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Abstract 
Modern cosmology is built on the concept of the spatial expansion of the Un-
iverse. And the current astronomical observation is consistent with this para-
digm. However, the expansion of the Universe is an expansion relative to 
matter. Therefore, in this work we try to switch the viewpoint from the spatial 
expansion of the Universe to the shrinkage of the size of matter during the 
evolution of the Universe, by employing Einstein’s general relativity and per-
forming a conformal transformation of the metric. The effect of the size 
shrinkage of matter is then through the variation of the physical parame-
ters/constants in a coordinated way. From this alternative viewpoint, there are 
advantages in realizing the evolution of the Universe, and also in better un-
derstanding Dirac’s large number hypothesis. 
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1. Introduction 

Based on the astronomical observations, besides the Universe being composed of 
mostly dark matter and dark energy with only 4% ordinary matter [1], modern 
cosmology describes the evolution of the Universe as being expanding [2] after 
its big bang [3] and a cosmic inflation [4]. And the expansion rate of the Un-
iverse is increasing with time [5] [6]. 

Although this achievement in modern cosmology is so tremendous, there still 
exist many interesting questions to be answered. One of them is the concept of 
the Universe’s spatial expansion. There could be two possible ways in realizing 
the spatial expansion of the Universe: One is that the Universe does expand spa-
tially while the size of matter stays unchanged, and this is what we usually pic-
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ture; the other is that the Universe keeps its space held constant while the size of 
matter shrinks. The latter one has ever been considered before. Eddington dis-
cussed the possibility of “the shrinking atom” in his book [7]; Wetterich has ever 
considered in his work [8] a scalar-tensor model in which the size of atom, as 
well as the Universe, shrinks with its mass increasing. However, there is still a 
lack of serious and detailed illustration on this possibility from the standard 
theory—general relativity—without any new physics input. And the reason 
might originate from its foreseeable complication once the size of matter is 
linked to the evolution of the Universe. 

In this work, we try to explore this possibility of and the mechanism for the 
size shrinkage of matter during the evolution of the Universe. We find that this 
paradigm is not only possible but can also be realized with the variation of the 
physical constants. This idea might remind people of the already existing sca-
lar-tensor theories, especially the Brans-Dicke theory [9] in which the gravita-
tional constant usually varies with a scalar field. Nevertheless, in this work we 
will mainly stick to the standard general relativity instead of the modified gravity 
theories. The result will show that, besides the gravitational constant, all the 
physical constants with the dimensionality of time should vary in a coordinated 
way such that the Universe still looks expanding in the shrinkage paradigm 
while all the physical laws remain intact. 

The rest of this work is organized as follows: In the next section, we will give a 
brief description of general relativity applied to modern cosmology; We then 
conformally transform the metric gµν  into gµν  and demonstrate that these 
two metrics describe the same evolution of the Universe in Section 3; In Section 
4, the variation of the physical “constants” in the conformal frame, thus in the 
shrinkage paradigm, are showed; The evolution of the Universe with the 
shrinkage paradigm and its relation with Dirac’s large number hypothesis are 
described in Section 5. And the conclusion will be presented in the Section 6. 

2. Standard Treatment 

Let us start with a brief description of the general relativity applied to modern 
cosmology. In Einstein’s general relativity, the connection with respect to the 
metric gµν  is defined as  

( )1 ,
2

g g g gµ µλ
σν σ λν ν λσ λ νσΓ = ∂ + ∂ − ∂                (1) 

and the Ricci tensor is defined as  

, , .R σ σ σ λ σ λ
µν µν σ µσ ν λσ µν λν µσ= Γ −Γ + Γ Γ −Γ Γ             (2) 

Its action is 4dS x= ∫L  with  

,g m= +L L L                          (3) 

and gL  is the Einstein-Hilbert Lagrangian density,  

1 ,
2g gR
κ

= −L                         (4) 
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where 4

