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ABSTRACT 

The Bianchi type-VIo universe filled with dark 
energy from a wet dark fluid has been consid-
ered. A new equation of state for the dark en-
ergy component of the universe has been used. 
It is modeled on the equation of state =p  
     which can describe a liquid, for ex-

ample water. The exact solutions to the corre-
sponding field equations are obtained in quad-
rature form. The solution for constant decelera-
tion parameter have been studied in detail for 
power-law and exponential forms both. The 
case = 0 , = 1  and = 1 3  have been also 
analysed. 

Keywords: Cosmological Models; Wet Dark Fluid; 
Cosmological Parameters 

1. INTRODUCTION 

The nature of the dark energy component of the uni-
verse [1-3] remains one of the deepest mysteries of 
cosmology. There is certainly no lack of candidates: 
cosmological constant, quintessence [4-6], k-essence 
[7-9], phantom energy [10-12]. Modifications of the 
Friedmann equation such as Cardassian expansion 
[13,14] as well as what might be derived from brane 
cosmology [15-17] have also been used to explain the 
acceleration of the universe. A particular case of the lin-
ear equation of state has used in the cosmological con-
text by Xanthopuolos [18], he considered space-times 
with two hypersueface orthogonal, spacelike, commut-
ing killing fields. 

In this work, we use Wet Dark Fluid (WDF) as a 
model for dark energy. This model is in the spirit of the 
generalized Chaplygin gas (GCG) [19], where a physi-
cally motivated equation of state is offered with proper-
ties relevant for the dark energy problem. Here the mo-
tivation stems from an empirical equation of state pro-
posed by Tait [20] and Hayword [21] to treat water and 
aqueous solution. The equation of state for WDF is very 

simple, 

 =WDF WDFp              (1.1) 

and is motivated by the fact that it is a good approxima-
tion for many fluids, including water, in which the in-
ternal attraction of the molecules makes negative pres-
sures possible. One of the virtues of this model is that 
the square of the sound speed, 2

sc , which depends on 
p   , can be positive (as opposed to the case of phan-

tom energy, say), while still giving rise to cosmic accel-
eration in the current epoch. 

We treat Eq.1.1 as a phemenological equation [22]. 
Holman et al. [23] have shown that this model can be 
made consistent with the most recent SNIa data [24], the 
WMAP results [25,26] as well as constraints coming 
from measurements of the matter power spectrum [27]. 
The parameters   and   are taken to be positive and 
we restrict ourselves to 0 1  . Note that if sc  de-
notes the adiabatic sound speed in WDF, then 2= sc  
(refer Babichev et al. [28]). 

To find the WDF energy density, we use the energy 
conservation equation 

 3 = 0WDF WDF WDFH p         (1.2) 

From equation of state (1.1) and using 3 =H V V  in 
above equation, we have 

 1
=

1WDF

C

V 

 
  




          (1.3) 

where C  is a constant of integration. Here V  is vol-
ume expansion. 

WDF naturally includes two components: a piece that 
behaves as a cosmological constant as well as a standard 
fluid with an equation of state =p  . We can show 
that if we take > 0C , this fluid will not violate the 
strong energy condition 0p   : 

 

   1

= 1

                   = 1 0

WDF WDF WDFp

C

V 

   







  

 
      (1.4) 

Chaubey and Chaubey et al. ([29,30]) have studied 
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Bianchi type-I and V universes with wet dark fluid. In 
this paper we study the Bianchi type-VIo universe with 
matter term with dark energy treated as a Dark Fluid 
satisfying the equation of state (1.1). The solution has 
been obtained in the quadrature form. The models with 
constant deceleration parameter have been studied in 
detail. 

2. BASIC EQUATION 

We take Bianchi type-VIo metric in form 
2 22 2 2 2 2 2 2 2 2 2

1 2 3= .m x m xds dt a dx a e dy a e dz    (2.1) 

where the metric functions 1 2 3, ,a a a  are functions of t  
only and m  is a constant 

The Einstein field equations for the metric (2.1) are 
written in the form 

4
13 2 32

12
2 3 2 3 1

= .
a a aa m

T
a a a a a

  
  

          (2.2) 

4
23 1 31

22
1 3 1 3 1

= .
a a aa m

T
a a a a a

  
  

          (2.3) 

4
31 2 1 2

32
1 2 1 2 1

= .
a a a a m

T
a a a a a

  
   

          (2.4) 

4
02 3 3 11 2

02
1 2 2 3 3 1 1

= .
a a a aa a m

T
a a a a a a a

  
    

       (2.5) 

3 2

3 2

= 0
a a

a a


 
                       (2.6) 

Here   is the gravitational constant and overhead 
dot denotes differentiation with respect to t . 

