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Abstract 
 
This article considers estimation of the unknown parameters for the compound Rayleigh distribution (CRD) 
based on a new life test plan called a progressive first failure-censored plan introduced by Wu and Kus 
(2009). We consider the maximum likelihood and Bayesian inference of the unknown parameters of the 
model, as well as the reliability and hazard rate functions. This was done using the conjugate prior for the 
shape parameter, and discrete prior for the scale parameter. The Bayes estimators have been obtained relative 
to both symmetric (squared error) and asymmetric (LINEX and general entropy (GE) loss functions. It has 
been seen that the symmetric and asymmetric Bayes estimators are obtained in closed forms. Also, based on 
this new censoring scheme, approximate confidence intervals for the parameters of CRD are developed. A 
practical example using real data set was used for illustration. Finally, to assess the performance of the pro-
posed estimators, some numerical results using Monte Carlo simulation study were reported.  
 
Keywords: Compound Rayleigh Distribution, Progressive First-Failure Censored Scheme, Bayesian and 

Non-Bayesian Estimations, Approximate Confidence Intervals 

1. Introduction 
 
There are many scenarios in life-testing and reliability 
experiments whose units are lost or removed from ex-
perimentation before failure. The loss may occur unin-
tentionally, or it may have been designed so in the study. 
However, in many situations, the removal of units prior 
to failure is preplanned in order to provide saving in 
terms of time and cost associated with testing. There are 
many types of censored test, the most common censoring 
schemes are type-I and type-II censoring, but using this 
types of censoring can not allow for units to be removed 
from the test at any other point than the final termination 
point. However, if an experimenter desires to remove 
surviving units at points other than the final termination 
point of the life test, these two traditional censoring 
schemes will not be of use to the experimenter. The al-
lowance of removing surviving units from the test before 
the final termination point is desirable, as in the case of 
studies of wear, in which the study of the actual aging 
process requires units to be fully disassembled at differ-
ent stages of the experiment. In addition, when a com-

promise between the reduced time of experimentation 
and the observation of at least some extreme lifetimes is 
sought, such an allowance is also desirable. These rea-
sons lead us into the area of progressive censoring. 

It is well known that one of the primary goals of pro-
gressive censoring is to save some live units for other 
tests, which is particularly useful when the units being 
tested are very expensive. [1] mentioned that the infer-
ence is feasible, and practical when the sample data are 
gathered according to a Type-II progressively censored 
study experimental scheme. Statistical inferences on the 
parameters of failure time distributions under progressive 
censoring have been studied by several authors such as 
[1-12]. A recent account on progressive censoring sche- 
mes can be found in the book by [13], or in the excellent 
review by [14]. 

[15] described a life test in which the experimenter 
might decide to group the test units into several sets, 
each as an assembly of test units, and then run all the test 
units simultaneously until occurrence the first failure in 
each group. Such a censoring scheme is called first-fail- 
ure censoring. [16] discussed a sampling plan for a bear-
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ing manufacturer. The bearing test engineer decided to 
save test time by testing 50 bearings in sets of 10 each, 
and the first-failure times from each group were ob-
served. [17,18] discussed some inferences based on first- 
failure-censored sampling from both the Gompertz dis-
tribution and Burr-XII distribution, respectively. Also 
see [19,20]. Note that a first-failure-censoring scheme is 
terminated when the first failure in each set is observed. 
If an experimenter desires to remove some sets of test 
units before observing the first failures in these sets this 
life test plan is called a progressive first-failure-censor- 
ing scheme which recently introduced by [21]. 

The two-parameter compound Rayleigh distribution 
(which is denoted by CRD ( , ) 

)

) provides a popula-
tion model which is useful in several areas of statistics, 
including life testing and reliability. The probability den-
sity function ( , and the cumulative distribution 
function  of CRD ( ,

)pdf
)(cdf    are given, respectively, 

by 
2 ( 1)( ) = 2 ( ) ,

      > 0, > 0, > 0,

f x x x

x

  
 

 
       (1) 

2( ) = 1 ( )F x x     ,         (2) 

and the reliability and failure rate functions, at some , 
are  

t

2( ) = ( )S t t    , ,        (3) > 0t

2

2
( ) =

t
H t

t


 

, ,          (4) > 0t

where   and   are the shape and the scale parameter 
respectively. 

The compound Rayleigh distribution (CRD) is a spe-
cial case of the 3- parameter Burr type XII distribution, 
which has a PDF of the form. The 2- parameter version 
of this distribution (with) was studied by several authors, 
such as [22-26], among others. 

The main aim of this article is to focus on the design-
ing problem of a progressive first-failure censoring life 
test with a compound Rayleigh failure time distribution. 
The rest of this article is organized as follows. In Section 
2, the formulation of a progressive first-failure-censoring 
scheme is described. The ML estimations with the ap-
proximate confidence intervals of the parameters are 
obtained in Section 3. Bayesian estimations of the pa-
rameters, reliability and hazard rate functions of CRD 
based on progressive first-failure-censoring scheme are 
investigated in Section 4. In Section 5, for illustrative 
purposes, we performed a real data analysis. A simula-
tion study in order to give an assessment of the perform-
ance of the estimation methods are presented in Section 6. 
Finally we conclude the paper in Section 7. 

