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Abstract 
 
Many engineering design problems are characterized by presence of several conflicting objectives. This re- 
quires efficient search of the feasible design region for optimal solutions which simultaneously satisfy multi- 
ple design objectives. Genetic algorithm optimization (GAO) is a powerful search technique with faster con- 
vergence rates than traditional evolutionary algorithms. This paper applies two GAO-based approaches to 
multi-objective engineering design and finds design variables through the feasible space. To demonstrate the 
utility of the proposed methods, the multi-objective design of an I-beam will be presented. 
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1. Introduction 

Many engineering design problems are characterized by 
presence of several often conflicting and incommensur- 
able design objectives [1,2]. This raises the question how 
to effectively search the feasible design region for opti- 
mal solutions which simultaneously satisfy multiple de- 
sign objectives. 

Population-based optimization methods such as evolu- 
tionary algorithms (EA) have become increasingly po- 
pular for solving difficult optimization problems [3,4]. In 
addition to their insensitivity to assumptions of continu- 
ity and differentiability of the underlying objective func- 
tions, the success of EAs can be attributed to their ability 
to efficiently explore and exploit various portions of the 
pareto-front simultaneously [5,6]. 

A relatively recent arrival among optimizing algo- 
rithms is called genetic algorithm optimization (GAO). 
The basic element of a GA is the artificial individual. 
Similar to a natural individual, an artificial individual 
consists of a chromosome and a fitness value. The fitness 
of an individual describes how well an individual is 
adapted to the nature. It determines the individual’s like- 
lihood for survival and mating. Every changing of the 
chromosome leads to a changing of the Individual’s fit- 
ness. GAO is a powerful stochastic search technique with 
faster convergence rates than the traditional evolutionary 
algorithms. A particular application area of interest for 

GAO-based methods is multi-objective optimization 
(MO) in engineering design environments [3]. 

Basically GAO and other evolutionary algorithms like 
PSO or Ant colony optimization work with single-ob- 
jective problems (SOPs). In SOPs fitness evaluation of 
GAO is the goodness of individual for optimization 
problem so individuals with best goodness have upper 
fitness. But at multi-objective problems (MOPs), we face 
with multiple functions so each individual have multiple 
goodness at each functions. Because of this, we must 
define new fitness evaluation method. Two most popular 
methods that proposed for this are weighted aggregation 
and dominant Pareto fronts. We most convert multiple 
fitness of each individual for each objective into one fit- 
ness for each individual. Simplest way is aggregation of 
fitness of each objective. Weight of each objective’s fit- 
ness can pre-defined by user with respect to their impor- 
tance. Fitness evaluation of non-inferior individuals in a 
population is accomplished by performing non-domi- 
nated sorting and full-factorial experiments on popula- 
tion members followed by the weighted aggregation 
technique. Fitter designs are selected to serve as arche- 
typical design cases allowing other designs to move to- 
wards the fitter designs by emulating their behavior. But 
this is not a good method; another method is based on 
dominance that will propose at follows. 

Thus far, we have discussed the motivation and a brief 
overview of the presented work. The remainder of the 
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paper is organized as follows. Sections 2 and 3 provide 
brief descriptions of multi-objective and genetic algo- 
rithm optimization methods, respectively. Section 4 in- 
troduces dominant-based GA methodologies devised 
specifically for multi-objective robust engineering design. 
Section 5 is the application of the mentioned two main 
methods to pareto-optimum design of an I-beam. And 
finally, Section 6 is the summary and conclusions. 

2. Multi-Objective Optimization 

Multi-objective optimization (MO) is a methodology for 
finding optimal solutions to multivariate problems with 
multiple, often conflicting, objectives [1]. 

The main goal of MO is to find the optimum input pa-
rameter vector which results in some desired combina-
tion of maximization, minimization, or nominalization of 
the involved product or process responses. Mathemati-
cally, MO attempts to optimize the p-dimensional vector 
function F of objective responses  

where      1 , ,
T

pF X f X f X     1, ,
T

nX x x   is  

an n-dimensional vector of design variables and p is the 
number of design objectives for a product. The problem 
can be stated formally as follows (l is the inequality and 
m is the equality constraints) [2]: 

Minimize/Maximize: 

 1     1, ,f X for i p   

Subject to: 

  0     1, ,jg X for j   l



 

  0    1, ,kh X for k m    

Since MO problems often have conflicting objectives, 
it is virtually impossible to find any one ideal solution. 
Instead, MO produces Pareto-optimal solutions. A design 
vector is Pareto-optimal if there is no other design vector 
that optimizes one criterion without causing the simulta-
neous degradation of at least one other criterion. 