The energy-momentum tensor of the source is given 
by 

 = .j j j
i WDF WDF i WDF iT p u u p       (2.7) 

where iu  is the flow vector satisfying 

= 1.i j
ijg u u                (2.8) 

In a co-moving system of coordinates, from Eq.2.7 
we find 

0 1 2 3
0 1 2 3= , = = = .WDF WDFT T T T p     (2.9) 

Now using Eq.2.9 in Eqs.2.2-2.6 we obtain 
4

3 2 32
2

2 3 2 3 1

= .WDF

a a aa m
p

a a a a a
   

  
     (2.10) 

4
3 1 31

2
1 3 1 3 1

= .WDF

a a aa m
p

a a a a a
   

  
      (2.11) 

4
1 2 1 2

2
1 2 1 2 1

= .WDF

a a a a m
p

a a a a a
   

   
      (2.12) 

4
2 3 3 11 2

2
1 2 2 3 3 1 1

= .WDF

a a a aa a m

a a a a a a a
  

    
    (2.13) 

3 2

3 2

= 0
a a

a a


 
                     (2.14) 

From Eq.2.14 we get 

2 3=a a                 (2.15) 

Let V  be a function of t  defined by 

1 2 3= .V a a a              (2.16) 

From Eqs.2.15 and 2.16, we get 
2

1 2=V a a              (2.17) 

Now adding Eqs.2.10-2.12 and three times Eq.2.13, 
we get 

 
2 4

1 2 2 1 2
2 2

1 2 1 22 1

2 3
2 2 2 =

2 WDF WDF

a a a a a m
p

a a a aa a

 
 

     
 

    
 

(2.18) 

From Eqs.2.17 and 2.18 we have 

 
4

2
1

2 3
= .

2 WDF WDF

V m
p

V a

  


    (2.19) 

The conservational law for the energy-momentum 
tensor gives 

 = .WDF WDF WDF

V
p

V
  


       (2.20) 

Case 1: When 1 =a V  
Then Eq.2.19 reduces to 

 
42 3

= .
2 WDF WDF

V m
p

V V

  


   (2.21) 

From Eqs.2.20 and 2.21 we have 

2 4
1= 3 4WDFV C V m V      (2.22) 

with 1C  being an integration constant. 
Rewriting Eq.2.20 in the form 

=
WDF WDF

V

p V








           (2.23) 

and taking into account that the pressure and the energy 
density obeying an equation of state of type =WDFp  
 WDFf  , we conclude that WDF  and WDFp , hence 

the right hand side of the Eq.2.19 is a function of V  
only. 

   43
= 2 .

2 WDF WDFV p V m F V
       (2.24) 

From the mechanical point of view Eq.2.24 can be 
interpreted as equation of motion of a single particle 
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with unit mass under the force  F V . Then 

 = 2 .V U V             (2.25) 

Here   can be viewed as energy and  U V  as the 
potential of the force F . Compairing the Eqs.2.22 and 
2.25 we find 1= 2C  and 

  2 43
= 4 .

2 WDFU V V m V    
   (2.26) 

Finally, we write the solution to the Eq.2.22 in quad-
rature form 

02 4
1

d
= .

3 4WDF

V
t t

C V m V


 
          (2.27) 

where the integration constant 0t  can be taken to be 
zero, since it only gives a shift in time. 

From Eqs.1.3 and 2.27 we obtain 

 
0

12 4
1

d
= .

3
3 4

1

V
t t

V CV m V C  






  



 (2.28) 

Case 2: When 2 =a V  
Then Eq.2.19 reduces to 

 4 3
2 = .