2. A Progressive First-Failure-Censoring 
Scheme 

 
In this section, first-failure-censoring scheme is com-
bined with the progressive censoring scheme as in [21]. 
Suppose that  independent groups with  items 
within each group are put in a life test, 1  groups and 
the group in which the first failure is observed are ran-
domly removed from the test as soon as the first failure 
(say 1: : :m n k ) has occurred, 2  groups and the group in 
which the second first failure is observed are randomly 
removed from the test when the second failure (say 

2: : :m n k ) has occurred, and finally m  groups 
and the group in which the  first failure is ob-
served are randomly removed from the test as soon as the  

n k

n

R

(R m 

X R R

X R )
m th

m th  failure (say : : : ) has occurred. The 1: : :m n k  

2: : : : : :m m n k  are called progressively first- 
failure-censored order statistics with the progressive cen-
soring scheme . It is clear that  

m m n kX R

X R

1 2= , ,R R 

X R

< < <X R 

R (
m

m n k

, mR )

=1

= i
j

n m R . If the failure times of the n k  items  

originally in the test are from a continuous population 
with distribution function ( )F x  and probability density 
function ( )f x

R R

, the joint probability density function for  

1: : : 2: : : : : :, , ,m n k m n k m m n kX X X R  is given by 

1,2,..., 1: : : 2: : : : : :

( 1) 1

: : : : : :
=1

    ( , ,..., )

= ( ) 1 ( )

m m n k m n k m m n k

m k j
j m n k j m n k

j

f x x x

Ck f x F x ,
 

  

R R R

RR R
   (5) 

1: : : 2: : : : : :0 < < < ... < <m n k m n k m m n kx x x R R R , 

where 

1 1 2

1 2 1

= ( 1)( 1)

      ( 1).m

C n n R n R R

n R R R m

    
    




      (6) 

It should be noted that 1; , , 2; , , ; , ,  
can be viewed as a progressive type II censored sample 
from a population with distribution function 1 (

, , ,m n k m n k m m n kX X XR R R

1   
( ))kF x . For this reason, results for progressive type II 

censored order statistics can be extended to progressive 
first-failure censored order statistics easily. Also, the 
progressive first-failure censored plan has advantages in 
terms of reducing the test time, in which more items are 
used, but only  of n km   items are failures. 
 
3. Maximum Likelihood Estimation 
 
Based on progressively first-failure-censored sample 

: : :i m n k , , with censoring scheme  is 
drawn from the CRD (1). For convenience, we will de-
note the observed values of such sample by i

X R = 1,2, ,i  m R

X ,  
. From (5), the likelihood function is given by 

= 1i ,
2, ,m
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2
2

=1 =1

( , ) = (2 )

            exp ( 1) log ,

m kn

mm
i

i i
i i i

L C k

x
k R x

x

   

 


       
 



 (7) 

where  is defined in (6) The log-likelihood function 
is given by 

C

2
2

=1 =1

( , ) = log (2 ) log log

          log ( 1) log .

m

m m
i

i
i ii

C k m kn

x
k R x

x

    

 


    
 

       
 



i
 (8) 

Calculating the first partial derivative of (8) with respect 
to   and   and equating to zero, we obtain the like- 
lihood equations 

2

=1

( , )
= log ( 1) log( ) = 0

m

i i
i

m
kn k R x

   
 


   

 
, 

(9) 

and 

2 2
=1 =1

( 1)( , ) 1
= =

( )

m m
i

i ii i

Rkn
k

x x

   
   


 
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0  (10) 

From (9), we have  

2

=1

ˆ ( ) =

( 1)log( ) log
m

i i
i

m

k R x n

 
  

   
 


  (11) 

From (10) and (11), we have 

2
=1

2
2 =1

=1

( 1)
ˆ ˆ 1 1

= 0
ˆˆ ˆ( 1) log( ) log

m
i

m
i i

m
i i

i i
i

Rn

x

m xR x n

 
 






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



, (12) 

Newton-Raphson iteration is employed to solve (12). 
The corresponding MLE’s of the reliability function 

, and hazard rate function ( )S t ( )H t , are given respec-
tively by (3) and (4) after replacing   and   by their 
MLE’s ̂  and ̂ . To obtain a starting value for the 
root finding method, we can use the graphical method 
discussed in [27]. 
 
Approximate Interval Estimation 
From the log-likelihood function in (8), we have 

2

2 2 2 2
=1 =1

( 1)( , ) 1
=

( ) ( )

m m
i

i ii

Rkn
k 2 2

ix x

   
   

 
 

  


. (13) 

2

2

( , )
=

m 
2 



 

            (14) 

and 
2 2

2
=1

( 1)( , ) ( , )
= =

( )

m
i

i i

Rkn
k

x

   
     

 


     
.  (15) 

Let 1: : : 2: : : : : :  denote a pro-
gressively first-failure-censored sample from the CRD 
with parameters 

< < <m n k m n k m m n kX X XR R R

  and  . The Fisher information 
matrix  ,I    is then obtained by taking expectation 
of minus Equations (13)-(15). Under some mild regular-
ity conditions,  ˆ ˆ,   is approximately bivariate nor-
mal with mean  ,   and covariance matrix 

 1 ,I   . In practice, we usually estimate  1 ,I    
by  ˆ ˆ,1I   . A simpler and equally valied procedure is 
to use the approximation 

    1
0

ˆ ˆˆ ˆ, ( , ), ,N I      ,      (16) 

where  0 ,I    is the observed information matrix 
given by 

 
 

2 2

2

0 2 2

2
ˆ ˆ,

( , ) ( , )

ˆ ˆ,
( , ) ( , )

I

 

   
 

 
   
  

  
    
  
  

    

 

 
.  (17) 

Approximate confidence intervals for   and   
can be found by to be bivariate normal with mean 
 ,   and covariance matrix 1

0
ˆ ˆ,I   . Thus, a 

100(1 )%  approximate confidence intervals for   
and   are 

11

2

ˆ z v   and 22

2

ˆ z v         (18) 

respectively, where 11v  and 22v  are the elements on 
the main diagonal of the covariance matrix  1

0
ˆ ˆ,I     

and 
2

z  is the percentile of the standard normal distri-  

bution with right-tail probability 
2


. 

