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Abstract 
An improved method for estimation of causal effects from observational data 
is demonstrated. Applications in medicine have been few, and the purpose of 
the present study is to contribute new clinical insight by means of this new 
and more sophisticated analysis. Long term effect of medication for adult 
ADHD patients is not resolved. A model with causal parameters to represent 
effect of medication was formulated, which accounts for time-varying con-
founding and selection-bias from loss to follow-up. The popular marginal 
structural model (MSM) for causal inference, of Robins et al., adjusts for 
time-varying confounding, but suffers from lack of robustness for misspecifi-
cation in the weights. Recent work by Imai and Ratkovic [1] [2] achieves ro-
bustness in the MSM, through improved covariate balance (CBMSM). The 
CBMSM (freely available software) was compared with a standard fit of a 
MSM and a naive regression model, to give a robust estimate of the true 
treatment effect in 250 previously non-medicated adults, treated for one year, 
in a specialized ADHD outpatient clinic in Norway. Covariate balance was 
greatly improved, resulting in a stronger treatment effect than without this 
improvement. In terms of treatment effect per week, early stages seemed to 
have the strongest influence. An estimated average reduction of 4 units on the 
symptom scale assessed at 12 weeks, for hypothetical medication in the 9 - 12 
weeks period compared to no medication in this period, was found. The 
treatment effect persisted throughout the whole year, with an estimated aver-

How to cite this paper: Klungsøyr, O. and 
Fredriksen, M. (2017) Pharmacological 
Treatment of Adult Attention-Deficit/ 
Hyperactivity Disorder (ADHD) in a Longi-
tudinal Observational Study: Estimated 
Treatment Effect Strengthened by Improved 
Covariate Balance. Open Journal of Statistics, 
7, 988-1012. 
https://doi.org/10.4236/ojs.2017.76070  
 
Received: October 27, 2017 
Accepted: December 10, 2017 
Published: December 13, 2017 
 
Copyright © 2017 by authors and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/  

  
Open Access

http://www.scirp.org/journal/ojs
https://doi.org/10.4236/ojs.2017.76070
http://www.scirp.org
https://doi.org/10.4236/ojs.2017.76070
http://creativecommons.org/licenses/by/4.0/


O. Klungsøyr, M. Fredriksen 
 

 

DOI: 10.4236/ojs.2017.76070 989 Open Journal of Statistics 
 

age reduction of 0.7 units per week on symptoms assessed at one year, for 
hypothetical medication in the last 13 weeks of the year, compared to no me-
dication in this period. The present findings support a strong and causal di-
rect and indirect effect of pharmacological treatment of adults with ADHD on 
improvement in symptoms, and with a stronger treatment effect than has 
been reported. 
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1. Introduction 

Estimation of causal treatment effects from observational studies has obvious 
limitations and challenges. However, the randomized controlled trial is often no 
alternative, due to practical or ethical reasons. If a scientific question of interest 
really is a causal one, the analysis should target the specific question, even if the 
price is strong assumptions. In most cases, a scientist would more easily relate to 
subject specific assumptions, than an association with few assumptions and no 
causal statement, which can be misleading (in both magnitude and direction). 
Causal methods are more explicit in the assumptions for a causal interpretation, 
and often more robust for certain types of bias, even though they are just as sus-
ceptible to e.g. unmeasured confounding as more traditional methods.  

Short term effect of medication for treatment of ADHD is well documented [3] 
[4] [5] [6]. However, questions about long-term effects are less resolved, and 
more long-term prospective studies on treatment of adult ADHD patients with 
no prior medication, in a practical clinical setting are warranted [7]. Selection 
bias, high drop-out rate and limited reports on side-effects characterizes the few 
that have been conducted [8] [9].  

To estimate the causal effect of medication, a successful study design would 
compare two arms in a trial, an active on medication and a control arm without 
medication. However, as for ADHD, present knowledge makes inclusion to the 
control-arm questionable. Also, if all eligible patients are offered treatment, a 
high number of patients are more likely to participate. A research design where 
all patients are offered medication and follow-up assessments, resembles clinical 
practice, with findings that apply to the population of interest. Causal effects can 
still be estimated under additional assumptions.  

If all patients start off with medication, and those that experience intolerance, 
or a high number of side-effects, terminate the treatment, it means that there are 
patients on and off medication. A direct comparison of these groups yields a bi-
ased estimate of the causal treatment effect, due to feedback between the treat-
ment assignment process and the outcome, e.g. symptoms. If treatment decreas-
es subsequent symptoms on the one hand, but on the other hand increases side – 
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effects and intolerance which again leads to termination of treatment, one might 
expect that the direct comparison between those on and off medication is an 
overestimate of the true treatment effect. Bias in the opposite direction can be 
expected due to time-varying confounding. Prior medication likely improves 
subsequent symptoms which represents a confounder for the association be-
tween continued medication and final symptoms. The positive association be-
tween prior symptoms and both continued medication and final symptoms will 
weaken the negative association between continued medication and final symp-
toms, and result in underestimation of the true treatment effect.  

A marginal structural model (MSM), with inverse probability weighting (IPW) 
can account for such feedback, and make an unbiased estimate of the treatment ef-
fect, under specific assumptions [10]. In spite of its popularity, in a wide range of 
fields, the MSM also has limitations. For example, it is sensitive to miss-specification 
of the treatment assignment model in the weights. Fitting a MSM can give an 
overly low estimated probability for treatment for certain covariate combina-
tions, which yields a high weight in the analysis (inverse of the probability). This 
high weight will propagate through time since the weight in a later time period is 
the cumulative product of the weights at earlier periods. Imai and Ratkovic (I&R) 
have successfully improved the robustness of such weighting methods as in the 
MSM, by introducing the covariate balancing propensity score (CBPS) metho-
dology, first for cross-sectional, and later for longitudinal data [1] [2].  

In this study, a re-analysis of longitudinal follow-up data on medication his-
tory and symptoms over one year for adult ADHD patients is presented. Ordi-
nary longitudinal analysis of the same data, has been previously published, with 
limited focus on causal treatment effect, and little attempt to account for 
time-varying confounding mentioned above [11]. The present analysis fits an 
ordinary MSM, and compares it with the refinement of improved covariate bal-
ance (CBMSM), to estimate the causal effect of treatment on symptoms at one 
year follow-up.  

The study sample, measures used, and the formulation of the MSM and 
CBMSM, including necessary assumptions for causal interpretation, will be de-
scribed in the Method section. In Results, the findings from the CBMSM method 
is presented and contrasted to the ordinary fitted MSM. The Discussion section, 
relates the results to the previously published analysis, lists some strengths and 
limitations in the methods and interprets the results.  

