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Abstract 
 
This research work investigated the modeling of Von Mises stress in LNG Spherical Carbon Steel Storage 
tank using assumed displacement Finite Element analysis based on shallow shell triangular elements. Using 
equations of elasticity, constant thickness carbon steel spherical storage tanks were subjected to different 
loading conditions. This paper stresses the need for proper definition of shallow element using sector angles 
to obtain the shallowness. The shallow spherical triangular element has five degrees of freedom at each of its 
corner node, which are the essential external degrees of freedom. The assumed displacement fields of these 
shallow triangular elements satisfied the exact requirement of rigid body modes of motion. The FORTRAN 
90 programming language was used for the programme coding to solve finite element equations resulting 
from the model while Von Mises stresses distribution within the spherical storage tank shell subjected to 
different internal pressures were determined. The results showed that the use of non-shallow elements due to 
improper sector angles resulted in unreliable results while real shallow elements produced results that tallied 
with ASME Section VIII Div 1, Part UG values. 
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1. Introduction 

Finite element modeling of pressure vessels response to 
stress analyses is a much inviting option than performing 
physical model analyses demonstrated by the amount of 
published work in the area. A large above-ground full 
containment LNG storage tank was modeled to check 
against local earthquake loading properties [1] while 
Korea Gas Corporation (KOGAS) developed the world’s 
largest above-ground full containment LNG storage tank 
with a gross capacity of 200,000 m3 [2]. The stability of 
cylindrical above-ground steel tanks under imposed 
support settlements and wind pressures have also been 
done [3]. In another study, the FEM code, MARC, was 
used to simulate the hydrobulging process of a single- 
curvature polyhedron, including loading and offloading 
conditions [4]. Pascal Pourcel and others worked on the 
seismic post elastic behavior of an existing equipment 
with a volume of 1000 m3 containing 85% of LPG [5]. In 
another study, the seismic response of a cylindrical steel 
liquid storage tank was examined by using a coupling 

method that combined the finite elements and the 
boundary elements [6]. However, in all cases of model- 
ing, it is of utmost importance to select elements that 
would aptly describe the shape of the vessel for the ele- 
ment meshing and interpolation functions. Inapt defining 
of the element shape could be very disastrous in critical 
equipment modeling and design for applications. This 
paper looks at the critical area of using shallow shell 
element for finite element modeling of LNG spherical 
tanks. 

2. Finite Element Theory 

2.1. General 

Assumed displacement method was employed in this 
research work to develop a shallow triangular spherical 
shell element without an in-plane rotation as a sixth de-
gree of freedom. 

Assumptions 
 Uniform Pressure is assumed for the LNG storage tank. 



O. ADEYEFA  ET AL.1013  
 
 External wind load, seismic loads, tremors or earth-

quakes are not considered here. 

2.2. Displacement Functions 

The accuracy which may be obtained by the finite ele-
ment method depends directly on the accuracy with 
which the deformation patterns are selected. The assumed 
deformation patterns should reproduce the distortions 
actually developed within the element. If deformation 
patterns are not properly chosen, the deformations will 
not necessarily converge to correct values when the mesh 
size is decreased. On the other hand, very good results 
may be obtained with a very coarse mesh if the element 
deformation patterns selected closely correspond to the 
actual patterns. Thus, the most critical factor in the entire 
finite element analysis is the proper selection of the ele-
ment displacement field. To fulfill the conditions of the 
principle of minimum potential energy, the interpolation 
functions must be such that the displacements along the 
inter-element boundaries are compatible. 

The assumed displacement relationships for the trian-
gular shallow shell (Figure 1) are expressed in curvilin-
ear coordinates. Polynomial displacement function is 
assumed; the polynomial being of the highest order that 
will permit evaluation of the coefficients. Since dis-
placements u and v are known at three points, nodes 1, 2 
and 3, the highest-order expressions which can be as-
sumed for u and v are 

  1 2 3,u x y a a x a y               (1) 

  4 5 6,v x y a a x a y               (2) 

The displacement w with its derivates, x , y  has 
nine known values; hence, it may be assumed that 
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from which it follows that 
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Figure 1. Shallow triangular element. 
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to determine constants as, known displacements at nodes 
are substituted and the equations become 

   1a A                  (6) 

where [δ] is the nodal degrees of freedom, [A–1] is in-
verse of transformation matrix and [a] is vector of inde-
pendent constants. 

2.3. Strain Displacement Relationship  

The strain-displacement relationships for thin shells as 
given by Reissner [7] are simplified for the shallow shell 
and expressed as follows in curvilinear coordinates.  
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        (7) 

The strain equations can be written in matrix form af-
ter necessary substitutions of u, v and w into the above 
strain equations. 