Without loss of generality, it can be stated that the 
goal is to maximize p objective responses considering 
the following key definitions [1, 2]: 

Definition 1. A vector  1, , pu u u   is said to be  

inferior to (dominated by) vector  1, , pv v  v  if 

   1, , , 1, ,i i ii p v u i p v       iu  

Definition 2. Vectors u and v are said to be non-infe- 
rior to each other if neither u is inferior to v nor v is infe- 
rior to u. 

The main challenge of MO is to develop efficient al-
gorithms that can quickly converge to well-spread 
Pareto-fronts in the feasible, non-dominated design re-

gions. This and other pertinent issues relating to the spe-
cifics of MO can be found elsewhere [1,3,4]. 

3. Genetic Algorithm Optimization 

Genetic algorithms [7,8] employ metaphor from biology 
and genetics to iteratively evolve a population of initial 
individuals to a population of high quality individuals, 
where each individual represents a solution of the prob-
lem to be solved and is composed of a fixed number of 
genes. The number of possible values of each gene is 
called the cardinality of the gene. Figure 1 illustrates the 
operation of a general genetic algorithm. The operation 
starts from an initial population of randomly generated 
individuals. Then the population is evolved for a number 
of generations and the qualities of the individuals are 
gradually improved. During each generation, three basic 
genetic operators are sequentially applied to each indi-
vidual with certain probabilities, i.e., selection, crossover, 
and mutation. First, a number of best-fit individuals are 
selected based on a user-defined fitness function. The 
remaining individuals are discarded. Next, a number of 
individuals are selected and paired with each other. Each 
individual pair produces one offspring by partially ex-
changing their genes around one or more randomly se-
lected crossing points. At the end, a certain number of 
individuals are selected and the mutation operations are 
applied, i.e., a randomly selected gene of an individual 
abruptly changes its value [9]. 

4. Evolutionary Multi-Objective  
Optimization (Methodologies) 

An evolutionary algorithm (EA) is a stochastic optimiza-
tion algorithm that simulates the process of natural evo- 
 

 

Figure 1. The operation of a generic GA. 
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lution [Bäck97]. Thus, an EA operates on a set of candi-
date solutions, which are subsequently modified by sim-
plified implementations of the two basic principles of 
evolution: selection and variation. Selection represents 
the competition for resources among living beings. Some 
are better than others and more likely to survive and 
transmit their genetic information. A stochastic selection 
process simulates natural selection. Each solution is 
given a chance to reproduce a certain number of times, 
dependent on their quality, which is assessed by assign-
ing a fitness value to each individual. The other principle, 
variation, imitates the natural capability of creating new 
living beings by means of recombination and mutation 
(see Figure 2). Recombination and mutation are typi-
cally the variation operators. We use two methods for 
optimizing multi-objective problems: 

4.1. Evaluation of Individuals in Aggregation 
Method 

In a SOP (Figure 2(top)), Task2 obtains a scalar value 
(fitness) for each individual (candidate solution) by 
evaluating a single function. In MOPs (Figure 2(bottom)) 
Task2 has two subtasks: Task2a obtains a vector of scalar 
values (vector fitness) for each individual by evaluating 
the set of objective functions: the dimension of vector 
fitness is equal to the size of the set of objective func-
tions. Task2b converts the vector fitness for each indi-
vidual into a scalar value (fitness) using some specific 
technique (different for each MOEA). Task2b usually 
incorporates a niching technique. 

In this method for converting vector fitness into a sca-
lar fitness we use a weighted aggregation of all of vector 
fitness components. Assessing the fitness of a individual 
 

Task1: Initiate population 

Repeat t = 1,2,... 

Task2: Evaluate solutions in the population: 

a) for each individual obtain a scalar fitness 

Task3: Perform competitive selection in population 

Task4: Apply variation operators to the population 

Until convergence criterion is satisfied 

Task 1: Initiate population 

Repeat t = 1,2... 

