr qu C M
r r r

ru c r q ru c
C M

r r r r

η

λ

η

ηλ λ
ϕ

η λ ηλ

−

−

+ −
= − 

 

+ + − +   
+ +   

   

   (31) 

( ) ( )

( ) ( ) ( )

2

2

2 2
3 7

2 2 2 2
8

e ,1 ,

1
e ,1 , .

u

u

u cqu C M

u c q u c
C M

η

λ
ρ

η

ρ ηρ λ λ
ϕ

ρ ρ ρ

ρ η ρ λ ρ ηλ
ρ ρ ρ ρ

−

−

+ −
= − 

 

+ + − +   
+ +   

   

  (32) 

To calculate the coefficients of the ruin probability ( )T
3 4 8, , ,C C C C= ⋅⋅ ⋅ , we firstly 
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rewrite (30)-(32) to be  

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

1 3 1 4 2 2 5 3 6 4

3 7 5 8 6

, ; ,

and , .

u b C L u C L u u b C L u C L u

u b C L u C L u

ϕ ϕ

ϕ

= + = +

= +
       (33) 

By inserting boundary conditions into (30), (31) and (32), we get  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 2
7 5 8 6 3 1 4 2 5 3 6 4

5 3 6 4 7 5 8 6

2 5 3 2 6 4 1 3 1 1 4 2

7 5 8 6 5 3 6 4

2 2
7 5 8 6

1; 0;

0 0 0 0 0;
0;

0 0 0 0 0;

0,

c cC L C L C L b C L b C L b C L b

C L C L C L C L
rb c C L b rb c C L b rb c C L b rb c C L b

C L C L C L C L

c cC L C L

ρ ρ

ρ ρ

    
− + − = + − − =   
   

+ − − =
′ ′ ′ ′+ + + − + − + =

′ ′ ′ ′+ − − =

   ′ ′− + − =   
   












 

(34) 
which can be simplified as MC B= . The proof is complete.               □ 

Remark 1. Let 1p q= =  and 1 2η η= , Theorem 2.1 reduces to the related 
results given in [2]. In this sense, the previously-known results are generalized. 
Further, Theorem 2.2 shows us the closed-form solution of the ruin probability 
which is valuable in theoretical applications.  

3. Conclusion 

In this letter, we discuss the ruin probability of the risk model under assumption 
that the claim amounts obey the switched exponential distribution. The closed-form 
expressions of the ruin probability are obtained by using the first kind of hyper-
geometric function. The obtained results may give us guidance in facing up to 
the economic crisis. 
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