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Abstract 
 
The dynamics and accurate forecasting of streamflow processes of a river are important in the management 
of extreme events such as floods and droughts, optimal design of water storage structures and drainage net-
works. In this study, attempt was made at investigating the appropriateness of stochastic modelling of the 
streamflow process of the Benue River using data-driven models based on univariate streamflow series. To 
this end, multiplicative seasonal Autoregressive Integrated Moving Average (ARIMA) model was developed 
for the logarithmic transformed monthly flows. The seasonal ARIMA model’s performance was compared 
with the traditional Thomas-Fiering model forecasts, and results obtained show that the multiplicative sea-
sonal ARIMA model was able to forecast flow logarithms. However, it could not adequately account for the 
seasonal variability in the monthly standard deviations. The forecast flow logarithms therefore cannot read-
ily be transformed into natural flows; hence, the need for cautious optimism in its adoption, though it could 
be used as a basis for the development of an Integrated Riverflow Forecasting System (IRFS). Since fore-
casting could be a highly “noisy” application because of the complex river flow system, a distributed hydro-
logical model is recommended for real-time forecasting of the river flow regime especially for purposes of 
sustainable water resources management. 
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1. Introduction 
 
Inherent in the principles of water resources management 
is the judicious utilization and conservation of the avail-
able water resources. One of the ways to enhance this is 
the proper estimation of water demand both quantita-
tively and qualitatively. Within this overall management 
system, the hydrologist is often required to estimate the 
magnitude of extreme events, whereas operation of some 
of the design works is often dependent on reliable esti-
mates of flow for an ensuing period of time. Since river 
is an essential component of the hydrologic cycle, its 
flow forecasting provides a veritable, and basic informa-
tion on a wide range of problems related to the design 
and operation of the entire river system. A very common 
constraint encountered in the context of water resources 
planning is inadequacy of streamflow records. The 
available streamflows, known as historical records, are 
often quite short, generally sometimes less than a quarter 
of a century in length. Thus, a system designed on the 
basis of the historical record only faces a chance of being 

inadequate for the unknown flow sequence that the sys-
tem might experience. The historical record comprising a 
single short series does not cover a sequence of low 
flows as well as high flows. Hence, the reliability of a 
system has to be evaluated under these conditions which 
are not possible with historical records alone.  

Statistically, the historical record is a sample out of a 
population of natural streamflow process. Thus, the gen-
erated flows are neither historical flows nor a prediction 
of future flows but rather are representative of likely 
flows in a stream or river. Streamflow, being a natural 
phenomenon, has a random component, though not fully 
random since it has been observed that it exhibits het-
eroscedastic behavioural pattern. Forecasting river flow 
in general or after heavy rainfall event is important for 
public safety, environmental issues, and water manage-
ment. For these purposes, mathematical models have 
been developed based either on physical considerations 
[1-4] or on statistical analysis [5-7]. Conventional mod-
els for streamflow forecasting typically involve a number 
of physical variables that function as inputs. A physical 
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variable that is not very useful for forecasting on its own 
can often be useful when used in conjunction with other 
variables. Given the number of physical variables that 
could be considered as potentially relevant, it is apparent 
that a very large number of different combinations of 
both variables and mathematical relationships that link 
them together are available when developing a stream-
flow forecasting model. Determining an appropriate 
model structure by trial-and-error process is therefore not 
always practical [8].  

The non-practical determinate nature of model struc-
ture for streamflow/river flow forecasting can really be 
appreciated in a wider context considering the fact that 
river flow is usually treated as a random process, purely 
stochastic. The justification is that river flow is a func-
tion of precipitation and other processes which, at pre-
sent level of knowledge, seem to evolve randomly in 
time and space. Even if the underlying phenomena and 
their interactions were thoroughly understood, it would 
not be possible to describe mathematically the rate of 
discharge in a natural water course without involving 
unsystematic or unknown effects [9]. Considering the 
issues involved in river flow studies within the premise 
of a wider hydrological horizon, it is pertinent to appre-
ciate the following seemingly, contemporaneous para-
doxes: 

1) In the face of the stifling dearth of long and con-
tinuous data availability, can realistic generalizations be 
made from forecasting the dynamics of the Benue River?  