2 WDF WDF

V
m p

V

  


     (2.29) 

From Eqs.2.20 and 2.29 we have 

 4 2
1= 3 4WDFV C m V       (2.30) 

with 1C  being an integration constant. 
From Eq.2.23 and taking into account that the pres-

sure and the energy density obeying an equation of state 
of type  =WDF WDFp f  , we conclude that WDF  and 

WDFp , hence the right hand side of the Eq.2.19 is a func-
tion of V  only. 

   43
= 2 .

2 WDF WDFV p V m V F V
       (2.31) 

From the mechanical point of view Eq.2.31 can be 
interpreted as equation of motion of a single particle 
with unit mass under the force  F V . Then 

 = 2 .V U V               (2.32) 

Here   can be viewed as energy and  U V  as the 
potential of the force F . Compairing the Eqs.2.30 and 
2.32 we find 1= 2C  and 

  4 23
= 4 .

2 WDFU V m V    
   (2.33) 

Finally, we write the solution to the Eq.2.30 in quad-
rature form 

 
0

4 2
1

d
= .

3 4WDF

V
t t

C m V


 
      (2.34) 

where the integration constant 0t  can be taken to be 
zero, since it only gives a shift in time. 

From Eqs.1.3 and 2.34 we obtain 

 
0

14 2
1

d
= .

3
4 3

1

V
t t

m V CV C  






 

    

  (2.35) 

3. SOME PARTICULAR CASES 

Case 1: When 1 =a V  
Case I. = 0  (Dust Universe) 
Eq.2.28 reduces to 

4
1

d
=

3
4

2

V
t

C m V C   
 

         (3.1) 

which gives 
2

4 2
1

4

3
2

4
=

3
4

2

C
m t C

V
C

m





   
 

  
 

         (3.2) 

From Eqs.2.15, 2.17 and 3.2, we get 

 

1 22
4 2

1

1
4

3
2

4
=

3
4

2

C
m t C

a t
C

m





     
  
    

  

        (3.3) 

   

1 42
4 2

1

2 3
4

3
2

4
= =

3
4

2

C
m t C

a t a t
C

m





     
  
    

  

  (3.4) 

From Eqs.1.3 and 3.2 we have 
12

4 2
1

4

3
2

4
=

3
4

2

WDF

C
m t C

C
C

m







     
  
    

  

      (3.5) 

and from Eqs.1.1 and 3.5 we get 

= 0WDFp                  (3.6) 

The physical quantities of observational interest in 
cosmology are the expansion scalar  , the mean ani-
sotropy parameter A , the shear scalar 2  and the de-
celeration parameter q . They are defined as [31,32] 
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= 3 .H                   (3.7) 

2
3

=1

1
= .

3
i

i

H
A

H

 
 
 

             (3.8) 

 32 2 2 2
=1

1 3
= 3 = .

2 2ii
H H AH       (3.9) 

d 1
= 1.

d
q

t H
   
 

               (3.10) 

with the use of Eqs.3.7-3.10 we can express the physical 
quantities as 

2
4

2
4 2

1

3
2 2

4
=

3
2

4

C
m t

C
m t C






  
 

   
 

       (3.11) 

1
=

8
A                  (3.12) 

22
4

2
2

4 2
1

3
2

1 4
=

12 3
2

4

C
m t

C
m t C






    
  

     
  

      (3.13) 

1
2

4 2

1
=

2 3
2

4

C
q

C
m t



  
 

       (3.14) 

For large cosmic time, the shear dies out. 
Case II. = 1  (Zeldovich Fluid) 
Eq.2.28 reduces to 

2 4
1

d
=

3 3
4

4 2

V
t

V m V C C 
    
 

     (3.15) 

which gives 

  8 4
16 3 2 64 3 8

= sinh
3 2 3

C C m m
V t

  
 

 

 

   
  

 
 

(3.16) 

when 
 

8

1

32
>

3 3 2

m

C C


 
 

3 4
2

2 8
=

33

t m
V e









 
 
 
 

           (3.17) 

when 
 

8

1

32
=

3 3 2

m

C C


 
 

 8 4
164 6 3 2 3 8

= cosh
3 2 3

m C C m
V t

  
 
 

 

   
  

 
 

(3.18) 

when 
 

8

1

32
<

3 3 2

m

C C


 
 

We consider these subcases separately. 