2. Methods 
2.1. Sample and Treatment Schedule 

Patients were included at a specialized outpatient clinic in Vestfold, Norway, 
between May 2009 and December 2010. Referred patients were aged 18 - 60, had 
to fulfill DSM-5 criteria for ADHD [12], and without experience with any 
ADHD medication in adulthood. A total of 250 patients were included. Relevant 
baseline characteristics were: 129 were female (52%), 140 were unemployed or 
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work disabled (56%), 188 had at least one comorbid disorder (75%), 156 used 
concomitant non-ADHD medication (69%), mean age was 32.5 years (SD = 9.8), 
mean body weight was 77.0 kg (SD = 16.8), mean number of years of education 
was 11 (SD = 2.3). By DSM-IV subgroups of adult ADHD, 97 patients were cate-
gorized as ADHD-inattentive, 113 as ADHD-combined, 17 as ADHD-hyperactive, 
and 23 as ADHD-residual. A more complete description of the sample can be 
found in a recent publication [11]. 

All patients received methylphenidate as first-line medication and psychoso-
cial treatment according to the national treatment guidelines (Norwegian Di-
rectorate of Health, 2005). Patients were assessed for symptoms, functioning and 
side-effects at scheduled follow-up visits at baseline, 6 weeks, 12 weeks, 26 weeks 
and 52 weeks. Standard-titration with immediate-release methylphenidate 
(MPH-IR) was prescribed for the first six weeks; 5 mg three times a day, and if 
tolerated stepwise increase until maximum 60 mg/day. Thereafter a flexible 
dose titration was applied to optimize efficacy (maximum 120 mg/day). Shift 
into extended-release methylphenidate (MPH-ER) was offered at the three- 
month visit if patients reported difficulties with compliance, annoying fluctua-
tions in effect or otherwise wanted to try an easier administration form. If MPH 
was not tolerated or was ineffective, second-line medications were short-acting 
dextroamphetamine (dAMP) or atomoxetine (ATX). The dose of dAMP was es-
calated until a maximum 50 mg/day, and dose of ATX to a maximum of 120 
mg/day [11].  

2.2. Measures 
2.2.1. Predictive Baseline Characteristics 
Baseline characteristics of the sample have been thoroughly described previously 
[11] [13], and constitute demographics, measures of functioning, mental distress, 
ADHD symptom-level, and comorbid anxiety, depression, bi-polar disorder, and 
drug and alcohol use disorders. To be diagnosed with ADHD, patients must re-
trospectively have endorsed at least 6 out of 9 DSM-IV symptoms of inattention 
and/or hyperactivity/impulsivity in childhood, and currently been assessed by two 
board certified psychiatrists using the Norwegian version of the Diagnostic Inter-
view for ADHD in Adults, second edition (DIVA 2.0) [14] with at least 5 out of 9 
DSM-IV symptoms of inattention and/or hyperactivity/impulsivity for the last 6 
months (according to diagnostic threshold for ADHD in adults in DSM-5 [12], 
and with their ADHD symptoms related to significant impairment in social, aca-
demic, or occupational functioning. Comorbid psychiatric disorders were assessed 
with the MINI International Neuropsychiatric Interview Plus (M.I.N.I.-Plus) [15] 
[16] [17]. The time-fixed covariates selected in the regression model for treatment 
assignment (time-varying) were baseline side-effect level (predefined) measured by 
mean score of the Canadian Attention Deficit Hyperactivity Disorder Resource Al-
liance (CADDRA) patient and ADHD medication form (8.36) for indicating side 
effects [18], alcohol use disorder (dichotomous), any anxiety disorder (dichotom-
ous), baseline psychosocial function by the Global Assessment of Functioning 

https://doi.org/10.4236/ojs.2017.76070


O. Klungsøyr, M. Fredriksen 
 

 

DOI: 10.4236/ojs.2017.76070 992 Open Journal of Statistics 
 

(GAF)—symptom level (GAF-S) [19], and age at baseline. 

2.2.2. Time-Varying Covariates and Outcome 
The primary outcome measure was current ADHD symptoms on the 18-item 
Adult ADHD Self-Report Scale version 1.1 (ASRS), Norwegian version [20]. A 
continuous scoring method was used, and frequency of ADHD symptoms 
present since last visit, self-rated on a 5-point scale (0 - 4) on each item, with a 
sum score from 0 to 72 points. Cronbach’s alpha was 0.86.  

Two psychiatrists, not involved in the treatment, assessed overall psychosocial 
functioning (last two weeks) by the Global Assessment of Functioning (GAF) 
Scale [19], the split version of symptom (GAF-S) and function (GAF-F) to im-
prove reliability [21]. The intra-class correlation coefficient between the raters 
was 0.83 for GAF-S and 0.79 for GAF-F in the pilot [13]. 

Level of mental distress over the last week was self-rated on 90 items on a 5 
point scale, and the mean of all items is referred to as Global-Severity-Index 
(GSI) [22] [23].  

Side-effects (Mean Side Effects—MSE) was quantified by a measure of tolera-
bility Patient and ADHD medication form. The questionnaire lists symptoms 
frequently associated with stimulant treatment, and each item is scored by fre-
quency (score 0 - 3) [18].  

Dose is a time-varying covariate and expresses daily dose in mg (or dose 
equivalent) per day.  

Medication (MED) is a time-varying dichotomous indicator (1/0) of whether 
on medication or not, at the time of assessment.  

2.3. Estimation of Causal Effects 

Standard notation in the causal inference literature, makes use of “counterfactual 
outcomes”. A counterfactual, or potential outcome, is an outcome for a hypo-
thetical treatment regime. There are general (non-parametric) assumptions ne-
cessary to estimate causal effects from observational data [24]. Consistency 
means that a person’s counterfactual outcome under his/her observed treatment 
history is precisely his/her observed outcome. Exchangeability means that the 
treatment groups are representative for each other. In a randomized controlled 
trial (RCT) exchangeability is guaranteed by design, and implies that if the treat-
ment group had been untreated, they would have responded similar to the control 
group. In observational data, exchangeability is unrealistic, so instead one hopes 
for conditional exchangeability (exchangeability within levels of confounding co-
variates), often called “no unmeasured confounding”. Positivity means a positive 
probability for all levels of treatment, in all levels of measured covariates. In other 
words, with treatment = yes/no, positivity requires that there are both treated and 
untreated persons for all combinations of the confounding covariates. Correct 
model specification is necessary for all models, also in causal inference, both for 
the outcome model and models for the weights in the present analysis.  