2) Considering the complex nature of river flow and 
the significant variability it exhibits in both time and 
space, what is the appropriateness of using stochastic 
method for modelling the Benue River flow process? 

To this end, the objective of this study is to model the 
streamflow process of the Benue River with Autoregres-
sive Integrated Moving Average (ARIMA) models, fo-
cusing on short term forecasting for the purposes of 
evaluating suitability of particular model type as a pre-
liminary step towards developing an enhanced “River 
Flow Forecasting System” for the river. 
 
2. Materials and Methods 
 
1) Hydrology of the Benue River 

The Benue River is the major tributary of the Niger 
River. It is approximately 1 400 km long and almost 
navigable during the rainy season (between July and Oc-
tober). Hence, it is an important transportation route in 
the regions it flows through. Its headwaters rises in the 
Adamawa Plateau of the Northern Cameroon, flows into 
Nigeria south of the Mandara Mountains through the 
east-central part of Nigeria before entering the Niger 
River at Lokoja (Figure 1a). The wide flood plain is 

used for agriculture, with main crops being sugar cane 
and rice. There is only one high-water season because of 
its southerly location; this normally occurs from May to 
October, while on the other hand, the low-water period is 
from December to June. Figure 1b explains the hydro 
logical flow regime of the Benue River in line with the 
general climatic pattern. There are definite wet and dry 
seasons which give rise to changes in river flow and sa-
linity regimes. The flood of the Benue River (upper, 
middle, and downstream) lasts from July to October, and 
sometimes up to early November. 

2) Data Base Management 
In this study, historical time series for gauging stations 

at the base of the Benue River (i.e., Lower Benue River 
Basin) at Makurdi (7°44′ N, 8°32′ E) was used. A total of 
26 years (1974–2000) water stage and discharge data 
were collected and used. The daily flow data were ag-
gregated to monthly and annual data series by taking the 
average of each month’s flow and calendar year. Simi-
larly, the annual maximum and minimum daily average 
discharges were obtained according to the water year, i.e., 
months of April to March for the streamflow process.  

3) Model Formulation and Forecast Strategy 
The possibility of fitting a multiplicative seasonal 

ARIMA model to the logarithms of the monthly flows was 
examined. The forecasts from this model were compared 
to forecasting using a conventional Thomas-Fiering model. 
Comparison of forecast errors was also performed to 
bring to the fore the suitability of either of the models for 
forecasting the streamflow process of the river. Model 
formulation and development was patterned after Box 
and Jenkins [1], Carlson et al. [11] and McKerchar and 
Delleur [12]. 

a) Thomas-Fiering Model 
Thomas and Fiering [13] described a linear stochastic 
model for simulating synthetic flow data. On a monthly 
basis, this represents the means, standard deviations, 
serial correlations between successive flows, and the 
skewness. This model uses a linear regression relation-
ship to relate the flow 1tQ   in the (t+1)th month, (t be-
ing from the start of the generated sequence) to the flow 

t  in the t(th) month. If Q jQ  and 1jQ   be the mean 
monthly discharges during months j and j+1, respectively, 
within a repetitive annual cycle of 12 months, jb  be the 
regression coefficient for estimating the flow in the 
(j+1)th month from the jth month, and tt be a normal de-
viate with zero mean and unit variance, the Thomas- 
Fiering equation will be 

   1 22
1 1 1 1t j j t j t j jQ Q b Q Q t r          (1) 

If an average first-order serial correlation coefficient r1 
is used to replace the 12 monthly rj values, it can easily 
be shown using the relationship  
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(a) 

 
(b) 