 
4. Bayes Estimation 
 
In this section, we present the posterior densities of the 
parameters   and  , and obtain symmetric and 
asymmetric Bayes estimators for the parameters, reliabil-
ity and hazard rate functions. 
 
4.1. The Loss Function 
 
For Bayesian approach, in order to select a single value 
as representing our “best” estimators of the unknown 
parameter, a loss function must be specified. A wide va-
riety of loss functions has been developed in literature to 
describe various types of loss structures. The symmetric 
square-error loss (SE) is one of the most popular loss 
functions. It is widely employed in the inference, but its 
application is motivated by its good mathematical prop-  
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erties, not by its applicability to representing a true loss 
structure. A loss function should represent the conse-
quences of different errors. There are situations where 
over- and under-estimation can lead to different conse-
quences. For example, when we estimate the average 
reliable working life of the components of a spaceship or 
an aircraft, over-estimation is usually more serious than 
underestimation. Being symmetric, the SE loss equally 
penalizes over- and under-estimation of the same mag-
nitude. A useful asymmetric loss known as the LINEX 
loss function, was introduced by [28], and was widely 
used in several papers, see for example, [5,6,10,11,28- 
30]. This function rises approximately exponentially on 
one side of zero, and approximately linearly on the other 
side. Under the assumption that the minimal loss occurs 
at , the LINEX loss function for u u = ( , )u u   can 
be expressed as 

1( ) e 1aL a     , ,        (19) 0a 

where  is an estimate of .   ,u u u    u
The sign, and magnitude of the shape parameter  

represent the direction and degree of symmetry respec-
tively (if , overestimation is more serious than 
underestimation and  means the opposite). For  
close to zero, the LINEX loss function is approximately 
the squared error loss (SEL) and therefore almost sym-
metric. 

a

a
> 0a

< 0a

The posterior expectation of the LINEX loss function 
of (19) is 

     
  

exp . exp

. 1.

u u

u

E L u u au E au

a u E u

   

  

 




  (20) 

where u  is denotes posterior expectation with respect 
to the posterior . The Bayes estimator 

E
( )pdf u BL  of 

 under the LINEX loss function is the value , which 
minimizes (20), it is 

u
u u

  1
log expBL uu E

a
au            (21) 

provided that the expectation  exists and 
is finite. 

[exp( )]uE a u

Another useful asymmetric loss function is the general 
entropy loss (GEL)  

 2
ˆ, log

q
u u

L u u q
u u

       
   

 
1        (22) 

whose minimum occurs at u u . This loss function is a 
generalization of the entropy-loss used in several papers 
where  by [31] and [32]. When , a positive 
error ( u ) causes more serious consequences than a 
negative error. The Bayes estimate 

= 1q
u

> 0q

BGu  of  under  u

GE loss (22) is 

 
1

q q
BG uu E u


                (23) 

provided that  exists, and is finite. [ q
uE u ]

 
4.2. Prior Distribution and Posterior Analysis 
 
In this section we first describe the prior information 
needed for the Bayesian analysis of the unknown pa-
rameters. When the parameters   and   are assumed 
to be unknown, the following idea of [33], we assume 
that the parameter   has a discrete prior, while the 
conditional distribution of   given = j   has a 
conjugate gamma prior. Now, we suppose that the pa-
rameter   is restricted to a finite number of values, say 

1 2, , , N    in the interval , i.e.  0,
( = ) =j jp e  ,  and 0 1 ,  

=1

= 1
N

j
j

e je 

 = 1,2, ,j 
=

N . Further, suppose that conditional upon 

j  ,  = 1,j 2, , ,N   has a natural conjugate 
gamma  ,j ja b  prior, with density 

1

1

exp( )
π ( | = ) = ,

( )

              > 0, , > 0.

a aj j
j j

j
j

j j

b b

a

a b

 
  






     (24) 

Combining the likelihood function in (5), and prior den- 
sity (24), we obtain the marginal posterior probability of 
  conditional = j    

1

1

exp( )
π ( | = ) =

( )

j j
j j

j
j

T T
 
 

  




 


,    (25) 

where 

2

=1

= ( 1) log( ) log
m

j j i i
i

T b k R x       , =j jm a  .

 (26) 

On applying the discrete version of Bayes theorem, the 
marginal posterior probability distribution of   is 
given by 

  1

2
1

= Pr( = )

    = ; , π ( | = )d

( )

    = ,
( )

j j

j j j

ma j i
j j j

i
j i

j
j j

p

e L x

x
e b

x

T a





 

      















   (27) 

where j  and jT  given by (26) and   is a normal-
ized co nt gi by  nsta ven 
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The joint posterior probability of   and   is 
1
exp( )j j

1π ( , ) =
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 
 


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j
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.3. Symmetric Bayes Estimation  

d (27), the Bayes 
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.4. Asymmetric Bayes Estimation  
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1 0

log 1+
1

log 1
!

j

s
N

j

BL j
j s j

t
s

S P
s T










 

               
  
  
   

 (34) 

and 

 2
1

1 2
log 1

j
N

BL j
j j j

t
H P

T t




 





  
         

 .   