Case II(a) 
 

8

1

32
=

3 3 2

m

C C


 
 

Then 

 
1 2

3 4
2

1

2 8
=

33

t m
a t e









 
 
 
 

        (3.19) 

   
1 4

3 4
2

2 3

2 8
= =

33

t m
a t a t e









 
 
 
 

 (3.20) 

From Eqs.1.3 and 3.17, we have 
2

3 4
2

2 8
=

2 33

t

WDF

m
C e













 
  
 
 

  (3.21) 

and from Eqs.1.1 and 3.21, we get 
2

3 4
2

2 8
=

2 33

t

WDF

m
p C e











 
   
 
 

 (3.22) 

with the use of Eqs.3.7-3.10 we can express the physical 
quantities as 

3

2

3 4
2

3

2=
4

3

t

t

e

m
e




















           (3.23) 

1
=

8
A                      (3.24) 

2

3

2

2

3 4
2

3

2=
4

3

t

t

e

m
e


















 
 
 
 
 

 
 

        (3.25) 

34
2

4 3
= 1

tm
q e









          (3.26) 

The model has no singularity. 

Case II(b) 
 

8

1

32
>

3 3 2

m

C C


 
 

Then for small t  (i.e. near singularity = 0t ), 
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3 3
sinh

2 2
t t

  
 

  
 

           (3.27) 

Then Eq.3.16 reduces to 

  8 4
13 2 16 8

=
2 3 3

C C m m
V t


  


     (3.28) 

Then 

   
1 2

8 4
1

1

3 2 16 8
=

2 3 3

C C m m
a t t


  

 
  
  

      (3.29) 

     
1 4

8 4
1

2 3

3 2 16 8
= =

2 3 3

C C m m
a t a t t


  

 
  
  

(3.30) 

From Eqs.1.3 and 3.28, we have 

 
2

8 4
13 2 16 8

=
2 2 3 3WDF

C C m m
C t




 





 

 
   
  

 

(3.31) 
and from Eqs.1.1 and 3.21, we get 

 
2

8 4
13 2 16 8

=
2 2 3 3WDF

C C m m
p C t


 





 

 
    
  

  

(3.32) 

with the use of Eqs.3.7-3.10 we can express the physical 
quantities as 

 

 

8
1

8 4
1

3 2 16

2 3
=

3 2 16 8

2 3 3

C C m

C C m m
t







 



 





 

       (3.33) 

1
=

8
A                  (3.34) 

 

 

2
8

1

2

8 4
1

3 2 16

2 31
=

48 3 2 16 8

2 3 3

C C m

C C m m
t







 



 

 
 

 
   
  

 (3.35) 

= 2q                   (3.36) 

The model has no singularity. 

Case II(c)   8
1< 32 3 3 2m C C    

Then for small t  (i.e. near singularity = 0t ), 

23 3
cosh 1

2 4
t t

  
 

   
 

        (3.37) 

Then Eq.3.18 reduces to 

 

 

8 2
1

8 4
1

3
= 4 3 2

8

64 6 3 2 8
      

3

V m C C t

m C C m

 

 








 

  


    (3.38) 

Then 

   

 

8 2
1 1

1 2
8 4

1

3
= 4 3 2

8

64 6 3 2 8
  

3

a t m C C t

m C C m

 

 









 



  




    (3.39) 

     

 

8 2
2 3 1

1 4
8 4

1

3
= = 4 3 2

8

64 6 3 2 8

3

a t a t m C C t

m C C m

 

 









 



  




(3.40) 

From Eqs.1.3 and 3.38, we have 

 

 

8 2
1

2
8 4

1

3
= 4 3 2

2 8

64 6 3 2 8
          

3

WDF C m C C t

m C C m


  

 












  



  




   (3.41) 

and from Eqs.1.1 and 3.41, we get 

 

 

8 2
1

2
8 4

1

3
= 4 3 2

2 8

64 6 3 2 8

3

WDFp C m C C t

m C C m


 

 












   



  




  (3.42) 

with the use of Eqs.3.7-3.10 we can express the physical 
quantities as 

1
=

8
A                (3.44) 

 

 

   

8
1

8 4
18 2

1

3
16 3 2

2=
64 6 3 2 83

4 3 2
8 3

m C C t

m C C m
m C C t

 


 
 










 

  
  

                 (3.43) 
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 

   