These assumptions are helpful to interpret results, but not testable from data, 
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although some indication of non-positivity or misspecification is given by the 
weight distribution in weighting methods like the MSM [24]. A mean of the 
“stabilized weights” far from 1 indicates non-positivity or model misspecifica-
tion. If conditional exchangeability is satisfied, an average causal effect in the 
population can be estimated by combining stratified treatment effects within le-
vels of confounding covariates, or by regression models. However, this becomes 
unfeasible with a high number of covariates, some of which may be continuous. 
With many strata and limited sample size (or severe differences between treatment 
groups), some strata are bound to lack a treatment group. This non-positivity is 
not easy detectable, and leads to extrapolation in a regression model. In light of 
this, propensity score (PS) methods have become popular [25]. PS is the proba-
bility of being treated, conditional on all confounding covariates. It is a balanc-
ing score, a univariate measure that summarizes all confounding covariates. To 
adjust for confounding, it suffices to stratify/condition on the PS, instead of all 
covariates, which avoids extrapolation, and allows for diagnosing differences in 
the treatment groups [26] [27]. If the treatment groups have little overlap in the 
PS distribution, conditional exchangeability is questionable and causal inference 
might be flawed. The weights in the MSM are functions of the PS.  

Exchangeability between treatment groups implies covariate balance, that for 
any covariate, the treatment groups have equal distributions, e.g. equality of 
weighted means. Conditional exchangeability implies that all confounding cova-
riates are measured and balanced. In an observational study, without knowing 
whether or not conditional exchangeability is satisfied, to check covariate bal-
ance in measured covariates is informative and recommended [28], even though 
measured covariate balance does not guaranty balance in unmeasured con-
founding covariates. Balance diagnostics in measured covariates is a minimum 
for unbiased estimation, and routinely reported in PS studies, but often ignored 
in the MSM literature, maybe due to the more complex time-varying weights 
[29]. The MSM has been found to be highly sensitive to model misspecification 
in the treatment assignment model [2]. Rare covariate combinations with low 
number of treated, results in large weights that dominate the analysis. Recent 
work of Imai and Ratkovic has focused on automatic improvement in covariate 
balance for the MSM in a longitudinal setting, to make it more robust. Their 
method, here denoted covariate balanced MSM (CBMSM), generalizes their co-
variate balance propensity score (CBPS) from 2014 [1], to the longitudinal set-
ting, and is available in open-source software as an R package (CBPS) at CRAN 
[30] [31]. In the present analysis, the causal effect of ADHD medication on 
symptoms at one year follow-up is estimated, with adjustment for time-varying 
confounding (MSM), with and without improved covariate balance (CBMSM).  

2.4. MSM for ADHD-Symptoms 

A standard longitudinal analysis (linear mixed model) of the ASRS symptoms in 
the present study-sample, has previously been published (Figures 1-3) [11]. 
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Large individual variation in symptoms over time was found, but rapid average 
improvement (during first 6 weeks), followed by persistent low level (Figure 1). 
Different medication histories reflected acute intolerance, continuous medica-
tion, treatment termination after some time, and off and on trajectories (Figure 
2).  

 

 
Figure 1. Symptom level (ASRS) at different assessments during one year treatment, in a Norwegian sample of 250 pa-
tients with ADHD diagnosed in adulthood. 

 

 
Figure 2. Examples of different medication histories, intolerance (top left), continuous (top right), short term (bottom 
left), on/off (bottom right), in a Norwegian sample of 250 patients with ADHD diagnosed in adulthood. 
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Figure 3. Feedback between treatment (on/off medication each period) and symptoms (ASRS). Boxplot of ASRS 
distribution for those on/off medication in next period (left panel), and at the end of current period (right panel), 
in a Norwegian sample of 250 patients with ADHD diagnosed in adulthood. 

 
Feedback between medication and symptoms is illustrated in Figure 3. Re-

ceiving medication in time-period j, was followed by subsequent average lower 
symptom level than no-medication (Figure 3, right panel). On the other hand, 
the off-medication group at time-period j + 1, had a history of higher average 
symptom level at the prior time-period than the on-medication group (Figure 3, 
left panel). These box-plots suggest that the data contains information about the 
true treatment effect, and calls for methods with the ability to account for dif-
ferent biases, and target the effect of interest. A MSM (with IPW) can adjust for 
time-varying confounding, and selection bias from differential loss to follow-up, 
in settings where standard regression models (univariate or longitudinal) fail 
[10]. 

The MSM is a model for a counterfactual outcome, univariate or repeated 
measure (longitudinal). In the present application, the univariate model is suffi-
cient and easy to interpret. The MSM for the mean counterfactual end-of-study 
univariate ASRS level, denoted by Y (ADHD symptoms at one year follow-up), 
can be formulated as: 

( )52 0 1 6 2 12 3 26 4 52E Y med med med med medβ β β β β  = + + + +        (1) 

where 6med , 12med , 26med , and 52med  are dichotomous (1/0) indicators of 
on/off medication at baseline, 6 weeks, 12 weeks, 26 weeks and 52 weeks, respec-
tively. 52med  which denotes medication history at 52 weeks, was limited to one 
of five different regimes (Table 1), for reasons that will become clear later. 

( )52Y med  is the counter-factual final outcome under a hypothetical one year  
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Table 1. Different medication regimes ( med ) considered in this study, of a Norwegian 
sample of 250 patients with ADHD diagnosed in adulthood. 

Medication at Baseline 6 weeks 12 weeks 26 weeks 52 weeks 

Average of 3 weeks of medication (N = 4) Yes No No No No 

Average of 9 weeks of medication (N = 8) Yes Yes No No No 

Average of 19 weeks of medication (N = 13) Yes Yes Yes No No 

Average of 39 weeks of medication (N = 14) Yes Yes Yes Yes No 

One year of medication (N = 131) Yes Yes Yes Yes Yes 

 

 
Figure 4. Causal diagram (DAG) of the longitudinal structure of the data, a Norwegian 
sample of 250 patients with ADHD diagnosed in adulthood. 

 
medication history. 0β  is the marginal mean of Y with medication at baseline 
only, 1β  corresponds to average change in Y under medication regime (1, 1, 0, 
0, 0) relative to (1, 0, 0, 0, 0), 2β  corresponds to average change in Y under 
medication regime (1, 1, 1, 0, 0) relative to (1, 1, 0, 0, 0), and so on.  

The time-varying covariates GSI, GAF-S and GAF-F, are viewed as closest in 
time to the actual follow-up assessment. MSE (side-effects) and ASRS (symp-
tom-level) contain information from the whole preceding period, but with most 
weight close to the follow-up assessment. MED (indicator for on/off medication) 
describes the treatment status at the time of assessment. MED = 0 means that 
medication was terminated some time during the preceding period. The para-
meters in Equation (1) therefore each represents the effect of half the previous 
and half the following period of extra medication (on average), with uniformly 
distributed termination times. With respect to the direction of effects, the influ-
ence is allowed from medication to symptom-level in the same period, and from 
symptom-level to medication in the following period (Figure 4).  