Figure 1. (a) Map of Nigeria showing Benue River and its traverse; (b) general hydrological year flow regime 
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That is, the model (1) is the first-order case of the 
general non-seasonal autoregressive model 
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
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where yt, yt-j, σj and фj represents the transformed (i.e., 
standardized) series; transformed series at the previous 
time step, standard deviation of each month, and autore-
gressive parameter value of order one for each month, 
respectively. In the application of the Thomas-Fiering 
model, negative values are sometimes generated. It is 
recommended that these values be retained and used to  
derive the subsequent values in the sequence, and when 
once the generated sequence is completed, all the nega-
tive values in the generated sequence be replaced by zero. 
Similarly, if there is no occurrence of flow for a particu-
lar month, then generation of flow for such a month may 
not be carried out. Since there is flow all year round in 
the Benue River, this procedure was ignored. 

 

b) ARIMA Analysis of the Monthly flow data 
To be able to identify the most suitable model to fit the 

flow series, serial correlations were calculated for possi-
ble differencing schemes d = 0, 1, 2 and D = 0, 1, 2, 
where d and D stand for non-seasonal and seasonal dif-
ferencing, respectively. Figure 2 shows the autocorrela-
tion function plots for these differencing schemes. 

To account for runoff phenomenon in the streamflow 
data, the prospect of seasonal differencing seem more 
promising since seasonality cannot really be accounted 
for by non-seasonal differencing, nor is an integrated 
moving average scheme expected to account for the 
non-seasonal autoregressive behaviour. Thus considering 
this factor, a multiplicative ARIMA model  
   12
1,0, 2 1,1,1,  was examined. This model has the 

form 

     12 12 2
1 1,12 1,12 1 21 1 1 1t tB B z B B B         a  

                 (4) 
where, 

i , i , and i  stand for non-seasonal autoregressive,  

   
D = 0, d = 0                                                     D = 1, d = 0 
 

 
D = 0, d = 1                                                    D = 1, d = 1 

Figure 2. Estimated autocorrelations for logarithmic differenced monthly flow series. 
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seasonal autoregressive, and seasonal moving average 
parameters, respectively; while zt and at are logarithmic 
transformed series and model random shocks, respec-
tively. 

c) Flow Forecasting 
The ARIMA model was used to forecast flows for one 

to 24-month ahead. With reference to an origin at time t 
(here, t = 288), the model was used to make minimum 
mean square error forecasts of zt+L for , where L is 
the lead time. The values forecasted for zt+L for an origin 
at t with lead time L will be written as 

1L 

ˆ
t Z L . Diagnos-

tic verification of the adequacy of the model was done by 
evaluating the autocorrelation function for the residuals 
by modifying the model to take into account any 
non-random features. Figure 3 shows the residual auto-
correlation function for model   12

 in re-
spect of parameter estimation (Table 1) and the final 
parameter values (Table 2) as well as the corresponding 
diagnostic check for model adequacy (Table 3). At 5% 
level of significance, the autocorrelation plot of the 
model residual reflects that the residual series may be 
considered random (Figure 3). 

 1,0, 2 1,1,1,

 

 
Figure 3. Residual autocorrelation function for ARIMA    12

1,0,2 1,1,1,  model. 
 

Table 1. Estimation of ARIMA model parameters. 