Task 2: Evaluate solutions in the population: 

a) for each individual obtain a vector fitness 

b) for each individual convert vector fitness into a scalar fitness 

Task3: Perform competitive selection in the population 

Task4: Apply variation operators to the population 

Until convergence criterion is satisfied 

Figure 2. Pseudo-code of an EA for single-objective optimi-
zation (top) and multi-objective optimization (bottom). 

involves evaluation of the individual points  
 1, ,

T

n X x x   within that objectives using the re-
sponse vector F(X). Since design objective functions 
may have different scales and requirements (minimiza-
tion or maximization), the algorithm normalizes the 
computed raw fitness fi for the ith objective to the value 
Ji which ranges in [0, 1]; the closer Ji is to 1 the better 
the fitness is and the closer Ji is to 0 the worse the fitness. 
The normalized fitness for the ith design objective is 
calculated using that design objective’s global reference 
maximum (fi max) and minimum (fi min) values, which are 
specified by the problem’s geometric constraints. So, if 
the ith design objective is to be maximized, Ji is calcu-
lated by (fi – fi min)/(fi max – fi min), and if minimization of 
the objective is the goal, Ji is calculated by  
(fi max – fi)/(fi max – fi min). 

Even with a normalized fitness for each design objec-
tive of an individual point, determining which individual 
point is the “best” one within a population is still prob-
lematic primarily because of the nature of multi-objec-
tive problems, that is, multiple individual points may be 
Pareto-optimal (see Section 2). To this end, the MO 
method of weighted aggregation [1] was used to compute 
the overall normalized fitness for the kth individual point 
as: 

kt wi i                    (1) 

Where, wi is the weight of the ith design objective and 
represents the importance of the associated design objec-
tive to the designer  1iw  . Thus, the overall fitness 
vector for a population represented by n individual points 
would be the vector , and the non-domi- 
nated individual point with the highest t value would be 
considered the ‘best’ individual point. 

 1, ,T t  Tnt

4.2. Create a Set of Pareto Optima for a 
Multi-Objective Minimization (Pareto 
Optimality) 

You see that for converting a vector of fitness to a scalar 
fitness we must specify their importance, i.e. there is a 
vector of objectives,        1 , 2 ,F x F x F x Fm x    , 
that must be traded off in some way. The relative impor-
tance of these objectives is not generally known until the 
system best capabilities are determined and tradeoffs 
between the objectives fully understood. As the number 
of objectives increases, tradeoffs are likely to become 
complex and less easily quantified. The designer must 
rely on his or her intuition and ability to express prefer-
ences throughout the optimization cycle. Thus, require-
ments for a multi-objective design strategy must enable a 
natural problem formulation to be expressed, and be able 
to solve the problem and enter preferences into a nu-
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merically tractable and realistic design problem. So some 
other methods is presented to satisfy this requirements 
that we briefly express some of them at follows. 

Multi-objective optimization is concerned with the 
minimization of a vector of objectives F(x) that can be 
the subject of a number of constraints or bounds: 

 min , nF x x R  subject to: 

  0, 1, , ;i lG x i k    

  0, 1, , ;i lG x i k k l x u      

Note that because F(x) is a vector, if any of the com-
ponents of F(x) are competing, there is no unique solu-
tion to this problem. Instead, the concept of non-inferi-
ority [10,11] (also called Pareto optimality [12,13]) must 
be used to characterize the objectives. A non-inferior 
solution is one in which an improvement in one objective 
requires a degradation of another. To define this concept 
more precisely, consider a feasible region , in the pa-
rameter space. x is an element of the n-dimensional real 
numbers that satisfies all the constraints, i.e., 

 ,nX R 



   subject to 

  0, 1, , ;i lG x i k    

  0, 1, , ;i lG x i k k l x u      

This allows definition of the corresponding feasible 
region for the objective function space : 

  : ,my R y F x x      

Evolutionary algorithms seem to be especially suited 
to multi-objective optimization because they are able to 
capture multiple Pareto-optimal solutions in a single run, 
and may exploit similarities of solutions by recombina-
tion. Indeed, some research suggests that multi-objective 
optimization might be an area where EAs perform better 
than other search strategies. The considerable amount of 
research related to MOEAs currently reported in the lit-
erature is evidence of present interest in this subject. 