 
. GE Loss Function  

Also, by using posterior denisties (25) and (27), the 
Bayes estimators

(35) 

4.4.1

 BG , BGS , and BGH, BG  of the 
 ,  , ( ) , anS t d ( )H tparameters , relat

loss function, are,  
ive to GE 

respectively 

 

   
 



1

1

1

,
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j j
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
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q
BG j P   

 1

2

1

log 1+

1

j
q

N
j

BG j
j j

t
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S P
T









             
  
  
   

 ,  (37) 

and 

   
 

 1

2
1

2
qq

N
j j

BG j
j j j

T qt
H P

t



 





   
        
 . (38) 

To implement the calculations in this subsections, it is 
necessary to elicit the values of first ( , )j je  and the 
rparameters hype ( , )j ja b  

er paris of
fy, but for (

in the prior (25), 
The form  values

for 
 are fairly strai

= 1,2,j  
ghtfor-, N . 

ward to speci ,j ja b ) it is n
tion prior beliefs about 

ecessary to condi-
  on each j  in turn, and this 

can be difficult in practice, an alternative method for 
obtaining the values ( , )j ja b  can be based on the ex-
pected value of the reliability function ( )S t  conditional 
on = j  , see [34], which is given using (25) by  

 
2

|

) log
( ) | = 1 ,

                  > 0, 0.

a
log(

, >

j
j j

j
j

j j

t
E S t

b

a b

 

 





  
 
    (39) 

Now, suppose that prior beliefs about the lifetime dis- 
tributio able one to specify two values 



n en   1 1,S t t , 
  2 2,S t t . Thus, for these two prior values  1=S t t  

and  2t=S t , the values of ja  and jb  for each value 

j  can be 
beliefs, a 
mate the cor

ob
nonparam

re

tained nume om
etric pro e ca e u

sponding two eren

rically fr
cedur
 diff

 (43)
n b
t valu

. If no prior
sed to esti-

es of 

 

 S t , 
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se

5. Data A

Fo

up o
iven chemotherapy treatment alone. The data 

onsisting of 46 survival times (in years) for 46 patients 
121, 0.132, 0.164, 0.197, 0.203, 

.260, 0.282, 0.296, 0.334, 0.395, 0.458, 0.466, 0.501, 

.395,  

e [35]. 
 

nalysis 
 

r illustrative purposes, we performed a real data 
analysis. The original data is a subset of data reported by 
[6,36], represent the survival times in years of a gro f 
patients g

1.099.  
To compute the Bayes estimates. Firstly, we estimate 

two values of the reliability function using a nonpara-

metric procedures. ; , ,

( 0.62
( = ) =

0.25
R

i i m n k

m i
S t X

m

 


5)
,  

, see [37]. In our case, we use  

 and . These two prior 

probabilities are substituted into (39), where 

i

= 1,2, , m
= 0.828

1( = 0.121)S t

2( = 0.197) = 0.697S t

ja  and jb  

are solved numerically for each given j ,  

 using Newton-Raphson method. Table 2 summa-
rized the values of 

= 1,2,j ,

10

ja , jb  and jP  for each given j  

and je j, . = 1, 2, ,10

c
are: 0.047, 0.115, 0.
0
0.507, 0.529, 0.534, 0.540, 0.570, 0.641, 0.644, 0.696, 
0.841, 0.863, 1.099, 1.219, 1.271, 1.326, 1.447, 1.485, 
1.553, 1.581, 1.589, 2.178, 2.343, 2.416, 2.444, 2.825, 
2.830, 3.578, 3.658, 3.743, 3.978, 4.003, 4.033. [6,36] 
show that the Compound Rayleigh model is acceptable 
for these data. Now, we suppose that the forty six pa-
tients are randomly grouped into 23 sets, with two pa-
tients in each ( = 2k ), and the survival times for all sets 
are observed and listed in ascending order in Table 1. In 
this example, based on survival times of the 23 sets given 
in Table 1, with ( = 15; = 23; = 2)m n k  and the cen-
soring scheme = {2,0,0,2,0,1,0,0,2,0,0,0,0,0,1}R , 
we obtain the following progressive first-fauilure cen-
soring data: 0.047, 0.115, 0.121, 0.164, 0.197, 0.26, 
0.282, 0.334, 0  0.458, 0.529, 0.534, 0.641, 0.696, 

Using our results in Sections 3 and 4, the MLE esti-
mates and the Bayes estimates of , , ( )S t   and ( )H t  
have been computed and the results are displayed in Ta-
ble 3. By using (18) the 95% approximate confidence 
interval of   and   are, respectively (–0.3148, 
0.8027) and (–0.3958, 1.7547). 
 
6. Simulation Study 
 
Since the performance of the different methods cannot be 
compared theoretically, we perform Monte Carlo simula-  

Table 1. Randomly grouped set

1 2 3 4 5 6 

s using data from Stablein (1981). 

7 8 9 10 11 12 

0.197 0.534 0.115 0.296 0.121 0.466 0.529 1.447 0.863 0.132 0.395 0.696 

2.825 3.658 3.978 3.743 2.343 2.178 

13 14 15 16 17 18 

0.26 1.099 0.501 0.458 0.641 0.334 

0.54 4.003 1.553 1.485 2.83 2.416 

19 20 21 22 23  

0.57 0.164 0.203 0.282 0.047  

1.271 1.589 1.326 1.581 4.033  0.841 2.444 0.644 1.219 0.507 3.578 

Table 2. Prior i yper parameter values and the posterior probab es. 

