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Abstract 
 
The stability of stratified of incompressible, viscoelastic plasma through a porous medium in the presence of 
the quantum mechanism is considered. The dispersion relation is obtained using the normal mode technique. 
The behavior of growth rate with respect to the quantum effect, strain retardation time and stress relaxation 
time are examined in the presence of porosity of the porous medium, the medium permeability, kinematic 
viscosity. It is shown that, the presence of quantum term stabilizes a certain wave number band, whereas the 
system is unstable for all wave numbers in the absence of quantum term. The considered parameters beside 
the quantum term will bring about more stability on the considered system. 
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1. Introduction 
 
The Rayleigh-Taylor instability (RTI) is an important 
hydrodynamic effect that arises when a heavy fluid is 
accelerated into a lighter one. Similar to pouring water 
into oil, the heavier fluid, once perturbed, streams to the 
bottom, pushing the light fluid aside. This notion for a 
fluid in a gravitational field was first discovered by 
Rayleigh [1] and later applied to all accelerated fluids by 
Taylor [2]. Since then, this instability problem has been 
studied by several researchers under varying assumptions. 
The detailed description of other parameters of these 
investigations has been given by Chandrasekhar [3]. A 
theoretical model, for a class of viscoelastic fluids have 
been proposed by Oldroyd [4-6]. The Rayleigh-Taylor 
instability of a plane interfaces between viscous and vis-
coelastic fluid through a porous medium has been inves-
tigated by Sharma and Kumar [7].  Agrawal and Goel 
[8] have studied the instability of viscoelastic fluid in a 
porous medium. Bhatia and Mathur [9] have studied the 
instability of viscoelastic fluids in a vertical magnetic 
field through porous medium. Kumar et al. [10] have 
considered the instability of the plane interface between 
two viscoelastic superposed fluids in the presence of 
uniform rotation and variable magnetic field in porous 
medium. 

In plasmas, RTI can occur when dense plasma is sup-

ported against gravity by the pressure of the magnetic 
field. The investigation of Rayleigh-Taylor instabilities 
in magnetized plasma is a problem of considerable inter-
est in space (ionospheric spread-F), fusion (curvature 
induced instabilities like interchange, ballooning, etc.) 
and the astrophysical plasmas. For a system of two in-
compressible plasma superimposed one over the other 
have been studied by Kalra and Talwar [11] and by 
Singh and Tandon [12]. Bhatia [13] studied the problem 
for a system of superimposed viscous plasmas in the 
presence of a horizontal magnetic field. The same previ-
ous system in the presence of uniform rotation was con-
sidered by Bhatia and Chhonkar [14] and by Sharma and 
Chhajlani [15]. The effects of Hall currents and viscosity 
on the Rayleigh-Taylor instability of incompressible in-
finitely conducting stratified plasma in the presence of 
horizontal magnetic field were studied by Ahsan and 
Bhatia [16]. The effects of Hall currents on the RTI of 
finitely conducting stratified partially ionized plasma in 
the presence of horizontal magnetic field is considered 
by Aiyub and Bhatia [17]. 

The linear growth rate of a finite layer plasma in 
which the density is continuously stratified exponentially 
along the vertical is studied by Goldston and Rutherford 
[18], in the presence of horizontal magnetic and rotation 
was studied by Bhatia and Sharma [19] and in the pres-
ence of horizontal magnetic field with the effect of a 
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transverse velocity shear was studied by Wu et al. [20]. 
The effects of external magnetic field on RTI problem in 
inhomogeneous plasma rotating uniformly is studied by 
Al-Khateeb and Laham [21,22]. The effect of the veloc-
ity shear-induced viscosity gradient of low-frequency 
shear waves in viscoelastic dusty plasma was studied by 
Banerjee et al. [23]. The gravitational instability of ro-
tating Walters viscoelastic partially ionized plasma 
permeated by an oblique magnetic field has been inves-
tigated in the presence of the effects of Hall currents by 
El-Sayed and Mohamed [24]. 