To estimate the MSM in (1), a weighted univariate linear regression model 
(associational), conditional on medication history only, is fitted [10]: 

52 0 1 6 2 12 3 26 4 52E Y MED MED MED MED MEDβ β β β β  = + + + +      (2) 

with weights (stabilized) for each person at time j, specified by:  

( )
( )

1

1
1 1

,

, ,

ssj
j s

ss s

Pr MED MED V
SW

Pr MED MED L V

−

=
− −

=∏
             

 (3) 

The weights are estimated by a series of logistic regressions. V represents 
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baseline confounders and 1sL −  the time-varying confounders (only in deno-
minator). Robust standard errors are used, e.g. by the “sandwich” software 
package in R [32] to account for the fact that the weights are unknown and have 
to be estimated [10]. The parameters in (2) have causal interpretations, and are 
unbiased estimates of the theoretical parameters in (1), under the assumptions in 
the previous section, no selection bias from loss to follow-up, and no measure-
ment error [10]. All confounder adjustment is achieved through the weights. 
Weights can be calculated using the “ipw” software package in R [33]. With no 
time-varying confounding, the numerator and denominator in (3) are equal and 
the weights equals one. If a combination of the confounders in the denominator 
gives a small estimated probability for treatment, the weight can become very 
large, and will propagate through time, due to the cumulative product. This is 
automatically alleviated with the CBMSM algorithm.  

2.5. Improved Covariate Balance with CBMSM 

Estimating the weights in (3) for the MSM, is usually done with a series of logis-
tic regressions by maximum likelihood (ML), in a generalized linear model 
(GLM). With misspecification in these PS-models, maximizing the likelihood 
might not balance the covariates [1]. I&R resolve this by explicitly imposing 
moment conditions (covariate balance equations), e.g. the weighted mean of a 
covariate in the treated group is set equal to the weighted mean in the untreated 
group (moment condition equal to zero). Parameter estimation and moment 
conditions are solved simultaneously. With only one dichotomous treatment va-
riable (yes/no) in a cross-sectional setting, total number of balance equations 
equals the number of parameters, and CBPS in the simplest form is just-identified 
(Appendix) [1]. In a longitudinal setting, the potential number of different 
treatment histories is large, and balance is needed across all of them, which re-
sults in over-identification, i.e. more balance equations than parameters. This 
over-identified set of equations does not have one unique solution, but is solved 
to minimize a quadratic function of the moment conditions (as close as possible 
to zero) to give “minimum imbalance” by the generalized method of moments 
(GMM) (Appendix) [34].  

With medication = yes/no in four consecutive time periods (everyone started 
off on medication), the number of potential treatment histories are 16. To avoid 
loss of precision in parameter estimates from patterns with few patients, only 
monotone treatment regimens were allowed (Table 1). This means that once a 
patient temporary terminated medication, a restart was excluded from the anal-
ysis, instead the data for this patient was censored from the point of restart and 
forward. In this way, e.g. 3β  in model (1) refers to average change in Y among 
those with an average of 39 weeks of medication, relative to those with an aver-
age of 19 weeks (Table 1). 

To assess differences between treatment groups, overlap in the PS distribu-
tions for the five groups, was examined. Here, the PS represented probability for 
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termination of medication sooner or later, as a function of baseline covariates.  

2.5.1. Covariate (im) Balance 
To assess balance, the standardized mean difference (SMD) for each covariate 
(difference in weighted means between two treatment groups, divided by the 
population standard deviation), is calculated. More precisely, the SMD express 
imbalance, which is smaller for better balance. As a rule of thumb, a value less 
than 0.25 is commonly considered to be acceptable [26] [29] in a cross-sectional 
setting. No such acceptance level has been suggested for longitudinal data. Bal-
ance is more challenging in a longitudinal setting, because of the over-identified 
set of equations. For each time period, every covariate is balanced on all possible 
current and future treatment patterns conditional on the past treatment history. 
With 4J =  as the number of time periods (as in the present data), each cova-
riate enters 12 2J j−−  moment conditions at time period j [2], for example in 
the first time period ( 1j = ), covariates enter 15 moment conditions of which 
each represent the same number of equations as number of unknown parameters 
and number of covariates. Obviously, for a covariate to satisfy a higher number of 
equations, the “best” solution is expected to be further away from an exact solution, 
which implies more imbalance. The GMM estimation algorithm minimizes im-
balance across all moment conditions and time periods (Appendix) [2].  

2.5.2. Estimating the Causal Effect of ADHD Medication 
Model selection for the weights in Equation (3) was based on combinations of 
covariates that were significant predictors for continued medication at several 
time-points, and with resulting imbalance as low as possible. The following lo-
gistic model was chosen: 

( )( )
2

0 1 2 0 3 4 5 0 6 7 0
2

8 0 9 1 10 1 11 1 12 1

logit 1j

j j j j

Pr MED

anx mse age age gafs alc alc mse

alc gafs dose asrs gsi gaff

α α α α α α α α

α α α α α− − − −

=

= + + + + + + + ×

+ × + + + +



  (4) 

with the abbreviations anx—indicator for any anxiety disorder at baseline, 0mse
—mean side-effects at baseline, age—age at baseline, 0gafs —baseline psy-
chosocial function, symptom part, alc—indicator for baseline alcohol use dis-
order, 1jdose − —dose in previous period, 1jasrs − —ADHD symptoms at pre-
vious assessment, 1jgsi − —distress at previous assessment, 2

1jgaff − —squared 
psychosocial function, function part at previous assessment.  

A similar model for censoring in the censoring weights was constructed. 
Censoring was used for deviation from monotone treatment (all patients that 
deviated from the five different regimes in Table 1), and for those with missing 
values in the ASRS outcome, at some point.  

2.6. Missing Data 

In these data, there were missing values, both in the outcome and in covariates. 
The 26 week assessment had the most missing, gafs26, gaff26—66 missing, 
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mse26—63 missing, gsi26—49 missing, asrs26—46 missing, and 27 variables had 
no missing values. 132 observations had complete cases with no missing values 
at any assessment. With substantial missingness for some covariates (more than 
20%), possibly caused by side-effects, multiple imputation (MI) was considered a 
suitable method to reduce the impact of loss of data. The missing covariates were 
multiple imputed, with chained equations [35] under the assumption of missing 
at random (MAR), and performed with the MICE package in R [36]. The ASRS 
symptom outcome, was also imputed when serving as a covariate, but not as 
outcome. Censoring weights were chosen to correct for potential bias from 
missing outcomes (loss to follow-up), a straight forward extension to the inverse 
probability of treatment weights to correct for time-varying confounding. For 
the missing covariates, the data were imputed 10 times, and all analysis (meas-
ures of balance and parameter estimates) was repeated for each dataset, and 
combined using Rubin’s rules [37]. After imputation, the dataset consisted of 
170 observations with no missing outcome and covariates, and with monotone 
treatment history.  