8πG
c

κ =




 and the scalar curvature R g Rµν
µν= . Here we put a circle on  

the top of a physical constant, e.g., G


 or c , to indicate that it is a true constant 
or the constant part of the related quantity. And the matter Lagrangian density  

( ), ,m mg gµν′= − ΦL L                      (5) 

where Φ  is the matter field. The Euler-Lagrange equation  

0
g µν

δ
δ

=
L

                           (6) 

leads to Einstein’s equation, 

,G Tµν µνκ=                           (7) 

where the Einstein tensor  

1 ,
2

G R g Rµν µν µν≡ −                       (8) 

and the stress-energy tensor  

2 .mT
ggµν µν

δ
δ

≡ −
−

L
                      (9) 

With the assumption of homogeneity and isotropy, for the 
Friedman-Lemaitre-Robertson-Walker (FLRW) metric, the interval1 in spherical 
coordinates ( ), , ,t r θ φ  is  

( ) ( )2 2 2 2 2 2 2 2 2d d d d sin d ,s c t a t r r θ θ φ = − + + + 
          (10) 

thus the nonvanishing metric components are  
2 2 2 2 2 2 2, , , sin ,tt rrg c g a g a r g a rθθ φφ θ= − = = =           (11) 

and the nonvanishing Einstein tensor components are  
22

2 2

2 33 , ,t r t
t r

H HHG G G G
c c

θ φ
θ φ

∂ +
= − = = = −

 

         (12) 

where lntH a≡ ∂ , assuming 0a > . For a perfect fluid,  

( )2 ,T c p u u pgµν µ ν µνρ= + +                  (13) 

where the 4-velocity ( )1 ,0,0,0u cµ =   and 1u uµ
µ = − . So  

2 , .t r
t rT c T T T pθ φ

θ φρ= − = = =                 (14) 

Einstein’s equation thus leads to  
2 4 2 23 , 2 3 .H c H H pcκρ κ= + = − 

               (15) 

And it gives 
( )3 1 2 ,wH a− +∝                         (16) 

for the equation of state 2p w cρ=   with w = 0 standing for the matter-dominated 

 

 

1Here we only consider the zero spatial curvature case, i.e., 0k = , since the conclusion in this work 
will remain the same even in the 1k = ±  cases. 
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universe case, 1 3w =  for the radiation-dominated universe case, and 1w = −  
for the cosmological-constant-dominated universe case.  

3. Conformal Treatment 

Now let us switch our point of view by using a conformal transformation from 
gµν  to gµν  with g e gψ

µν µν= , then the relation between the Ricci tensors is  

( )221 1 1 ,
2 2 2

R R g gµν µν µ ν µν µ ν µνψ ψ ψ ψ ψ= −∇ ∇ − ∇ + ∇ ∇ − ∇        (17) 

where µ∇  is the covariant derivative with respect to the conformal metric 
gµν , and 2ψ∇  and ( )2

ψ∇  are the shorthands of g µν
µ νψ∇ ∇  and 

g µν
µ νψ ψ∇ ∇  respectively. 

Since 2g e gψ− = − , and  

( )22 33 ,
2

R e Rψ ψ ψ−  = − ∇ − ∇  
                  (18) 

so the Einstein-Hilbert Lagrangian density becomes  

( )

( )

22

2

1 33
2 2 2

3 ,
2 2

g
egR g R

e g R

ψ

ψ

ψ ψ
κ κ

ψ
κ

 = − = − − ∇ − ∇  

 − + ∇  


L

           (19) 

where the symbol   means that the total derivative term is ignored after 
integrating by parts the second derivative term into one first derivative quadratic 
term and a total derivative term, and the matter Lagrangian density becomes  

( )2 , .m m mg e g e gψ ψ
µν′ ′= − = − ΦL L L                (20) 

Therefore, the total Lagrangian density becomes  

( )2 23 .
2 2 m
eg R e
ψ

ψψ
κ

   ′= − + ∇ +  
  

L L               (21) 