2.4. Stress in a Triangular Element  

Stress varies from point to point along the shell profile 
and also through the thickness of the shell. It is thus in 
reality an unknown function of two variables, which 
leads us to the equations below: 

2

6
b

M

t
  , m

N

t
                (8) 

where: M is the moment per unit length, M and b  is 
the bending stress at the surface. 

N is to be force per unit length and m  which is 
membrane stress. 

2.5. Strain Energy 

The strain energy of an isotropic linear shell is given by 
Langhaar [8] as; 

   
2

2 2 2

2

2
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2 1 d d
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tA
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v
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

dx y



         
(9) 

where, t = thickness of the shell, v = Poisson’s ratio and 
E = Modulus of elasticity. 

After substitution for strains in the above expression 
and integration with respect to  , the strain energy can 
be separated into the membrane energy Um and the 
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b

bending energy Ub.  

mU U U                (10) 

   2 2 2

2

1
2 1 d

22 1

m

x y x y xy
A

U

Et
e e ve e v e x

v

        dy


 (11) 
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The potential energy is then written as: 

U W    

where W represents the work done by the external load 
on the system. In the finite element method, the potential 
energy of a shell is expressed as:  

1

n

k
k




                  (13) 

where k  is the potential energy of the kth element. 

2.6. Stiffness Matrix 

By writing strain energy equations in terms of displace-
ments, element stiffness matrix can be determined in the 
usual manner,  

1 d d
T T

m m mA
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1 d d
T T

b b bA
k t A B D B x y A            (15) 

km and kb are element stiffness matrices due to mem-
brane and bending stresses respectively. 

Dm and Db are elasticity matrices for membrane and 
bending stresses respectively. 

Bm and Bb are strain matrices for membrane and bend-
ing stresses respectively. 

Therefore, element total stiffness matrix is 

bk k k                 (16) 

Element stiffness matrix is then combined to give sys-
tem stiffness matrix. 

2.7. Consistent Load Vector 

The simplest method to establish an equivalent set of 
nodal forces is the lumping process. An alternative and 
more accurate approach for dealing with distributed 
loads is the use of a consistent load vector which is de-
rived by equating the work done by the distributed load 
through the displacement of the element to the work 
done by the nodal generalized loads through the nodal 
displacements. If a triangular shell element is acted upon 

by a distributed load q per unit area in the direction of w, 
the work done by this load is derived as follows: 

1 d d
A

P qw x                  (17) 

If w is taken to be represented by: 

    1T Tw C a C A                      (18) 

where [CT] for the present element is given by 

2 2 3 2 30 0 0 0 0 0 1        TC x y x xy y x xy y       (19) 

The work done by the consistent nodal generalized 
force through the nodal displacements 

{δ} is given by: 

  2
TP F                 (20) 

Hence, from Equations (18)-(20), the nodal forces are 
obtained  

 1 d dTF A C q x        y           (21) 

Equation (21) gives the nodal forces for a single ele-
ment; and the nodal forces for the whole structure is ob-
tained by assembling the elements’ nodal forces. 

2.8. Boundary Conditions 

In order to reduce computing time, symmetrical nature of 
the storage tank was considered. Shown below is the 
typical shallow spherical triangular shell mesh for finite 
element modeling of LNG spherical storage tanks. This 
mesh in the Figure 2 below has six shallow spherical 
triangular shell elements with eight nodes. 

Each node has five degree of freedoms; therefore the 
mesh in Figure 2 has forty degrees of freedom. In con-
sidering known displacements, all displacements at given 
node were given zero values with the exception of radial 
displacements, w. 

2.9. Sector Angles 

It can be taken that there are many lines of symmetry in  
 

 

Figure 2. Typical spherical shell mesh. 
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the spherical tank with uniform internal/external pressure 
loading. For the purpose of the finite element analysis, it 
is better to take advantage of this symmetry by consider-
ing portions of the spherical tank instead of the whole 
tank. Thus, if we used a quarter of the spherical tank to 
analyze the entire system, to know the size of this quarter 
of the spherical tank in terms of angle size, we take 1/4 
of 360˚—which is equal to 90˚. The calculation of angle 
size of symmetrical portion of the spherical tank used for 
finite element analysis with respect to the whole tank is 
what we termed “sector angle”. 