Iteration SSE 1  1,12 ** 1  2  1,12 ** 

0 64.5264 0.100 0.100 0.100 0.100 0.100 
1 54.8937 0.012 0.055 -0.050 0.089 0.145 
2 50.5089 -0.056 0.152 -0.151 0.071 0.295 
3 45.4580 -0.162 0.171 -0.301 0.037 0.386 
4 42.0178 -0.275 0.149 -0.451 -0.007 0.424 
5 39.6586 -0.394 0.124 -0.601 -0.055 0.447 
6 36.2933 -0.244 0.075 -0.507 -0.071 0.479 
7 36.1324 -0.094 0.072 -0.359 -0.035 0.480 
8 35.9804 0.056 0.069 -0.212 0.003 0.481 
9 35.8173 0.206 0.066 -0.064 0.041 0.482 
10 35.6239 0.356 0.063 -0.083 0.081 0.484 
11 35.3723 0.506 0.059 0.231 0.120 0.486 
12 34.9998 0.656 0.054 0.377 0.161 0.488 
13 34.2944 0.806 0.043 0.521 0.204 0.494 
14 32.1154 0.956 -0.002 0.642 0.253 0.519 
15 28.0190 0.943 -0.102 0.544 0.269 0.699 
16 27.2837 0.946 -0.181 0.486 0.266 0.700 
17 27.2450 0.954 -0.179 0.483 0.270 0.719 
18 27.2367 0.957 -0.173 0.484 0.274 0.730 
19 27.2331 0.958 -0.168 0.485 0.276 0.738 
20 27.2317 0.959 -0.166 0.486 0.277 0.742 
21 27.2317 0.960 -0.166 0.486 0.278 0.743 
22 27.2312 0.960 -0.166 0.486 0.278 0.745 

** is seasonal autoregressive parameter;  is seasonal moving average parameter 1,12  1,12
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Table 2. Final model parameter estimates. 

Parameters   Statistics  
     

Type Coef SE Coef T P 
AR 1 0.9600 0.0284 33.83 0.000 

SAR 12** -0.1657 0.0748 -2.22 0.028 
MA1 0.4859 0.0667 7.29 0.000 
MA 2 0.2782 0.0646 4.31 0.000 

SMA 12* 0.7447 0.0544 13.69 0.000 
Constant 0.000318 0.001155 0.28 0.783 

** Seasonal autoregressive parameter, * seasonal moving average parameter 

 
Table 3. Modified Box-Pierce (Ljung-Box) Chi-Square statistic. 

Lag 12 24 36 48 
Chi-Square 10.2 29.0 46.3 60.4 

Critical value 12.6 28.9 43.8 58.1 
DF 6 18 30 42 

 
In terms of the forecasting function, the general 

ARIMA model can be written in three alternative forms: 
as a difference equation, an infinite sum of the current 
and weighted previous values of shocks at, and an infi-
nite sum of weighted previous observations plus the cur-
rent value of at. Conditional expectation of any of these 
forms supplies a forecasting function. In this regard, the 
difference equation was used. By recalling that  tZ L   
 t LZ  , using square brackets to signify conditional ex-
pectation, noting that 

 
 

1

1 1

0,1,2,

ˆ 1, 2,

ˆ 1 0,1,2,

0

t j t j

t t

t j t t j t j

t j

z z j

z z j j
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

   
  
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





 ta

    (5) 

and taking expectation of the model, which has the 
general form  

    12 12 2
1 1,12 1,12 1 21 1 1 1tB B z B B B         ,  

the forecasting function can be obtained according as: 

1 1 1,12 12 1 1,12 13

1 1 2 2 1,12 12

1 1,12 13 2 1,12 14

t L t L t L t L

t L t L t L t L

t L t L

z z z z

a a a a

a a

   

 

 

     

      

   

  

   

   



1 24L
     (6) 

Equation (6) can be expanded for the respective lead 
time (L) to make the forecasts with zt+L, the dependent 
forecast variable as a function of L. Both the Thomas 
Fiering and ARIMA models were used to make forecasts 
of the monthly flow series. Subsequently, the forecasts 
from the models were compared with the actual flows. 
Because the last 2 years flow data was used for the com-
parison, the parameters were re-estimated for both mod-
els for the entire flow series shortened by 2 years (i.e., 
the model fit was done with 26 years of flow data). The 

flow forecasts were considered from the aspect of 
choosing a particular time origin and taking cognizance 
of the behaviour of the forecast function as the lead time 
L increases; that is, the long-term behaviour of the fore-
cast function should be a useful theoretical check on the 
fit of a model. Taking the origin t = 288, forecasts for the 
logarithms of the flow were made using both models.  