Here we encounter some difficulty. The second term in the RHS of Equation 
(21) has a “wrong sign” which makes its kinetic term become negative. Such a 
ghost term is usually disliked by theorists because it carries negative energy, 
although some theories allow its existence [10]. However, this issue in general 
relativity has long been identified in [11] [12] that ψ  is related to the (global) 
timelike variable, with a negative hyperbolic signature. We can understand it as 
follows: Gravity is purely attractive and hence configurations are inherently 
physically unstable to expansion/contraction. And the sign of this term just 
reflects this unstable physical mode of gravitational dynamics. Since it is a 
characteristic of general relativity, we will not avoid this term by any 
modification during the comparison between the one with gµν  and the other 
with the conformal metric gµν . Besides, it should do no harm within the 
familiar FLRW metric. After all, all we have done is simply a conformal 
transformation of the metric. We will come back to this point later. 
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The Euler-Lagrange equations for g µν , i.e.,  

0,
g µν

δ
δ

=
L

                           (22) 

gives  

( )22 1 1
2 2 4

g e g G g g
g

ψ

µν µν µ ν µ ν µνµν

δ
ψ ψ ψ ψ ψ

κδ
 = − + ∇ −∇ ∇ + ∇ ∇ + ∇  

L
  (23) 

2 1 .
2 2

m m
m

g
e g g T

g g
ψ

µν µνµν µν

δ δ
δ δ

′ − ′= − − = − 
 

L L
L            (24) 

By comparing the expressions, it can be showed T e Tψ
µν µν= . And 

2T e Tµ ψ µ
ν ν= . Thus  

( )22 1 1 .
2 4

G T e T
e

µ µ µ µ µ µ ψ µ
ν ν ν ν ν ν νψ

κ
ψ δ ψ ψ ψ δ ψ κ−∇ ∇ + ∇ + ∇ ∇ + ∇ = =   (25) 

The interval for the FLRW metric in Equation (10) can be expressed as  

( )

2

2
2 2 2 2 2 2

d d d d d

d d d sin d ,

s g x x e g x x

ce t r r
e

ν ν ψ µ ν
µν µν

ψ
ψ θ θ φ

= =

 
= − + + + 

 

             (26) 

where we set  

( )2 ,e a tψ =                            (27) 

and the nonvanishing conformal metric components are  
2

2 2 2
2 , 1, , sin .tt rr

cg g g r g r
a θθ φφ θ= − = = =


              (28) 

Under this conformal transformation, it turns out that the conformal Ricci 
tensor vanishes, i.e., 0Rµν = . So does the conformal Einstein tensor, 0Gµν = . 
Then, with 2ln aψ = , it is easy to show that Equation (25) is able to be 
converted to the familiar Equation (15). Therefore, the Lagrangian density (21) 
with the conformal metric gµν  describes exactly the same physics as the 
Lagrangian density with gµν  does, without any surprise. 

For ψ , the Euler-Lagrange equations  

0,δ
δψ

=
L                            (29) 

leads to  

( )22 1 .
2 3 3

R e Tψκψ ψ −∇ + ∇ = +                   (30) 

Equation (30) is the contraction of Equation (25). This simply shows that 
these two equations are not independent. With the conformal metric (28), 
Equation (30) becomes  

2 26 12 ,H H Tcκ+ = − 

                       (31) 

which is basically a combination of Equation (15).  
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4. Varying Constants 

After demonstrating the equivalence of using either gµν  or the conformal one 
gµν  for evolving the Universe, we can now turn back to the viewpoint 

switching. From the Einstein-Hilbert Lagrangian density to the one (21), one can 
easily recognize that the viewpoint is switched from the Einstein frame to the 
Jordan frame [13]. It has been a debate for a long time on one’s superiority to 
the other. Here we are only interested in their equivalence for describing physics. 