7

nformation, h iliti

j 1 2 3 4 5 6  8 9 10 

j  0.25 0.26 0.27 28 0.29 0.30 0.31 0.32 0.0. 33 0.34 

je  0.1 0.1 0.1 .1 0.1 0.1 0.1 0. 0.

 3 340 0.339 0.338 0.336 0. 0.334 

0.078 0.075 0.072 0.069 0.066 0.064 0.062 0.059 0.057 0.056 

0 1 0.1 1 

ja  0.346 0.344 0.34 0.341 0. 335 

jb  

jp  0.0021 0.2613 0.3973 0.0041 0.0078 0.0148 0.0280 0.0482 0.0822 0.1543 

STab e M d the B  estimle 3. Th L an ayes ates of  ,  , ( )t an withd (H t = 0t .4 . )

 (.) (.)BS  (.)    (.)GEML  BL     

    c = –1 c =q = 1 00c = 0. 01 1  = 1  q = 2q  

  0.2827 39 266 3267 .3264 0.3266 0.3266 0.3257 0.3252 0.24 0.3 0. 0

  0.6235 5 22 667 8194 0.8422 0.8422 0.7863 

0.7560 0.7099 0.7173 0.7191 0.7155 0.7173 0.7173 0.7120 0.7093 

0.679 0.84 0.8 0. 0.7578 

( )S t  

( )H t  1.1267  1.2484  1.3457 1.3846 1.4512 1.3256 1.3846 1.3846 1.2943     
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tions to compare th performa ces of the ifferent esti- 
mators for different sampling schemes. All the co - 
tions a perfo ith ium  
Mathematica 8  used different  size
number f gro er p s  d
effective p  ( nd diffe  sam  

hemes (i.e., es).W wo

e n  d
mputa

re rmed w a Pent IV processor using
.0. We sample s ( =n  

t 

 

 o ups), diff ent grou izes ( k ),
nt
 t

ifferen
 sam le sizes

different 
m ), a
 valu

re
e used

pling
 sets ofsc iR

parameter values: = 1 , = 0.5  and = 0.1 , =  
0.2 , mainly to compare the MLEs and different Bayes 
estimators in terms of their mean squared errors (MSEs), 
and also to explore their effects on different parame  
values. 

To generate progressive st- failure censored samples 
from CRD, we used the a orithm proposed by [13], with 
the fact that, the pro  

, , 2; , , ; , ,, , ,R R R
m n k m n k m m n kX X  with distribution function 

( )

ter

fir
lg

gressive first-failure censored sample

1;X
F x , can be viewed as a progressive type II censored 
sample from a population with distribution function 
1 (1 k( ))F x . We assume
pu

censoring scheme, only 
from 

the following

   that the number of items 

e II: 

tting in a life test is ( n k ) items, where n  denotes 
the number of groups and k  denotes the number of 
items in each group. Using a progressive first-failure 

m  observations are record 
the test. To compare the performances of the esti-

mation procedures developed in this paper, we consider 
 three progressive censoring schemes 

( .C S ), namely: 
Scheme I: =mR n m , 0iR  for i m . =

Schem 1 =R n m , = 0iR  for 1i  . 

Scheme III: 1

2

=mR n m  , = 0iR  for 
1m

i

2

   

, and 

; if

m  odd 2

2

=mR n m  , = 0Ri  for 
2

2

m
i




n. 
 thr oring schemes ar spon

spectively, to the cases of all s g i s are re-
moved from ent at the last failure point, first
fa  midpoint. Also, it sh e noted 
scheme I is the Type-II first-failure censored scheme.  

-7, we repo the m uared er
(MSEs) of the ML estimates and different Bayes esti-
m

; if 

m  eve
The ee cens e corre ding, re-

urvivin tem
 the experim  

ilure point and ould b that 

In Tables 4 rt ean sq rors 

ates of the parameters, reliability and hazard rate func-
tions, based on 1000 replications. The results are re-
ported in Tables 4 and 5 for the parameters values 
( = 1, = 0.5)  . Tables 6 and 7 display the same results 
for the parameters values ( = 0.1, = 0.2)  . 
 
7. Conclusions 
 
In this paper, the maximum likelihood and Bayes meth-
ods are used for estimating parameters, reliability func-

rate function of the CRD based on a new 
censoring scheme, called -fa
tion and hazard 

a progressive first ilure cen-
oring scheme. Combining the concept of first-failure 

concept of progressive censoring, a 

bl

s
censoring and the 

Ta e 4. MSEs of estimates of  and when ( = 1 , = 0.5 ; = = 1c q ). 

m , n , k  .C S  ˆ
ML  ˆ

BS  ˆ
BL  ˆ

GE  ˆ
ML  ˆ

BS  ˆ
BL  ˆ

GE  

15, 30, 1 I 4.6722 0.1581 0.1121 0.1580 0.4997 0.2319 0.2024 0.1801 
 II 3.0944 0.1561 0.1109 

3.2318 0.1574 0.1117 
I 2.03 0.1596 0.1130 

 II 1.6751 0.1595 0.1129 0.1594 0.0812 0.1323 0.1219 0.1107 
 III 5 0.0819 0.1406 0.1296 0.1181 

30, 50, 1 I 1132 0.1599 0.2759 0.1528 0.1429 0.1323 
 II 1.1589 0.1598 0.1131 0.1598 0.0401 0.1187 0.1109 0.1020 
 III 1.1757 0.1599 0.1132 0.1599 0.0851 0.1361 0.1272 0.1173 

0.1558 0.1440 0.1744 0.1522 0.1334 
0.1572 0.3022 0.2199 0.1919 0.1702 
0.1596 0.1032 0.1341 0.1236 0.1123 

 III 
25, 30, 1 00 

 1.7901 0.1596 0.1129 0.159
3.4690 0.1599 0.