 
3. Results and Discussion 

Figure 4 shows the behaviour of the ARIMA model 
forecast function; the forecasts are quite close to the 
monthly means. Baring data quality problems, stationar-
ity issues, and model over-fitting, for an ideal forecast 
function, this behaviour is to be expected. Forecasts in 
the distant future for a trend-free series should be the 
unconditional estimates of the means. Figure 5 indicates 
that the forecasts are all within the bounds with respect 
to actual flows. Based on this, and taking into considera-
tion the data size for model fitting, the ARIMA model 
has reproduced the monthly means well. Figure 6 illus-
trates the standard errors of the forecasts. This figure 
compares the monthly standard deviations of the loga-
rithms of the monthly flow with the standard errors for 
forecasts of the two models under discourse, respectively, 
for   . As L becomes large (say, greater than 4), 
the standard error of a forecast for Thomas-Fiering 
model, tends closely to that of the historic flow, whereas 
the ARIMA model deviates away significantly. The be-
haviour of the Thomas-Fiering model in this regard is 
further explained by Figure 7, where it was used to 
simulate the flow regime for 26 years. It was able to re-
produce the flow dynamics clearly well. This attribute 
reinforces its suitability to be used for long-term flow 
forecasting of the Benue River. The failure of the 
ARIMA model to account for the seasonal pattern in the 
standard deviations is a major limitation of the model. In  
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Figure 4. Forecasting for flow logarithms of ARIMA    12
1,0,2 1,1,1,  model. 

 

 
Figure 5. Forecast pattern of the ARIMA    12

1,0,2 1,1,1,  model. 

 

 

Figure 6. Monthly standard deviation of logarithms and forecast errors for Thomas-Fiering and ARIMA    12
1,0,2 1,1,1,  

models. 
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Probability of Exceedance or Equalled (%) 

Figure 7. Long-term flow-duration curve of Thomas-Fiering model (Synthetic flow simulation). 
 
particular, it leads to problems in transforming forecasted 
flow logarithms into natural flows. 
 
4. Conclusions 
 
Based on the results of analysis done, it is evident that 
autoregressive and ARIMA models have an important 
place in stochastic hydrology. Specifically, logarithms of 
monthly flows may be represented either with a 
low-order autoregressive model (if the series are first 
standardized) or with a multiplicative seasonal ARIMA 
model of the order    1,0, 2 1,1,1,

12
 . The stochastic 

models (Thomas-Fiering and ARIMA    , 2 1,1,1,
12

) 
may be used for forecasting of the Benue River monthly 
flow, though the former performed relatively better than 
the later. The ARIMA model was able to forecast flow 
logarithms, but because it did not adequately account for 
the seasonal variability in the monthly standard devia-
tions, the standard errors associated with the forecasts 
may not be physically correct. Also, the logarithms can-
not be correctly transformed into natural flows; thus giv-
ing concern for cautious optimism. However, the sto-
chastic modelling does show that the ARMA type mod-
els could be used as preliminary models which may form 
the basis for understanding the dynamics of the stream-
flow process. For the purposes of developing real-time 
Integrated River flow Forecasting System for the Benue 
River within the overall context of water resources man-
agement strategy, consideration should be given to dis-
tributed river flow hydrological models that incorporate 
hydroclimatic forcing. It suffices to note also that the 
appropriateness of the stochastic process for every flow 
series may be debated in the context of nonlinear deter-
minism and chaos, according to which seemingly com-
plex and irregular behaviours could be the outcome of 
simple deterministic systems with only a few nonlinear 

interdependent variables with sensitive dependence on 
initial conditions. On this basis, nonlinear deterministic 
methods could be viable complement to linear stochastic 
ones for studying river flow dynamics if sufficient cau-
tion is exercised in their implementation and interpreta-
tion of results. 

1,0
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