3. Results 
3.1. Overlap of Different Treatment Groups 

The five different groups (Table 1) were comparable, with good overlap in the 
whole range of predicted probability for termination of treatment (PS), although 
some variation in the right tail (Figure 5). The two groups with termination fol- 

 

 
Figure 5. Overlap in the five different treatment groups, with respect to predicted proba-
bility for termination of medication (PS), by baseline covariates:, 0gaff —psychosocial 
functioning at baseline, anx—indicator for baseline anxiety disorder, alc—indicator for 
baseline alcohol use disorder, 0asrs —baseline ADHD symptoms, 0gsi —baseline meas-
ure of distress, 0 0asrs gsi× —interaction, in a Norwegian sample of 250 patients with 
ADHD diagnosed in adulthood. 
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lowing baseline and 6 weeks had clearly right—shifted probability mass (higher 
probability for termination) compared to the other groups, which is intuitively 
reasonable, being closest in time to the explanatory covariates. No signs of se-
rious violations of conditional exchangeability (among measured baseline cova-
riates) or positivity were found (Figure 5 and Figure 9). 

3.2. Covariate (im) Balance 

Figures 6-8 shows graphically the SMDs for each covariate in the model from 
Equation (4), in estimation of the parameters in the MSM, and Table 2 summa-
rizes these findings, with a comparison between the results from the CBMSM 
weights and from an ordinary fit of the MSM, with GLM weights (“ipw” package 
in R) [33]. All results are MI-estimates based on 10 multiple imputed datasets. In 
estimation of both 3β  and 4β , the imbalance is clearly reduced in the estima-
tion from the CBMSM weights compared to unweighted estimation (Figure 6, 
Figure 7) and compared with ordinary fitted MSM with GLM weights (Figure 
8). The recommended acceptance-level of ±0.25 in the cross-sectional setting, is 
indicated with dotted vertical lines. Three covariates exceeded this limit, howev-
er those considered important time-varying confounders, like previous  

 

 
Figure 6. Improved balance in covariates for estimation of 3β , by standardized mean 
differences (SMD), with covariates from Equation (4) and CBMSM weights (sorted by 
unweighted imbalance), in a Norwegian sample of 250 patients with ADHD diagnosed in 
adulthood. Results are based on multiple imputation to limit influence from missing co-
variates (10 imputed datasets, N = 170). 0mse : baseline mean side effects, 𝑎𝑎𝑎𝑎𝑎𝑎: baseline 
alcohol use disorder, 0gafs : baseline psychosocial function—symptom part, 1jdose − : 

dose in previous period, age: age at baseline, 1jasrs − : ADHD symptoms at previous as-

sessment, anx: baseline anxiety disorder, 1jgsi − : distress at previous assessment, 1jgaff − : 

psychosocial function—function part at previous assessment. 
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Figure 7. Improved balance in covariates for estimation of 4β , by standardized mean differences (SMD), with covariates from 
Equation (4) and CBMSM weights (sorted by unweighted imbalance), in a Norwegian sample of 250 patients with ADHD diag-
nosed in adulthood. Results are based on multiple imputation to limit influence from missing covariates (10 imputed datasets, N = 
170). 0mse : baseline mean side effects, 𝑎𝑎𝑎𝑎𝑎𝑎: baseline alcohol use disorder, 0gafs : baseline psychosocial function—symptom part, 

1jdose − : dose in previous period, age: age at baseline, 1jasrs − : ADHD symptoms at previous assessment, anx: baseline anxiety 

disorder, 1jgsi − : distress at previous assessment, 1jgaff − : psychosocial function—function part at previous assessment. 

 

 
Figure 8. Comparison of balance in covariates for estimation of 3β , by standardized mean differences (SMD), covariates from 
Equation (4) and with GLM versus CBMSM weights (sorted by GLM weight imbalance), in a Norwegian sample of 250 patients with 
ADHD diagnosed in adulthood. Results are based on multiple imputation to limit influence from missing covariates (10 imputed 
datasets, N = 170). 0mse : baseline mean side effects, alc: baseline alcohol use disorder, 0gafs : baseline psychosocial function—symptom 
part, 1jdose − : dose in previous period, age: age at baseline, 1jasrs − : ADHD symptoms at previous assessment, anx: baseline anxiety dis-

order, 1jgsi − : distress at previous assessment, 1jgaff − : psychosocial function—function part at previous assessment. 
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Table 2. Average and spread in absolute imbalance (SMD) among covariates in treatment 
assignment model, for estimation of parameters in the MSM. Results are based on mul-
tiple imputation to limit influence from missing covariates (10 imputed datasets, N = 
170). 

 CBMSM GLM 

 mean (|SMD|) sd (|SMD|) mean (|SMD|) sd (|SMD|) 

1β  
2β  
3β  
4β  

0.87 

0.95 

0.29 

0.23 

0.65 

0.89 

0.35 

0.2 

1.82 

2.3 

0.81 

0.51 

1.43 

2.25 

0.88 

0.38 

 
symptom-level, psychosocial functioning and distress were within the limit 
(Figures 6-8). Slightly less imbalance in estimation of 4β , compared to 3β  is 
also indicated in the figures. This is confirmed in Table 2, where average abso-
lute imbalance over all covariates are presented and compared with GLM 
weights. Estimates of early effects of treatment ( 1β  and 2β ) are clearly based 
on more imbalance than later effects ( 3β  and 4β ). This is due to more mo-
ment conditions for each covariate early in the observation period, and the fact 
that groups with early termination were more different from the completers than 
those with late termination. CBMSM weights are superior to GLM weights for 
estimation of all effects with respect to imbalance (Table 2). Finally, the average 
imbalance for estimation of both 3β  and 4β  are close to the cross-sectional 
acceptance level of 0.25 (Table 2).  