15, 30, 3 I 3.3908 0.1591 0.1127 0.1591 0.6708 0.2536 0.2218 0.1971 
 II 3.0030 0.1583 0.1122 0.1582 0.3806 0.2389 0.2081 0.1860 
 III 3.4677 0.1587 0.1125 0.1586 0.5406 0.2651 0.2311 0.2070 

25, 30, 3 I 3.0341 0.1599 0.1132 0.1599 0.4048 0.1981 0.1827 0.1684 
 II 3.6552 0.1599 0.1131 0.1598 0.4000 0.1757 0.1621 0.1487 
 III 3.4242 0.1599 0.1131 0.1599 0.4017 0.1978 0.1824 0.1685 

30, 50, 3 I 3.1022 0.1600 0.1132 0.1600 0.4959 0.2220 0.2076 0.1945 
 II 2.4518 0.1600 0.1132 0.1600 0.2790 0.1678 0.1569 0.1456 
 III 2.8783 0.1600 0.1132 0.1600 0.4631 0.1883 0.1760 0.1641 

15, 30, 5 I 2.8347 0.1593 0.1128 0.1592 0.6708 0.2888 0.2524 0.2262 
 II 3.4444 0.1588 0.1125 0.1587 0.5717 0.2669 0.2328 0.2086 
 III 3.4996 0.1590 0.1126 0.1590 0.5610 0.2596 0.2270 0.2024 

25, 30, 5 I 2.6896 0.1599 0.1132 0.1599 0.4647 0.2185 0.2015 0.1866 
 II 3.4326 0.1599 0.1132 0.1599 0.5458 0.2093 0.1931 0.1783 
 III 3.1225 0.1599 0.1132 0.1599 0.4743 0.2015 0.1859 0.1714 

30, 50, 5 I 3.0823 0.1600 0.1132 0.1600 0.5514 0.2084 0.1950 0.1820 
 II 3.0104 0.1600 0.1132 0.1600 0.4230 0.1884 0.1762 0.1641 
 III 2.7733 0.1600 0.1132 0.1600 0.5472 0.204 0.1908 0.1782 
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Table SEs ate5. M  of estim s of ( ) and when( )H t  ( = 1S t , = 0.5 ; c = =q 1 and = 1.t 5 ). 

m , n , k  .C S  ˆ
MLS  ˆ

BSS  ˆ
BLS  ˆ

GS E  ˆ
MLH  ˆ

BSH  ˆ
BLH  ˆ

GEH  

15, 30, 1 I 0.008 0.021 0.0226 0.0275 0.0414 0. 02 7 1260 .1113 0.0958 
 II 0.0211 0.0220 0.0928 0.0819 0.0696 

III 0.0085 0.0206 0.0215 0.0262 0.0343 0.1190 0.1051 0.0902 
25, 30, 1 I 0.006 0.012 0.0134 0.0153 0.0123 0. 0

 II 0.0151 0.0113 0.0656 0.0607 0.0537 
  0.0127 0.07 0.0654 0.0581 

30, 50, 1 0. 0767 0.0719 0.0651 
 II 0.0066 0.0114 0.0118 0.0132 0.0094 0.0578 0.0542 0.0487 
 III 0.0046 0.0133 0.0137 0.0154 0.0114 0.0672 0.063 0.0567 

0  

0.0118 0.0165 0.0172 
 

2 9 0665 .0616 0.0544 
0.0074 0.0127 0.0131 

III 0.0067 0.0137 0.0141 0.0162 06 
I 0.0043 0.0152 0156 0.0175 0.0202 0.

15, 30, 3 I 0.0087 0.0239 0.0250 0.0305 0.0598 0.1375 0.1216 0.1044 
 II 0.0076 0.0218 0.0227 0.0277 0.0406 0.1303 0.1148 0.0994 
 III 0.0077 0.0244 0.0254 0.031 0.0514 0.1453 0.1281 0.1111 

25, 30, 3 I 0.0048 0.0197 0.0203 0.0231 0.0364 0.1030 0.0955 0.0858 
 II 0.0046 0.0174 0.018 0.0205 0.0289 0.0901 0.0835 0.0747 
 III 0.0053 0.0195 0.02 0.0228 0.0336 0.1035 0.096 0.0866 

30, 50, 3 I 0.0056 0.0227 0.0233 0.0259 0.044 0.1166 0.1095 0.1005 
 II 0.0039 0.0168 0.0173 0.0194 0.0234 0.085 0.0798 0.724 
 III 0.0048 0.0189 0.0194 0.0217 0.0372 0.0970 0.0911 0.0831 

15, 30, 5 I 0.0113 0.0272 0.0283 0.0344 0.0687 0.1587 0.1403 0.1216 
 II 0.0083 0.0245 0.0256 0.0312 0.0586 0.1464 0.1291 0.112 
 III 0.0086 0.0245 0.0255 0.0311 0.0563 0.1416 0.1252 0.1079 