The interval (26) can be written as  
2 2 2d ds a s=                            (32) 

and the conformal interval 2ds  can be expressed as  

( )2 2 2 2 2 2 2 2d d d d sin d ,s c t r r θ θ φ= − + + +               (33) 

where  

( ) ( ) 2 .c cc t
a t eψ

≡ =
 

                        (34) 

Then the total Lagrangian density (21) can be rewritten as  

( )

( )

4 2 2

4 42

4

3
16π 2

3 ,
16π 2

m

m

c eg R e
G

c cg R g
G c

ψ
ψψ

ψ

   ′= − + ∇ +  
  

  ′= − + ∇ + −  





 

L L

L

             (35) 

where  

( ) 2 .G GG t
e aψ≡ =
 

                         (36) 

In Equation (35), the first term in the RHS, i.e., 
4

16π
c g R

G
−



, can be regarded  

as the Einstein-Hilbert Lagrangian density with the conformal metric gµν , the  

last term in the RHS, i.e., 
4

4 m
c g
c

′−


L , is the matter Lagrangian density, while 

the middle term in the RHS, i.e., ( )
4 23

2 16π
c g

G
ψ− ∇



, is responsible for the  

dynamical behavior of ψ  (and thus a ) after 2a  is extracted out of gµν  in 
the conformal transformation. 

If we take G and c as the gravitational “constant” and the speed of light 
respectively in the shrinkage paradigm although they vary with respect to time 
via ( )a t , then, by using them, we can equivalently explain the astronomical 
data without employing the concept of the spatial expansion of the Universe. 
This can be understood from checking the conformal interval (33) in which the 
spatial part does not change with time. In the other words, instead of the 
Universe expanding with the size of matter unchanged, here we consider the 
Universe intact but the size of matter shrinking. And the shrinkage of matter is 
through the varying/decreasing of the physical constants, e.g., G and c. 
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Of course it is unacceptable to change any physical law without compelling 
reasons under the current situation. Therefore, we can instead apply the known 
a -dependence of the constants to physical laws to obtain the a -dependent 
behavior of the other physical quantities. For example, for the electromagnetic 
wave,  

wavelength frequency.c = ×                      (37) 

Within the shrinkage paradigm, wavelength is a spatial distance and thus 
unchanged during the evolution of the Universe, and 1c a−∝ , therefore this 
leads to  

1frequency .a−∝                           (38) 

To make the Planck-Einstein relation work, we have  
2

0 ,E m c hγ ν= =                           (39) 

where ν  is the related frequency. The rest mass 0m  is about matter and the 
Lorentz factor γ  is dimensionless. Thus they will stay unchanged. Therefore it 
is easy to obtain the a-dependence of the Planck constant  

1,h a−∝                              (40) 

which indicates that the Planck constant will decrease as long as a increases with 
respect of time. We then have the a -dependence of the three fundamental 
physical constants most employed in general relativity and cosmology,  

2 1 1, , .G a c a h a− − −∝ ∝ ∝                     (41) 

Note that the order of the a-dependence of the physical constants is the same 
as the order of their dimensionality of time. And  

now

now now now

1 ,
aG c h z

G c h a
= = = = +                 (42) 

where z is the so-called cosmological redshift2. One can easily deduce the a  
-dependence of the other physical quantities/constants by applying the known 
dependence, e.g., the ones in Equation (41), to the related physical laws. 

There might be concerns on the details of the Universe’s evolution along with 
the shrinkage paradigm, e.g., big bang nucleosynthesis, cosmic inflation, 
inhomogeneity and perturbation, cosmological constant, etc. As we have 
emphasized in the context, the shrinkage paradigm is only an alternative 
viewpoint on the Universe’s evolution, compared with the expansion paradigm. 
Both of the paradigms should give either the same or the equivalent physical 
result.  