In MOPs, it is necessary to find not one but several 
solutions, in order to determine the entire Pareto front. 
Nevertheless, due to stochastic errors associated with the 
evolutionary operators, EAs can converge to a single 
solution [Goldberg89]. There exist literatures several 
methods, called niching techniques [Sareni98], to pre-
serve diversity in the population, in order to converge to 
different solutions. These techniques can also be applied 
to MOP. 

Pareto-based fitness assignment in a genetic algorithm 
(GA) was first proposed by Goldberg [Goldberg89]. The 
basic idea is to find a set of Pareto non-dominated indi-
viduals in the population. These individuals are then as-
signed the highest rank and eliminated from further 

competition. Then, another set of Pareto non-dominated 
individuals are determined from the remaining popula-
tion and are assigned the next highest rank. This process 
continues until the whole population is suitably ranked. 
Goldberg also suggested the use of a niching technique 
to keep the GA from converging to a single point on the 
front. 

The Non-dominated Sorting Genetic Algorithm (NSGA) 
[Srinivas93] uses several layers of ranked individuals. 
Before selection is performed, the population is ranked 
on the basis of non-domination: all nondominated indi-
viduals are classified into one category (with a dummy 
fitness value, which is proportional to the population size, 
to provide an equal reproductive potential for these indi-
viduals). To maintain the diversity of the population, 
those so classified are shared with their dummy fitness 
values. Then this group of classified individuals is ig-
nored and another layer of nondominated individuals is 
considered. The process continues until all individuals in 
the population have been classified. Then a stochastic 
remainder proportionate selection is used, followed by 
the usual cross and mutation operators. 

Fonseca and Fleming [Fonseca93] have proposed an 
algorithm called Multiple Objective Genetic Algorithm 
(MOGA) where the rank of each individual is obtained 
from the number of individuals in the current population 
that dominate it. Thus, if at generation t, an individual xi 
is dominated by pi (t) individuals; its current rank can be 
given by: 

Rank (xi, t) = 1 + pi (t)            (2) 

All non-dominated individuals are assigned rank 1, 
while dominated ones are penalized according to the 
population density of the corresponding region of the 
trade-off surface. In this way, the fitness assignment is 
performed by the following steps: 

1) Sort population according to the rank of the indi-
viduals. 

2) Assign fitness to individuals by interpolating from 
the best (rank 1) to the worst (rank n<=N), according to a 
function (not necessarily linear). 

3) Average the fitness of individuals with the same 
rank, so that all of them will be sampled at the same rate. 
Sharing on the objective function values is carried out to 
distribute population over the Pareto-optimal region. 

In their Niched Pareto Genetic Algorithm (NPGA), 
Horn and Nafpliotis [Horn93] proposed a tournament 
selection scheme based on Pareto dominance. Instead of 
limiting the comparison to two individuals, a number of 
other individuals (usually about 10) in the population are 
used to help determine dominance. Whether the com-
petitors are dominated or non-dominated, the result is 
decided through fitness sharing. 

In [Zitzler99], it was clearly shown that elitism helps 
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to achieve better convergence in MOEAs. Zitzler and 
Thiele [Zitzler98] suggested an elitist multi-criterion EA 
with the concept of non-domination in their Strength 
Pareto Evolutionary Algorithm (SPEA). They suggested 
maintaining an external population at every generation 
storing all non-dominated solutions discovered so far 
beginning from the initial population. This external po- 
pulation participates in genetic operations. At each gen-
eration, a combined population with the external and the 
current population is first constructed. All nondominated 
solutions in the combined population are assigned a fit-
ness based on the number of solutions they dominate, 
and dominated solutions are assigned fitness worse than 
the worst fitness of any non-dominated solution. This 
fitness assignment assures that the search is directed to-
wards the non-dominated solutions. A deterministic 
clustering technique is also used to maintain diversity 
among non-dominated solutions. Although the imple-
mentation suggested is O (mN3), with appropriate 
book-keeping the complexity of SPEA can be reduced to 
O (mN2). An improved version of SPEA known as 
SPEA2 [Zitzler01] has recently been proposed. This 
incorporates additionally fine-grained fitness assignment 
strategy, a density estimation technique, and an enhanced 
archive truncation method. 