25, 30, 5 I 0.0063 0.0217 0.0223 0.0254 0.0468 0.1153 0.1069 0.0967 
 II 0.0056 0.0209 0.0215 0.0245 0.0464 0.1096 0.1017 0.0916 
 III 0.0052 0.0202 .0208 0.0236 0.0401 0.1050 0.0974 0.0875 

30, 50, 5 I 0.0066 0.0214 0.0220 0.0245 0.0504 0.1082 0.1016 0.0928 
 II 0.0046 0.0191 0.0196 0.0219 0.0368 0.0968 0.0909 0.0828 
 III 0.0058 0.0208 0.0214 0.0238 0.0480 0.1060 0.0996 0.0911 

Table 6. MS stimaEs of e tes  and with ( = 0.1 , = 0.2 ; =c = 1q ). 

m , n , k  .C S  ˆ
ML  ˆ

BS  ˆ
BL  ˆ

GE  ˆ
ML  ˆ

BS  ˆ
BL  ˆ

GE  

15, 30, 1 I 0.6 0.0 0.0 0. 0 0 0 4310 2612 2609 02579 .44127 .07859 .07895 0.08516 
 II 0.2 0.0 0.0 0. 0 0 0

II 0.38175 0.02631 0.02628 0.02592 0. 0 0
25, 30, 1 I 0.1 0.0 0.0 0. 0 0 0

 II 0.19074 0.02507 0.02506 0.02499 0.06741 0.08038 0.08063 0.08468 
 III 0.16 8 0 0 145 0.08094 0.08118 0.08517 

30, 50, 1 I 0.1580 2 0.0250 1 0.08094 0.08070 0.08407 
 II 0.1352 0.02499 0.02498 0.0249 6 0.08188 0.08209 0.08550 
 III 0.11434 0.02504 0.02504 0.02500 0.07154 0.08050 0.08071 0.08413 

 2796 2602 2599 02564 .11098 .08074 .08111 0.08737 
 I 24153 .08009 .08041 0.08641 

 8708 2508 2507 02501 .06972 .08116 .08141 0.08544 

512 0.02508 0.0250  .02501 .07  
9 0.02502 0.0250 0 0.0866
1 5 0.0559

15, 30, 3 I 0.68345 0.02777 0.02773 0.02720 0.77036 0.07411 0.07444 0.08043 
 II 0.62398 0.02650 0.02647 0.02611 0.52082 0.07623 0.07660 0.08283 
 III 0.66446 0.02716 0.02712 0.02677 0.84312 0.07416 0.07448 0.08034 

25, 30, 3 I 0.43638 0.02530 0.02529 0.02522 0.39264 0.07376 0.07406 0.07812 
 II 0.24410 0.02524 0.02523 0.02516 0.20388 0.07612 0.07637 0.08041 
 III 0.25466 0.02530 0.02529 0.02521 0.25822 0.07756 0.07781 0.08179 

30, 50, 3 I 0.36434 0.02527 0.02526 0.02521 0.4516 0.07262 0.07285 0.0764 
 II 0.1244 0.02509 0.02509 0.02506 0.11322 0.07643 0.076666 0.08013 
 III 0.16665 0.02519 0.02519 0.02514 0.18583 0.07255 0.07278 0.07627 

15, 30, 5 I 0.61095 0.02777 0.02772 0.02719 0.76829 0.07481 0.07512 0.08099 
 II 0.6123 0.02701 0.02697 0.02655 0.60319 0.07517 0.07552 0.08171 
 III 0.54737 0.02773 0.02768 0.02716 0.71943 0.07238 0.07271 0.07876 

25, 30, 5 I 0.44526 0.0256 0.02559 0.02547 0.49019 0.07199 0.07225 0.07636 
 II 0.35068 0.02542 0.02541 0.02532 0.37164 0.07434 0.0746 0.07868 
 III 0.36293 0.02552 0.02551 0.0254 0.39279 0.07088 0.07115 0.07531 

30, 50, 5 I 0.68456 0.02557 0.02557 0.02546 0.88917 0.06958 0.06982 0.07339 
 II 0.37034 0.02519 0.02519 0.02515 0.40385 0.07401 0.07424 0.07772 
 III 0.38334 0.02534 0.02533 0.02527 0.57943 0.07144 0.07168 0.07168 

 
progressive fi ailu ring  has n- 
tro y [2  Thi ing sc has a es  
in terms of reducing , in ore re 

ut orst-f re censo  scheme  been i
duced b 1]. s censor heme dvantag

test time which m  items a

used b nly m  of ( n k ) items res.
ew c h e pre er s w 
ings can be rou anag   a 

 are failu  Based on 
this n ensoring sc eme, th sent pap hows ho
the th    

tinely m ed for the CRD in
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able  of esT 7. MSEs timates of ( )S t and ( )H t when ( = 0.1 , = 0.2 ; = = 1q andc = 1.5 ). t

m , n , k  .C S  ˆ
MLS  ˆ

BSS  ˆ
BLS  ˆ

GES  ˆ
MLH  ˆ

BSH  ˆ
BLH  ˆ

GEH  

15, 30, 1 I 0.104547 0.17122 0.16955 0.16638 0.24275 0.10171 0.1023 0.1101 
 II 0.0966954 0.17595 0.17429 
 III 0.0996995 0.17337 0.17174 

25, 30, 1 I 0.07744 0.1756 0.17453 

0 64 0.104
0

0
 III 0. 07716 0.10407 0.10516 0.11015 

30, 50, 1 3 3 0.08715 0.1042 0.10877 
 II 0.07092 0.17664 0.17573 0.17403 0.06067 0.10601 0.10634 0.11059 
 III 0.06447 0.17376 0.17285 0.17112 0.07603 0.10425 0.10459 0.10886 

25, 30, 3 

0

.17113 0.10 9 46 0.10506 0.11292 

.16872 0.1746 0.10357 0.1041 0.11165 
0.1725 0.07316 0.10507 0.10547 0.11049 

 II 0.08063 0.17389 0.17281 17076 0.06942 0.10407 0.10448 0.10953 .
0.07749 0.17502 17396 0.17195 0.