5. Discussion 

The (classical) scenario for the evolution of the Universe with the shrinkage 

 

 

2In the shrinkage paradigm, the meaning of z is different from the cosmological redshift in the ex-
pansion paradigm. However, its form of definition and value are the same in the two paradigms. 
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paradigm is as follows: At the beginning of our Universe, 0a → , thus all the 
a -dependent physical quantities approached to their extreme values, e.g., 
infinity or zero. It made all the related physical interactions become extremely 
strong in the Universe such that the effect from the spatial distance between 
matter was relatively extremely small compared with the coupling strengths of 
the interactions. This corresponds the so-called singular point of the 
Universe. Then the explosive change of a  leaded to the explosive changes 
of these a -dependent quantities. It corresponds to the big-bang period in 
cosmology. This led to the weakening of the strength of the physical interactions 
between matter. And the weakening made the Universe “become larger and 
expand” from the viewpoint of matter. There was a period of time when a 
increased exponentially. This leaded the a -dependent physical quantities to 
increase/decrease exponentially—the cosmic inflation. Currently a  is again 
increasing acceleratingly and this corresponds to the accelerating expansion of 
the Universe in cosmology. Nevertheless, the spatial size of the Universe never 
changes from the big-bang to the current time with the shrinkage paradigm. 

The following is one example that one could understand better and appreciate 
a controversial theory when it is reviewed with the shrinkage paradigm. In 
Dirac’s large number hypothesis [14] [15] [16], he suggested that all large 
numbers obtained by combining the fundamental atomic constants and cosmic 
parameters must be related, and this implied a deeper meaning of Nature. The 
consequence of his hypothesis is that the gravitational constant should change 
with cosmic time, i.e.,  

1~ .G t−                             (43) 

However, Dirac’s predictions have never been favored by modern cosmology. 
Here we are able to address the constant variation issue with the viewpoint of the 
shrinkage paradigm. With this paradigm, it is natural for G to vary with time. 
However, we have instead  

( )2 ~ ,G a f t−∝                         (44) 

where ( ) 1f t t−=  in the radiation-dominated era, ( ) 4 3f t t−=  in the 
matter-dominated era, and ( ) constant tf t e− ×=  in the cosmological constant era3. 
We check the large number from the ratio of the electromagnetic force to the 
gravitational force between a proton and an electron and find that the ratio 
remains constant during the evolution of the Universe,  

2
EM

gravity 0

constant,
4π p e

F e
F Gm m

= =


                 (45) 

since only the vacuum permittivity 0  and G  in the expression vary with time 
but  

2
0 a∝                             (46) 

 

 

3The assumptions behind Dirac’s derivation are not exactly as same as the ones in the shrinkage pa-
radigm. Here we only compare the final result. 
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due to 1c a−∝ , where pm  ( em ) is the mass of proton (electron), and e is the 
electric charge of electron. It will be interesting to check the constancy of all the 
large numbers for the study of the large number hypothesis in the framework of 
this paradigm. The benefit within this paradigm is that, by only employing 
general relativity, without any modification and new physics, we can both 
explain an expanding universe and, at the same time, realize and appreciate 
Dirac’s legendary theory. 

As to the ghost term in Lagrangian (21), we could have a quick fix by adding a  

term like ( )2

2
eg
ψ

σ ψ
κ

− − ∇  by hand to Lagrangian (21) with 3 0
2

σ − > . The  

addition will turn the kinetic term of ψ  in the modified Lagrangian positive 
and thus get rid of the concern of negative energy. However, the addition makes 
the theory deviate from general relativity to a scalar-tensor one in which ψ  is 
promoted generically from a global timelike variable to an independent scalar 
field. It might be interesting to see how far this type of scalar-tensor theory of 
modified gravity could go in explaining the evolution of the Universe. However, 
this is beyond the scope of this work. 

6. Conclusion 

In this work, we switch the viewpoint from the spatial expansion of the Universe 
to the shrinkage of the size of matter during the evolution of the Universe. We 
find that this shrinkage paradigm can be realized by means of the variation of 
the physical constants. In spite of its slight complication, this paradigm is equally 
good with the viewpoint of the Universe’s spatial expansion in describing 
physics. The shrinkage paradigm is advantageous to the expansion one in some 
special cases, especially, in reviewing the large number hypothesis. 
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