3. Problem Considered 

The direct stresses, Nx, Ny and the bending moment, Mx 
and My were computed along x and y axes respectively. 
Maximum Von Mises stresses are determined. The sphe- 
recal storage tank considered has the following proper- 
ties: 

Diameter = 40 in 
Thickness = 1 in 
Young Modulus of Elasticity = 30*106 Psi 
Poisson Ratio = 0.3  
Shell Material = A516M Grade 70 
Shell Material Minimum Yield Stress = 38*103 psi 

Results and Discussions 
The maximum Von-Mises stresses variations with inter-
nal pressures are given in Figure 3. Here, the shallow 
shell element used in modeling was well described at a 
sector angle of 90 degrees. Thus, the Finite element val-
ues showed close tally with ASME Section VIII Div 1, 
Part UG values. Equivalent maximum Von mises stresses 
were well within the limits of shell material minimum 
yield stress for internal pressure between 500 psi and 

3800 psi. For internal pressure above 3800 Psi, the 
equivalent maximum Von mises yield stresses exceeded 
the shell material minimum yield stress.  

To prevent failure of LNG storage tank at pressures 
above 3800 psi, one of the following has to be done. 
 The shell thickness has to be increased accordingly so 

that equivalent maximum Von mises stress will be 
lower than the shell material minimum specified yield 
stress. 

 Select shell material with higher minimum yield 
value so that the equivalent maximum Von mises 
stress calculated will be less than the shell material 
minimum specified yield stress. 

 Decrease the working internal pressure of the spheri-
cal storage tank so that the equivalent maximum Von 
mises stress will fall below the shell material mini-
mum specified yield stress.  

Figure 4 shows the result when an element does not 
describe well the structure being modeled. Using a sector 
angle of 25 degrees, the shell element was not shallow 
but curved. This showed a deviation from ASME, s value 
by about 20 percent. The figure also shows that increas-
ing the number of elements (i.e. making the element 
smaller) will not solve the problem of a bad choice of 
element configuration. The values kept diverging away 
from ASME standard values.  

Figure 5 shows the full divergence of the modeled 
values from standard ASME results using improper ele-
ment. The implication is that the designer will use 
thicker materials for designs that ought not to be so 
bulky. On other occasions when the divergence is nega-
tive (i.e. lower values than ASME values), then the de-
signer could cause a catastrophic failure of the storage 
tank when operated at pressures than it can withstand 
(see Figure 6). 

 

 

Figure 3. Graph of Internal Pressure (Psi) against Maximum Von-Mises Stress (Psi) for Spherical vessel Dia. of 40 inches and 
Sector Angle of 90 Degrees producing a shallow shell element. 



O. ADEYEFA  ET AL. 1016
 

-2000

0

2000

4000

6000

8000

10000

12000

0 5 10 15 20 25 30 35

ELEMENT

L
O

N
G

IT
U

D
IN

A
L

 S
T

R
E

S
S

E
S

 (
p

si
)

ASME STRESS

FEA STRESS

 

Figure 4. Plot of number of mesh elements against longitudinal stresses (Psi) using a sector angle of 25 for a 40 in Dia. Vessel 
and internal pressure of 1000 Psi (sector angle here produced a curved element and not a shallow shell element). 
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Figure 5. Internal Pressure Loading against Von Mises Stresses using a sector angle of 25 degrees and hence curved shell 
element. 

Copyright © 2011 SciRes.                                                                                 ENG 



O. ADEYEFA  ET AL. 
 

Copyright © 2011 SciRes.                                                                                 ENG 

1017

-4000

-2000

0

2000

4000

6000

8000

10000

0 5 10 15 20 25 30 35

ELEMENT 

L
O

N
G

IT
U

D
IN

A
L

 S
T

R
E

S
S

ASME STRESS

FEA STRESS

 

Figure 6. Plot of number of elements against longitudinal stresses for a 35 in Dia vessel modeled with a 30 degrees sector an-
gle shell element showing negative deviation from ASME values. 
 

The onus is thus on the design engineer to take re-
sponsibility for proper and painstaking modeling for de-
sign whichever modeling method he/she chooses. 

4. Conclusions 

The usefulness of finite element modeling of spherical 
steel shells for LNG pressure storage vessels using shal-
low shell elements has been indicated in this work, the 
usefulness of ASME standards as guides cannot be over 
emphasized. Strict adherence to adaptation of physical 
parameters to modeling parameters is indicated as seen 
in the use of shallow shells which aptly describe the tank 
structure as opposed to curved elements. A wrong choice 
of mesh element configuration will not make results 
converge to correct results no matter the discretization 
size. Design Engineers must carry out their design and 
modeling base on storage tank capacities and maximum 
loads that may act on the spherical storage tank during its 
design life. 
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