2

8
1

2

8 4
18 2

1

3
16 3 2

1 2=
48 64 6 3 2 83

4 3 2
8 3

m C C t

m C C m
m C C t

 


 
 










 
  
 
 

      
 

             (3.45) 

 

 

8 4
1

8 2
1

64 6 3 2 81
=

2 3
16 3 2

2

m C C m
q

m C C t

 

 





  


 
   (3.46) 

The model has no singularity. 
Case 2: When 2 =a V  
Case I. = 0  (Dust Universe) 
Eq.2.35 reduces to 

4 2
1

d
=

4 3

V
t

m V CV C 
        (3.47) 

which gives 

 
2 2

2
12 4 4

1 9 3
= sinh 2

2 16 8

C C
V C m t

m m m

 
    (3.48) 

when 
2 2

1 4

9
>

16

C
C

m


 

2 2
22

14 4

3 9
= , where  =

8 16
m t C C

V e C
m m

   
 

  (3.49) 

 
2 2

2
12 4 4

2 2

1 4

1 9 3
         = cosh 2 ,

2 16 8

9
where <

16

C C
V C m t

m m m

C
C

m

 



 
  (3.50) 

We consider these subcases separately. 

Case I(a) when 
2 2

1 4

9
=

16

C
C

m


 

From Eqs.2.15, 2.17 and 3.49, we get 

 1 = 1a t                   (3.51) 

    22
2 3 4

3
= =

8
m t C

a t a t e
m

  
 

      (3.52) 

From Eqs.1.3 and 3.49 we have 
1

22
4

3
=

8
m t

WDF

C
C e

m




  
 

        (3.53) 

and from Eqs.1.1 and 3.53 we get 

0=WDFp                 (3.54) 

with the use of Eq.3.7-3.10 we can express the physical 
quantities as 

22 2

22
4

2
=

3

8

m t

m t

m e
C

e
m


  

 

          (3.55) 

1
=

2
A                     (3.56) 

24 4
2

2
22

4

=
3

3
8

m t

m t

m e

C
e

m


  

 

       (3.57) 

22
4

9
= 1

8
m tC

q e
m

              (3.58) 

For large t , the shear dies out. 

Case I(b) when    2 2 4
1 > 9 16C C m  

Then for small t  (i.e. near singularity = 0t ), 

 2 2sinh 2 2m t m t          (3.59) 

Then Eq.3.48 reduces to 

2 2

1 4 4

9 3
=

16 8

C C
V C t

m m

 
           (3.60) 

From Eqs.2.15, 2.17 and 3.60, we get 

 1 = 1a t                      (3.61) 

   
1 2

2 2

2 3 1 4 4

9 3
= =

16 8

C C
a t a t C t

m m

  
  

  
  (3.62) 

From Eqs.1.3 and 3.60 we have 
1

2 2

1 4 4

9 3
=

16 8WDF

C C
C C t

m m

 


 
  

  
       (3.63) 

and from Eqs.1.1 and 3.63 we get 

= 0WDFp                 (3.64) 

with the use of Eqs.3.7-3.10 we can express the physical 
quantities as 

2 2

1 4

2 2

1 4 4

9

16=
9 3

16 8

C
C

m

C C
C t

m m




 



 

        (3.65) 

1
=

2
A                 (3.66) 

2 2

1 4
2

2
2 2

1 4 4

9

16=
9 3

12
16 8

C
C

m

C C
C t

m m




 



 
  

  

     (3.67) 
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= 2q                 (3.68) 

For large t , the shear dies out. 

Case I(c) when 
2 2

1 4

9
<

16

C
C

m


 

Then for small t  (i.e. near singularity = 0t ), 

 2 4 2cosh 2 1 4m t m t           (3.69) 

Then Eq.3.50 reduces to 

2 2 2 2
2

1 14 2 4 4

9 1 9 3
= 2

16 2 16 8

C C C
V C t C

m m m m

   
    
 
 

 

(3.70) 

From Eqs.2.15, 2.17 and 3.70, we get 

 1 = 1a t             (3.71) 

 
 

2

3

1 2
2 2 2 2

2
1 14 2 4 4

   

=

9 1 9 3
= 2

16 2 16 8

a t

a t

C C C
C t C

m m m m

    
     