I 0.06926 0.17383 0.1729 0.1712 2 0.10455 

15, 30, 3 
 

I 
II 

0.160
0.11215 

69 0.161
0.16632 

55 0.159  
0.16464 

89 0.156
0.1614 

75 0.48559 0.096 0.0965
0.09873 

4 0.1041 
0.10716 0.27853 0.09932 

 III 0.1446 0.16122 0.15959 0.15652 0.47758 0.096 0.09653 0.10394 
I 0.10164 0.16041 0.15929 0.15712 0.23557 0.09566 0.09609 0.1012 

 II 0.08286 0.16497 0.16387 0.16176 0.15397 0.09864 0.09906 0.10411 
 III 0.09343 0.16806 0.16699 0.16493 0.19534 0.10047 0.10087 0.10585 

30, 50, 3 
 

I 0.12342 0.1577 0.15673 0.15483 0.32138 0.09427 0.09496 0.09906 
II 0.07157 0.1655 0.16456 0.16275 0.11354 0.09909 0.09945 0.10379 

 III 0.09084 0.15749 0.15653 0.15465 0.17242 0.09415 0.09452 0.09888 
15, 30, 5 

 
I 0.015722 0.16256 0.16092 0.15786 0.47972 0.09686 0.09737 0.1048 
II 0.01313 0.16406 0.16237 0.15913 0.36439 0  

0.0938 
.09738 0.09796 0.10574 

 III 0.015951 0.15781 0.15612 0.15291 0.47296 0.09436 0.10198 
25, 30, 5 

 
I .013146 0.15666 0.15553 0.15332 0.3405 0  

0.0964 
.09342 0.09385 0.09899 

II 0.10276 0.16138 0.16026 0.1581 0.23814 0.09682 0.10193 
 III 0.11713 0.15424 0.15309 0.15082 0.27399 0.09202 0.09246 0.09766 

30, 50, 5 
 

I 0.1593 0.15165 0.15066 0.14871 0.49866 0.09042 0.09081 0.09526 
II 0.10173 0.16047 0.15951 0.15766 0.24817 0.09601 0.09638 0.10073 

 III 0.11933 0.15529 0.15432 0.15241 0.32279 0.09276 0.09314 0.9754 

 
Bayesian and sical rks. e co  
the m ximum eliho and stim  
th ters of the C ell a urvi  
param ters, re ility ard ction  
pr ely f st-failu ored e B
timators are discussed mme  asy  

ss f ns. e use crete trib  

clas framewo We hav nsidered
a  lik od (ML) Bayes e ates for

e parame RD, as w s some s val time
e liab and haz rate fun s using

ogressiv ir re cens data. Th ayes es-
under sy tric and mmetric

lo unctio  Th  of a dis prior dis ution for
parameter   resulted in a closed form expression for 
the posterior pdf, and the equal probabilities in the dis-
crete distribution cased an element of uncertainly, which 
can be desirable in some cases. All of the results ob-
tained in this article can be specialized to: a): the first- 
failure censored data when = {0,0, ,0}R  . b): the pro- 
gressive type II censored order statistics if = 1k . c): 
Type II censored order statistics when = 1k  and 

= {0,0, , }n mR  . d): the complete sample case when 
= 1k  and = {0,0, ,0}R  . A simulation study was 

conducted to examine the performance of the different 
estimators. From the results, we observe the following: 
 The Bayes estimates are better than the MLEs in 

general, and the Bayes estimates relative to asym-
metric loss functions (LINEX and GE l  per-
formed better than the others in the sense of com-

ng t E of the estimates. This was true for 
all censored schemes. 

 From all Tables, as the effective sample proportion 
/m n  increases, the MSE of the estimators, reduc

oss)

pari he MS

ring  or a an e 
n d  ing s is 
ost t; n 
at t  (all
rst f ith 
e ot s e of s. 
o ac  e s he 

e 
significantly. Concerning a progressive type-II cen- 

asymmetric loss functions c  and q , we examine 
different values of c  and q  we see that if c  is 
near to 0, and = 1q

so  scheme (k
the 
 for
f sc
e p
 in t
effe

= 1) , f  fixed m  
(R
l

em
 
n
m

d n , w
ca etermine censor cheme )

es 

g th
et

, which 
m efficien  example, in all tab it is see
th he case o heme II  items r oved at the 

is better than fi ailure tim oint), w ( = 1)k
th her case he sens compari e MSE

 T cess the ct of th hape para ers of t

 , then the Bayes estimates are 
almost the same as the estimates under SEL, see 
Table 3. This is one of the useful properties of 
working with the asymmetric loss functions. 

 The results establish that for optimum decision 
making, important should be given on the choice of 
loss function and not just the choice of prior distri-
bution only. 

 The simulation study shows that the MSEs for all 
estimates are increases as the value of the shape and 
scale parameters increases. 
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