3.3. Estimation of Causal Effects of ADHD Medication 

In Table 3(a) different estimates (MI-estimates) of the causal parameters in the 
MSM from Equation (1) are presented, and estimates for the CBMSM method 
across imputations are presented in Table 3(b). Each parameter has the inter-
pretation of an effect of hypothetical medication in a period, in addition to being 
on medication up until that period. CBMSM estimates (Table 3(a), left-most 
column) are believed to be closest to the true unknown causal parameters, and 
show strong effects from medication in both the 19 - 39 weeks period, and the 39 
- 52 weeks period. Hypothetical medication relative to no medication in the 19 - 
39 weeks period (being on medication until 19 weeks), would be expected to re-
duce ASRS symptoms significantly at one year with 12.06 units ( 3 12.06β = − , 
95% : 20.3, 3.88CI − − , 0.004p = ), and hypothetical medication relative to no 
medication in the 39 - 52 weeks period (being on medication until 39 weeks) 
would result in a significant reduction in symptoms of 8.72 units ( 4 8.72β = − , 
95% : 15.6, 1.88CI − − , 0.013p = ). The 3β  coefficient represents the longest 
period of medication (20 weeks on average) and had the strongest effect. It 
represents a “direct effect”, not mediated through the last period. Effects of hy-
pothetical medication in the first two periods (3 - 9 weeks, and 9 - 19 weeks) 
were non-significant, indicating possible mediation through subsequent periods.  
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Compared to an ordinary fitted MSM with GLM weights (Table 3(a), column 
4 - 6) the differences in magnitude are modest, when the sizable improvement in 
average imbalance is taken into account (Table 2). The effect from the last pe-
riod is reduced by 25% relative to the CBMSM, but still strong and significant. 
To indicate the magnitude of selection bias from non-monotone treatment pat-
tern or loss to follow-up, CBMSM estimates without censoring weights are pre-
sented in columns 10 - 12. Compared to the fully adjusted CBMSM estimates, 
the selection bias was not negligible and seemed to result in negative bias (unde-
restimation) mostly in the 19 - 39 weeks effect with a 15% reduction in the esti-
mate. Without any adjustment, the effects would be greatly underestimated, with 
a relative bias of 11% (19 - 39 weeks period) and 47% (39 - 52 weeks period), re-
spectively (Table 3(a), column 13 - 15). For reference, an ordinary linear regres-
sion, with adjustment for time-varying covariates is included (Table 3(a), col-
umn 7 - 9). The results show serious underestimation with this approach, with 
37% and 53% relative bias for the 19 - 39 weeks, and 39 - 52 weeks periods, re-
spectively. The effect of the 39 - 52 weeks period is no longer significant, and the 
bias is increased, also compared to the no adjustment (unweighted) case. This 
clearly demonstrates failure of standard regression to account for time-varying 
confounding, together with direction and magnitude of this bias. In Table 3(b), 
parameter estimates for the CBMSM method are shown across imputations. In 
each imputation, the missing covariates are predicted from all available data (e.g. 
including side-effects), and little between-imputation variability was found.  

Separate models (CBMSM) to assess influence of different periods of medica-
tion on ASRS symptoms at 26 weeks, and at 12 weeks were fitted (MI-estimates) 
to examine the course of treatment effects and symptoms (Table 4). With 
ASRS26 as outcome, the coefficient for the most recent period of medication 
represents the effect of hypothetical medication relative to no medication in the 
19 - 26 weeks period (when being on medication prior to 19 weeks). This seven- 
week period of medication had a strong and significant effect, and would be ex-
pected to reduce symptoms with 20 units ( 3 19.98β = − , 95% : 23.6, 16.37CI − − , 

0.001p < ), a magnitude of the same size as the total treatment effect from two 
periods in the ASRS52-model. Estimated effects of earlier periods were nonsigni-
ficant, in spite of 2β  representing the longest period of medication (10 weeks), 
possibly resulting from mediation through the last period. With ASRS12 as out-
come, the coefficient for the most recent period of medication represents the ef-
fect of hypothetical medication relative to no medication in the 9 - 12 weeks pe-
riod (when being on medication prior to 9 weeks). This three-week period of 
medication had a strong and significant effect of 13 units expected reduction in 
symptoms ( 2 13.1β = − , 95% : 18.54, 7.65CI − − , 0.001p < ). Estimated effect of 
the earlier period, 3 - 9 weeks, was nonsignificant, in spite of longer duration, 
possibly mediated through the last period. 

In summary, medication seemed to have strong and positive effects on subse-
quent symptoms, across the whole year, both for early and late periods. Symp- 
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Table 3. (a) Estimated average causal effects of medication in different time periods on final symptoms (ASRS) at one year fol-
low-up, in a Norwegian sample of 250 patients with ADHD diagnosed in adulthood. Results are based on multiple imputation to 
limit influence from missing covariates (10 imputed datasets, N = 170). CBMSM: results of improved covariate balance from Ko-
suke & Ratkovic, GLM: ordinary IPW estimation by logistic regression in a MSM, LM: ordinary least squares regression with ad-
justment for time-varying covariates, CBMSMcens-: CBMSM algorithm without adjustment for censoring (loss to follow-up or 
nonmonotone treatment regimes), Unweighted: without any adjustment (for confounding or censoring); (b) Parameter estimates 
for the CBMSM method, in each imputed dataset (10 imputed datasets, N = 170). 

(a) 

 CBMSM GLM LM CBMSMcens- Unweighted 

 beta 95% CI p-value beta 95% CI p-value beta 95% CI p-value beta 95% CI p-value beta 95% CI p-value 

Int  44.67 38.17, 51.16 <0.001 44.67 38.64, 50.71 <0.001 32.17 24.67, 39.67 <0.001 45.4 38.19, 52.61 <0.001 45.5 37.06, 53.94 <0.001 

6med
 

−3.22 −16.13, 9.68 0.62 1.15 −13.71, 16.01 0.88 −0.63 −10.56, 9.3 0.9 −4.03 −15.92, 7.85 0.51 −3.38 −16.21, 9.46 0.61 

12med
 

7.46 −4.77, 19.7 0.23 1.85 −12.64, 16.34 0.8 0.43 −8.58, 9.44 0.92 5.18 −5.44, 15.8 0.34 2.72 −8.07, 13.52 0.62 

26med
 

−12.06 −20.3, −3.88 0.004 −12.24 −19.69, −4.79 0.001 −7.56 −14.09, −1.03 0.02 −10.25 −18.65, −1.84 0.02 −10.77 −18.26, −3.29 0.005 

52med
 

−8.72 −15.6, −1.88 0.013 −6.51 −12.31, −0.71 0.03 −4.08 −9.35, 1.2 0.13 −8.10 −15.31, −0.9 0.03 −4.65 −10.7, 1.4 0.13 

(b) 

Imputation 
CBMSM 

0β  1β  2β  3β  4β  

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

45.08 

44.05 

45.10 

44.76 

45.07 

44.29 

43.6 

44.47 

44.96 

45.31 

−3.4 

−2.53 

−3.36 

−3.53 

−4.0 

−3.83 

−2.7 

−3.04 

−2.88 

−2.96 

7.69 

7.20 

7.19 

7.73 

7.21 

8.51 

8.21 

7.29 

6.98 

6.64 

−12.17 

−12.09 

−11.84 

−12.0 

−11.44 

−12.21 

−12.83 

−11.98 

−12.11 

11.96 

−9.28 

−8.54 

−9.05 

−8.73 

−8.61 

−8.73 

−8.11 

−8.61 

−8.64 

−8.89 

Column means are MI-estimates in first column, Table 3(a). 
 
Table 4. Estimated average causal effects (CBMSM) of medication in different time periods on symptoms (ASRS) at one year, 26 
weeks, and 12 weeks of follow-up, in a Norwegian sample of 250 patients with ADHD diagnosed in adulthood. Results are based 
on multiple imputation to limit influence from missing covariates (10 imputed datasets, N = 170).  