    

 

(3.72) 
From Eqs.1.3 and 3.70 we have 

1
2 2 2 2

2
1 14 2 4 4

   

9 1 9 3
= 2

16 2 16 8

WDF

C C C
C C t C

m m m m



  


  
     
    

 

(3.73) 

and from Eqs.1.1 and 3.73 we get 

 = 0WDFp            (3.74) 

with the use of Eqs.3.7-3.10 we can express the physical 
quantities as 

2 2

14

2 2 2 2
2

1 14 2 4 4

9
4

16=
9 1 9 3

2
16 2 16 8

C
C t

m

C C C
C t C

m m m m




  



 
    
 
 

 

(3.75) 

1
=

2
A              (3.76) 

2 2
21

4
2

2
2 2 2 2

2
1 14 2 4 4

43

34
=

9 1 9 3
2

16 2 16 8

CC
t

m

C C C
C t C

m m m m




  

 
 

 
  
     
    

 

(3.77) 

2 2

12 4 4

2 2
2

14

3 9 9
1 2 16 8=
2 9

4
16

C C
C

m m mq
C

C t
m

 



 


 
 
 
 

     (3.78) 

For large t , the shear dies out. 
Case II = 1  (Zeldovich Fluid) 
Eq.2.35 reduces to 

4 2
1

d
=

3
4 3

2

V
t

m V C C
  

    
 

      (3.79) 

which gives 

41

4

3 3
= sinh 4

3 24
2

C C
V m t

m

  
 





 
  

 
 (3.80) 

Then for small t  (i.e. near singularity = 0t ), 

4 43 3
sinh 4 4

2 2
m t m t

   

   
        

   
 (3.81) 

Then Eq.3.80 reduces to 

 1= 3V C C t                     (3.82) 

From Eqs.2.15, 2.17 and 3.82, we get 

 1 = 1a t                 (3.83) 

      1 2

2 3 1= = 3a t a t C C t        (3.84) 

From Eqs.1.3 and 3.82 we have 

  1

1= 3WDF C C C t 


        (3.85) 

and from Eqs.1.1 and 3.85 we get 

= 0WDFp                    (3.86) 

with the use of Eqs.3.7-3.10 we can express the physical 
quantities as 

1
=

t
                  (3.87) 

1
=

2
A                 (3.88) 

2
2

1
=

12t
              (3.89) 

= 2q                  (3.90) 

For large cosmic time, the shear dies out and 
, 0p   and the model reduces to vacuum. 

Case III. 
1

=
3

  (Radiation) 
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For 1 = 0C , Eq.2.35 reduces to 

4 2 2 3

d
=

3
4 3

4

V
t

m V CV
  

   
 

   (3.91) 

which gives 
3 2

4

4

3 1612
= sinh

33 16

mC
V t

m








    
     

(3.92) 

Then for small t  (i.e. near singularity = 0t ), 

4 43 16 3 16
sinh

3 3

m m
t t

  
  
  
 
 

    (3.93) 

Then Eq.3.92 reduces to 
3 2

2 3
=

3

C
V t

 
 
 

           (3.94) 

From Eqs.2.15, 2.17 and 3.94, we get 

 1 = 1a t                  (3.95) 

   
3 4

2 3

2 3
= =

3

C
a t a t t

 
 
 

       (3.96) 

From Eqs.1.3 and 3.94 we have 
3 2

2 3
=

3WDF

C
C t




 
 
 

      (3.97) 

and from Eqs.1.1 and 3.97 we get 

= 0WDFp                   (3.98) 

with the use of Eqs.3.7-3.10 we can express the physical 
quantities as 

3
=

2t
                     (3.99) 

1
=

2
A                     (3.100) 

2
2

3
=

16t
                   (3.101) 

= 1q                     (3.102) 

For large cosmic time, the shear dies out and , p  
0  and the model reduces to vacuum. 