Knowles and Corne [Corne00] suggested a simple 
MOEA using an evolutionary strategy (ES). In their 
Pareto-Archived ES (PAES), a parent and a child are 
compared. If the child dominates the parent, the child is 
accepted as the next parent and the iteration continues. 

On the other hand, if the parent dominates the child, 
the child is discarded and a new mutated solution (a new 
child) is found. However, if the child and the parent do 
not dominate each other, the choice between the child 
and the parent considers the second objective of main-
taining diversity among obtained solutions. To achieve 
this diversity, an archive of non-dominated solutions is 
created. The child is compared with the archive to de-
termine whether it dominates any member of the archive. 
If so, the child is accepted as the new parent and the 
dominated solution is eliminated from the archive. If the 
child does not dominate any member of the archive, both 
parent and child are examinated for their proximity to the 
solutions of the archive. If the child resides in an 
un-crowded region in the parameter space among the 
members of the archive, it is accepted as a parent and a 
copy is added to the archive. Knowles and Corne later, 
suggested a multi-parent PAES with similar principles to 
the above. The authors have calculated the worst case 
complexity of PAES for N evaluations as O(amN) where 
a is the archive length. Since the archive size is usually 
chosen proportional to the population size N, the overall 
complexity of the algorithm is O(mN2) [14]. Finally,  

Deb [Deb00] has also proposed an improved parame-
ter-less version of NSGA, called NSGA-II.  

5. Optimum Design of an I-Beam 

This section presents the MO problem of the design of an 
I-beam, which has previously been approached by sev-
eral different types of optimization methods [2,3,7]. 

Assuming that the I-beam in Figure 3 is subject to 
maximal bending forces of P = 600 kN and Q = 50 kN at 
the mid span, the objective of the design is to find the 
optimum dimensions of the beam, X* = [x1, x2, x3, x4]T, 
such that the cross section area (f1 in cm2) and static de-
flection of the beam (f2 in cm) are both minimized sub-
ject to the constraint that the beam’s bending stress (f3) 
does not exceed 16 kN/cm2. The geometric side con-
straints are 110 80x  , , 210 50x  30.9 x and 

4 5x   (all in cm). 
The MO design of the I-beam problem can mathe-

matically be stated as follows. Find X* which minimizes 
F(X*) = [f1(X*), f2(X*)]T where: 

  1 2 4 3 12 42f X x x x x x             (3) 

 
   2 3 2

3 1 4 2 4 4 1 1 4

60000

2 2 4 3 2
f X

x x x x x x x x x


     
 (4) 

Subject to the bending stress constraint: 

 
   

 

1
3 3 2

3 1 4 2 4 4 1 1 4

2
3 3

1 4 3 4 2

180000

2 2 4 3 2

15000
          16

2 2

x
f X

x x x x x x x x x

x

x x x x x


     

 
 

 (5) 

Given the boundaries of the feasible design region, a 
linear search of the problem space can determine which 
extrema in the objectives space are simultaneously at-
tainable. The computed ranges of responses for the two 
objective functions and the bending stress constraint re-
veal that f1 is in conflict with f2 and that the ideal solution 
F* = [25.38, 0.0059]T, where the two objectives are si-
multaneously minimized, can never be attained. 

At first we apply first method to problem and compare 
results with earlier other optimization methods. To ac-
count for the possibility of statistical fluctuations that can  
 

 

Figure 3. The frontal and side views of the I-beam. 
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potentially produce misleading results, the GAO algo-
rithm was tested over 3 statistically independent runs, 
each over 6 iterations with a population of 20 individuals 
containing. The weights for the three design objectives 
described in Equation’s 3, 4, and 5 were set according to 
their importance to 0.05, 0.35, and 0.60, respectively. 
Also we use Deb method with tournament selection and 
crossover fraction of 0.8. 

Closer analysis of design solutions generated by a sin-
gle population throughout three independent runs of the 
algorithm shows the consistency of each design objective 
converging. This convergence behavior is illustrated in 
Figure 4. 

Table 1 depicts solutions reported for the same I-beam 
problem by several MO studies. Each of the first three  
 

 

Figure 4. Cross section area (cm3), static deflection (cm) 
and bending stress (kN/cm2) values produced in three sta-
tistically independent runs. 