 ASRS52 ASRS26 ASRS12 

 beta 95% CI p-value beta 95% CI p-value beta 95% CI p-value 

Int  44.67 38.17, 51.16 <0.001 49.29 42.88, 55.69 <0.001 34.19 13.76, 54.63 0.001 

6med  −3.22 −16.13, 9.68 0.62 −7.12 −16.84, 2.59 0.15 10.64 −10.4, 31.71 0.32 

12med  7.46 −4.77, 19.7 0.23 5.67 −2.23, 13.58 0.16 −13.1 −18.54, −7.65 <0.001 

26med  −12.06 −20.3, −3.88 0.004 −19.98 −23.6, −16.37 <0.001    

52med  −8.72 −15.6, −1.88 0.013       
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toms, measured at early stages by ASRS12 and ASRS26 would be expected to be 
largely reduced by medication immediately prior to symptom assessment, with 
no direct effects from earlier medication. Symptoms at one year follow-up, 
ASRS52, would be expected to be influenced by more medication history. Hypo-
thetical medication in the mid-period, 19 - 39 weeks (with no medication in the 
last period) seemed to be most influential, with a direct effect in addition to an 
indirect effect through medication in the 39 - 52 week period. This is in line with 
a dose-response effect (longer duration of treatment corresponds to larger effect), 
but in contrast to symptoms at early stages, with nonsignificant effects from ear-
lier periods of treatment with longer duration. Treatment effect per week 
seemed strongest in the early stages, but persisted across the whole year.  

4. Discussion 

In the present application of the CBMSM method, strong causal effects of medi-
cation on ADHD symptoms were found, under standard assumptions for causal 
inference. A MSM (GLM weights) was fitted, to account for time-varying con-
founding and selection bias, but with covariate balance that was greatly im-
proved with the CBMSM. The magnitude of the treatment effects from the 
CBMSM, are the ones believed to be closest to the unknown true levels. The al-
ternative estimates were smaller (25% relative difference compared to the stan-
dard MSM), which indicates that for these data, standard analysis yields unde-
restimated treatment effects.  

With a maximum of one year medication in four consecutive time periods, all 
periods seemed to represent improvement in ADHD symptoms, over the course 
of the study. In terms of treatment effect per week, early stages seemed to have 
the strongest influence, with an average reduction of approximately 4 units per 
week of symptoms at 12 weeks (ASRS12) ( 2 13.1β = − , 95% : 18.54, 7.65CI − − , 

0.001p < ) for hypothetical medication in the 9 - 12 week period. However, the 
treatment effect persisted over the whole year, with an expected reduction of 0.7 
units per week of symptoms at the final assessment (ASRS52) with hypothetical 
continued medication over the last 13 weeks.  

The CBMSM model revealed causal information, not accessible in a standard 
longitudinal analysis. The average symptom level during the course of the ob-
servation period is characterized by a rapid drop in the first 6 weeks, followed by 
an enduring constant low level for the rest of the year (Figure 1). The improve-
ment in symptoms could falsely be attributed to medication in the first 6 weeks 
alone. After 6 weeks of medication, either maximum improvement was obtained 
or medication could be terminated, or would be necessary to maintain a low 
symptom level. Adjustment for time-varying side-effects, distress, psychosocial 
functioning and symptoms would not result in unbiased effect of treatment. The 
reduction in average symptoms seen in Figure 1 underestimates the causal ef-
fects of treatment, better predicted from the sum of effects from different pe-
riods in the CBMSM model. In addition to persistent and decreasing treatment  
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Figure 9. Stabilized censoring weight distributions (boxplots) for each time period, for 
censoring from missing in outcome (ASRS52) or non-monotone treatment patterns, in a 
Norwegian sample of 250 patients with ADHD diagnosed in adulthood. 

 
effect across the whole period, another notable change in the treatment effect 
was revealed. The different models for symptoms at 12 weeks (ASRS12) and 26 
weeks (ASRS26), both showed significant causal effects of hypothetical medica-
tion in the most recent treatment period, with no significant effects from earlier 
periods, in spite of their length. As for symptoms at end of follow-up (ASRS52), 
significant causal effects were found for hypothetical medication in the two most 
recent periods. The causal direct effect from hypothetical medication in the 19 - 
39 week period on symptoms at one year, may represent other pathways than 
through continued treatment in the 39 - 52 week period (pharmacological path-
way). Clinical insight has suggested that a patient’s social environment needs 
time to adapt and trust the improvement, when the patient is treated. This adap-
tion process is slower than the pharmacological effect, but can be important for 
further improvement, through motivation, support, and positive feedback. A 
four and a half months adaption process is one possible explanation for the di-
rect effect from the 19 - 39 week period. In this case, treatment effect in the early 
periods would be mostly pharmacological. Alternatively, the direct effect from 
the 19 - 39 week period corresponds to a dose-response effect. In that case, other 
explanations for the lack of such dose-response effects on symptoms at 12 and 
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26 weeks are needed.  
If the models for ASRS12, ASRS26, and ASRS52 had been similar with respect to 

causal effects of medication, they could have been combined in a repeated 
measures MSM (longitudinal model), for possible gain in efficiency. In the 
present application, however, the differences in the separate univariate models 
were informative.  

5. Conclusions 

In conclusion, the CBMSM improved covariate balance substantially in these 
data, compared to the standard fitted MSM, and should therefore represent es-
timates closer to the causal effect of medication one would find in a successful 
RCT.  

The improved covariate balance, strengthened the treatment effect, compared 
to the MSM, and even more so compared to ordinary longitudinal analysis with 
naive adjustment for time-varying confounding, reported in the literature [11]. 
The causal model also provided possible new clinical insight with respect to the 
dynamics of the effect of pharmacological treatment on adults with ADHD. A 
persistent and strong effect across the whole year on improvement in symptoms, 
was supported, and with both direct and indirect causal pathways.  
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Appendix: Covariate Balance in Cross-Sectional  
and Longitudinal Data 

First, the cross-sectional situation is considered; a sample of size 𝑛𝑛 from a pop-
ulation, individuals indexed by 1, ,i n=  , one single dichotomous treatment 
indicator { }, 0,1iT t t= ∈  ( 1iT =  for treatment and 0 for no treatment), a 
K-dimensional vector of confounders iX  with influence on treatment assign-
ment and outcome, ( )iY t  is the counterfactual univariate outcome for hypo-
thetical treatment assignment iT t=  and observed outcome iY . The propensity 
score is (PS) assumed to satisfy ( ) ( )0 1 1, 1i i iPr T X Xπ< = = < , for all iX  [25]. 
They showed that with conditional independence between counterfactual out-
comes and observed treatment, conditional on covariates (no unmeasured con-
founding/ignorable treatment assignment assumption), this implies the same 
conditional independence by conditioning on the true PS 

 ( ) ( ){ } ( )1 , 0 1,i i i iY Y T Xπ                   (A1) 

which means that unbiased estimation of the treatment effect is possible by con-
ditioning on the PS alone. It also implies covariate balance between treatment 
groups, for example equal weighted mean in the treated and untreated. (A1) 
represents a dimension reduction and has led to development of propensity me-
thods, like weighting. Inverse probability of treatment weighting [10] can con-
sistently estimate the marginal mean of the counterfactual outcome for any 
treatment, and the method of which the marginal structural model is based. 
Each observation is weighted by the inverse of the probability of his/her ob-
served treatment assignment,  