4. MODELS WITH CONSTANT       
DECELERATION PARAMETER 

Case I. Power-Law 
Here we take 

= bV at                    (4.1) 

where a  and b  are constants, 
Here we discuss three interesing cases 
Case I(a). When 1 =a V  
From Eq.4.1, we get 

  1 2 2
1 = ba t a t                  (4.2) 

    1 4 4
2 3= = ba t a t a t            (4.3) 

From Eq.1.3 and 4.1, we have 

 
 1

1
=

1
b

WDF

C
t

a




 


 
 



     (4.4) 

and from Eq.1.1 and 4.4, we get 

 
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1

1
=

1
b

WDF

C
p t

a




 


 


 
  

  (4.5) 

with the use of Eqs.3.7-3.10 we can express the physical 
quantities as 

=
b

t
                  (4.6) 

1
=

8
A                  (4.7) 

2
2

2

1
=

48

b

t
              (4.8) 

3
= 1q

b
               (4.9) 

Case I(b). When 1 =a V  
From Eq.4.1, we get 

 1 = ba t at               (4.10) 

   2 3= = 1a t a t          (4.11) 

From Eqs.1.3 and 4.1, we have 

 
 1

1
=

1
b

WDF

C
t

a




 


 
 



     (4.12) 

and from (1.1) and (4.12), we get 

 
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1

1
=

1
b

WDF

C
p t

a




 


 


 
  

  (4.13) 

with the use of Eqs.3.7-3.10 we can express the physical 
quantities as 

=
b

t
                 (4.14) 

= 2A                 (4.15) 
2

2
2

=
3

b

t
               (4.16) 

3
= 1q

b
              (4.17) 
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Case I(c). When 2
1 =a V  

From Eq.4.1, we get 

  2 2
1 = ba t a t                   (4.18) 

    1 2 2
2 3= = ba t a t a t           (4.19) 

From Eqs.1.3 and 4.1, we have 

 
 

1

1=
1

b
WDF

C
t

a


 
 

 
 

     (4.20) 

and from Eqs.1.1 and 4.20, we get 

 
 1

1

1
=

1
b

WDF

C
p t

a




 


 


 
  

  (4.21) 

with the use of Eqs.3.7-3.10 we can express the physical 
quantities as 

=
b

t
                    (4.22) 

25
=

2
A                  (4.23) 

2
2

2

25
=

12

b

t
                (4.24) 

3
= 1q

b
                 (4.25) 

For large t , the shear dies out and model has no sin-
gularity. 

Case II. Exponential-Type 
Here we take 

= tV e                 (4.26) 

where   and   are constants. 
Here we discuss three interesing cases 
Case II(a) when 1 =a V  
From Eq.4.26, we get 

  1 2 2
1 =

t

a t e


               (4.27) 

    1 4 4
2 3= =

t

a t a t e


         (4.28) 

From Eqs.1.3 and 4.26, we have 
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1
t
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C
e  



 
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 
 



    (4.29) 

and from Eqs.1.1 and 4.29, we get 
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 (4.30) 

with the use of Eqs.3.7-3.10 we can express the physical 
quantities as 

=                  (4.31) 

1
=

8
A                     (4.32) 

2 21
=

48
                  (4.33) 

= 1q                     (4.34) 

Case II(b). When 1 =a V  
From Eq.4.26, we get 

 1 = ta t e             (4.35) 

   2 3= = 1a t a t          (4.36) 

From Eqs.1.3 and 4.26, we have 
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     (4.37) 

and from Eqs.1.1 and 4.37, we get 
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   (4.38) 

with the use of Eqs.3.7-3.10 we can express the physical 
quantities as 

=                   (4.39) 

= 2A                  (4.40) 
2

2 =
3

                (4.41) 

= 1q                   (4.42) 

Case II(c). When 2
1 =a V  

From Eq.4.26, we get 

  2 2
1 = ta t e                (4.43) 
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From Eqs.1.3 and 4.26, we have 
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and from Eqs.1.1 and 4.45, we get 
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  (4.46) 

with the use of Eqs.3.7-3.10 we can express the physical 
quantities as 

=                   (4.47) 

25
=

2
A                (4.48) 

2 225
=

12
               (4.49) 
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= 1q                   (4.50) 

The model has no singularity. 

5. CONCLUSIONS 

The Bianchi type-VIo universe has been considered 
for a new equation of state for the Dark Energy compo-
nent of the universe (known as dark wet fluid). The solu-
tion has been obtained in quadrature form. The models 
with constant deceleration parameter have been dis-
cussed in detail. The behaviour of the models for large 
time have been analyzed. 
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