Table 1. Comparison of design solutions produced by vari-
ous methodologies. 

METHOD 
X = (x1, x2, x3, x4) 
F(X) = (f1(X), f2(X), f3(X)) 

Min Max 

1. (79.99, 49.99, 0.90, 2.39) 
2. (80.00,50.00, 0.90, 2.08) 
3. (79.99, 50.00,  0.90, 1.79) 
 
1. (307.5, 0.0127, 4.318)  
2. (276.5, 0.0143, 4.879) 
3. (247.8, 0.0163, 5.579) 

Taguchi 

1. (80.00, 50.00, 0.90, 2.30) 
2. (80.00, 50.00, 0.90, 3.20) 
3. (80.00, 50.00, 0.90, 4.10) 
 
1. (297.8, 0.0132, 4.467) 
2. (386.2, 0.0099, 3.327) 
3. (474.6, 0.0081, 2.671) 

PSO 

1. (80.00, 50.00, 0.903, 1.64) 
2. (80.00, 50.00, 0.904, 1.71) 
3. (80.00, 50.00, 0.902, 1.88) 
 
1. (176.31, 0.025, 8.94) 
2. (202.65, 0.021,7.39) 
3. (213.45, 0.020,6.82) 

GAO(new) 

1. (80.00, 50.00, 0.900, 1.405) 
2. (80.00, 49.937,0.901,1.324) 
3. (79.999,49.998,0.916,1.61) 
 
1. (209.9704, 0.0199, 6.9065) 
2. (201.8582, 0.0209,7.2859) 
3. (231.2765,0.0177,6.1213) 

 
rows in the table depicts three Pareto-optimal solutions 
generated by various other MO methods [4] while the 
last row contains three hyper-cubic designs discovered 
by the first modified GAO algorithm described in this 
paper. 

Secondly we find pareto optima for optimization 
problem by the other method. As illustrated in Figure 5 
objective function1 is at conflicting with objective func-
tion 2. Results in this Figure construct a Pareto front, i.e., 
they are all optimum for problem but at multiple direc-
tions. One whose want to have better optimization 
(minimization or maximization) at objective 1 than ob-
jective 2 selects his desired approach that objective 1 is 
optimized better than other approaches but it is clear that 
its objective 2 is inferior and so on. 

Also we see that objective 1 is in conflicting with ob-
jective 2 but objective 2 and objective 3 (constraint) are 
like the other. 

In many instances designers face situations where ei-
ther due to manufacturing and operational constraints or 
economic factors a given design scenario can no longer 
remain optimal (e.g. a new motor may not provide the 
same range of cutting speeds). In these cases, the domi-
nance-based GAO algorithm will be able to provide de-
signers with myriad of optimal, tradeoff solutions. The  

Copyright © 2011 SciRes.                                                                              ENG 



A. KHAZAEE  ET  AL. 1060
 

 

 

Figure 5. Cross section area (cm3), static deflection (cm) 
and bending stress (kN/cm2) values produced in three sta-
tistically independent runs. 
 
deterministic approaches of traditional MO approached, 
however, are rigid in that they do not easily allow incor-
poration of model uncertainty parameters into design. 

6. Conclusions 

This paper explained two general methodology for 
achieving multi-objective optimization and robust design. 
The one of important differences between SOPs and 
MOPs is that at first one there exist one fitness for each 
individual but at MOPs there exist a vector fitness per 
each individual, with the size of objective numbers. For 
converting vector fitness to a scalar fitness were ad-
dressed a modified aggregation method and dominant 
based pareto front method by using a modified GAO 

algorithm. Formulation of aggregation method, as men-
tioned, is a simple weighted collection with respect to 
objectives importance, as opposed to this traditional sin-
gle point based representation, realistic reasonable 
methods proposed by researchers that are based upon 
dominant concept that construct a pareto front solutions. 
A historical view of improvements that has occurred and 
comparison of them by SOPs proposed. 

Normalization and weighted aggregation of response 
objectives were employed to assign fitness values to in-
dividual design regions based on the criterion of non- 
inferiority at first way. The example of multi-objective 
design of an I-beam highlighted the advantages of using 
this over classical approaches. But applying second 
method gives pareto solutions and design selectivity are 
provided. Also conflicting between objectives are dem-
onstrated. 
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