( ) ( ) { }1, 0,1,i iw t t X tπ −= ∈                   (A2) 

In observational studies, the PS has to be estimated, commonly by e.g. logistic 
regression and maximum likelihood, for example parameterized by  

( ) ( ) ( )( ), expit 2 1 T
i i i i i iT X Pr T X T Xαπ α= = −           (A3) 

where ( ) ( ) 1
expit 1 expz z

−
= + −   . If the model in (A3) is misspecified, the co-

variates are possibly unbalanced. To make estimation more robust for misspeci-
fication, I&R proposed to estimate the PS under an additional condition of cova-
riate balance, formulated as  

( )
( )

( )
1

0
1, 0,

i ii i

i i

T XT XE
X Xα απ π

 − − = 
  

                 (A4) 

By iterated expectation it is easily seen that both terms in (A4) equals ( )iE X , 
the population mean, and also a weighted conditional mean of the treated/untreated, 
respectively. With (A3) as the parametric model for the PS (1-PS), the number of 
equations in (A4) (one for each of the K covariates), equals the number of un-
known parameters, which is the just-identified case [1]. I & R suggested to solve 
these moment conditions, either by generalized method of moments (GMM) or 
empirical likelihood, because these methods easily generalize to the over-identified 
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set of equations, including the longitudinal case.  
In the present application, the data is longitudinal with four time periods, 

4J = . The time varying covariate at a given time period j depends possibly on 
the past treatment history until the previous time period ( 1j − ), written 1jt − . It 
needs to be balanced on all current and future treatment trajectories, written 

{ }1, , ,j j Jjt t t t+=  , and is conditional on the past history. The covariate balanc-
ing conditions are written 

( ){ } ( ) ( )( ) ( ){ }1 , 1 1 1 11 , ,ij j i j j i J ij J ij jij jE X t E T t T t w t X t X t− − − − −= = =    (A5) 

and can be represented in an orthogonal way, in the following manner: Let the 
time varying covariates be combined in a 4 1K ×  dimensional column vector 

( )TT T T T
1 2 3 4, , ,i i i i i i i i iw X w X w X w XX = . To determine the sign of each term in the 

moment conditions, the following 2 1J −  dimensional column vector iM  is 
needed:  

(
)

1 2 1 2 3 1 3 2 3 1 3 3 4 1 4

2 4 1 2 4 3 4 1 3 4 2 3 4 1 2 3 4

T 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , ,

, , ,

1

1 1 1 , 1 , 1 1

i i i i i i i i i i i i i i i

i i i i i i i i i i i i i i i i i

T T T T T T T T T T T T T T T
i

T T T T T T T T T T T T T T T T T

M + + + + + +

+ + + + + + + + + + +

= − − − − − − − − −

− − − − − −
 

As described above, the moment conditions balance covariates measured at 
time j across all possible current and future treatments, but not past treatments 
and their interactions. Therefore, moment conditions on past treatments and 
their interactions are not binding, and can be zero’d out. As time progresses, the 
number of not binding moment conditions increase. The four different “selec-
tion matrix-es” to identify which conditions to zero out, are given by:  

3 3 3 12 7 7 7 8
1 15 2 3 4

12 3 12 8 7 814

0 0 0 00 0
0

, , ,
0 0

R I R R R
I II

× × × ×

× ×

    
= = = =    

     
 

where dI  is the identity matrix of dimension d d× .  
The sample moment conditions for time-period j can then be written [2]: 

T1
j i j iiG M R X

n
 = ⊗ ∑ 

                  
 (A6) 

where ⊗  is the Kronecker product (matrix on right-hand side is multiplied by 
each element in matrix on left-hand side), and with  

( )

( )

1 1 2 3 4

1 1 2 3 4

1 15 1

1 1

1 1 1

1 1 1

i i i i i

i i i i i

T T T T T
i i

i

T T T T T
i i i i

i

G I w X
n

w X w X
n

+ + +

+ + +

= − −

= −

⊗

−

∑

∑





 

( )

( )

1 1 2 3 4

2 1 2 3 4

2 2
14

2 2

0 01 1 1
0

1 0 1 1

i i i i i

i i i i i

T T T T T
i i

i

T T T T T
i i i i

i

G w X
In

w X w X
n

+ + +

+ + +

 
= − − ⊗ 

 

= − −

∑

∑





 

( )3 1 2 3 4
3 3 3

1 0 0 0 1 1i i i i iT T T T T
i i i i

i
G w X w X

n
+ + += = − −∑   

https://doi.org/10.4236/ojs.2017.76070


O. Klungsøyr, M. Fredriksen 
 

 

DOI: 10.4236/ojs.2017.76070 1012 Open Journal of Statistics 
 

( )4 1 2 3 4
4 4 4

1 0 0 0 0 0 0 0 1 1i i i i iT T T T T
i i i i

i
G w X w X

n
+ + += = − −∑   

and combining for all time-periods yields the matrix G with dimension 4 15K ×  

1

2

3

4

G
G

G
G
G

 
 
 =
 
 
 

                         (A7) 

with corresponding covariance matrix (dimension 60 60K K× ) 

 ( )T T1
i i i i iiW E M M X X X

n
= ⊗∑                   (A8) 

where  
2 T 2 T 2 T 2 T

1 1 1 2 1 3 1 4
2 T 2 T 2 T 2 T

T 2 1 2 2 2 3 2 4
2 T 2 T 2 T 2 T

3 1 3 2 3 3 3 4
2 T 2 T 2 T 2 T

4 1 4 2 4 3 4 4

i i i i i i i i i i i i

i i i i i i i i i i i i
i i

i i i i i i i i i i i i

i i i i i i i i i i i i

w X X w X X w X X w X X
w X X w X X w X X w X X
w X X w X X w X X w X X
w X X w X X w X X w X

X X

X

 
 
 =  
 
  

 

 

 

Since each moment condition set equal to zero, like in (A4) (for time period 1 
there are 15 conditions), has the same number of equations as the number of 
unknown parameters, the set of equations is over-identified, and there is no 
unique solution. Instead a quadratic function of the moment conditions is mi-
nimized to come as close as possible to zero, to “minimize imbalance” and this is 
achieved by the GMM estimator [34]. The optimal GMM estimator for α  is 
given by [2] 

 ( ) ( )T 1ˆ arg min vec G W vec G
α

α −=
               

 (A9) 

where G is from (A7) and the covariance from (A8), where the expectation can 
be calculated analytically in the logistic regression case [1]. These estimates are 
used in the construction of the weights for the MSM to give estimates of the 
causal effects from a marginal weighted outcome regression model (Equation 
(2)).  
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