B

The hydrodynamic instabilities in quantum plasmas 
have been an important subject of research in the last a 
few years, where the quantum effects plays an important 
role in the behavior of the charged plasma particles when 
the de Broglie wavelength of the charge carriers becomes 
equal to or greater than the dimension of the quantum 
plasma system [25]. The quantum hydro-dynamic (QHD) 
model has been introduced by Gardner [26] for semi- 
conductor physics to describe the transport of charge, 
momentum and energy in plasmas. The quantum mag-
neto-hydrodynamic (QMHD) model was obtained by 
Haas [27] with the help of QHD model with magnetic 
field based on the Wigner–Maxwell equations. The In-
fluence of quantum mechanism on the internal waves 
and the RTI in plasma is considered by Bychkov et al 
[28]. The effects of the quantum mechanism and mag-
netic field on RTI in ideal incompressible plasma are 
studied by Jintao et al. [29], where it plays a stability role 
on this problem. Quantum effects on RTI in inhomoge-
neous plasma rotating uniformly in an external magnetic 
field are investigated by Hoshoudy [30,31]. The effects 
of magnetic field on the RTI in quantum plasmas with 
para- and ferromagnetic properties have been considered 
by Mikhail et al. [32].The effect of quantum term on RTI 
of stratified plasma layer through porous medium is 
studied by Hoshoudy [33]. The RTI is investigated in a 
non-uniform dense quantum magneto-plasma by Ali et al. 
[34]. 

The purpose of this work is to examine theoretically 
the effect of the quantum mechanism on RTI for a finite 
thickness layer of incompressible viscoelastic plasma 
through porous media. This layer is confined between 
two rigid boundaries ( ). Using the normal 
mode approach, the dispersion relation is obtained ana-
lytically, and numerically analyzed. 

0,z  z h

 
2. Fundamental Equations 
 
Our starting point is the set of equations of the quantum 
hydrodynamic (QHD) for an plasma model through a 
porous media (4-10 and 27-34)  
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Here is the velocity of the fluid, U   is the density, 
 thermal pressure,  is the gravitational acceleration, p g

1 is permeability of the medium and 1 k   is the poros-
ity ( 10   ). Note that wh 1en    an 1   
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m.   is 

the viscosity of plasma. Here   is the stress relaxation 
time, 0 0( )    is the strain retardation time.  
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To investigate the stability of hydrodynamic motion, 
we ask how the motion responds to a small fluctuation in 
the value of any of the flow variables appearing in the 
Euler equations. If the fluctuation grows in amplitude so 
that the flow never returns to its initial state, we say that 
the flow is unstable with respect to fluctuations of that 
type. Accordingly, we replace the variables in Equations 
(1) and (2) as in the form 0 1 0 1 ,U U U ,     

0 1
p p p  and 0 1 Q Q Q . The quantities with sub-

scripts “0” represent the unperturbed, or “zeroth-order” 
motion of the fluid, while the quantities with subscripts 
“1” represent a small perturbation about the zeroth-order 
quantities (first-order or linearized quantities); that is, 

1 0 ,U U 1 0 ,  1 0 and p p 1 0 .Q Q Sub-
stituting these expressions into Equations (1)-(4). In par-
ticular example of RTI we consider the fluid initially at 
rest. This means that 0 0U , so the linearized equations 
can be easily derived from Equations (1) and (2) as 
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We now appeal to the fact that, for many situations of 
interest in ICF (inertial-confinement fusion), unstable 
flow occurs at velocities much smaller than the local 
sound speed. This has the effect that accelerations in the 
flow are not strong enough to change the density of a 
fluid element significantly, so the fluid moves without 
compressing or expanding. In such a situation we call the 
flow incompressible. Provided that we are well away 
from shock waves or centers of convergence, the as-
sumption of incompressible flow is often valid. To say 
that fluid elements move without changing density is to 
say that the Lagrangian total derivative of density is zero, 
that  
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We also linearize this equation, where the first-order 
quantities, as before become 

 1
1 0 0

t





  


U            (7) 

Comparing this equation to Equation(4), which can be 
rewritten in expanded form as 
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we see that subtracting Equation (7) from Equation (8) 
yields 
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This is a consequence of the assumption of incom-
pressible flow. So, we can use either Equation (7) or 
Equation (9) to replace the linearized continuity Equation 
(4) under this assumption. One can seen that the set of 
Equations (3), (7) and (9) is complete for describing the 
quantum effects on the Rayleigh-Taylor instability of 
incompressible plasma. Now, where 
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The fluid is arranged in horizontal strata, and then 0  is 
a function of the vertical coordinate 0 0( z( ))   and 

 0 0p p z .Then, the system Equations (3), (7) and (9) 
become as in the appendix (Equations (30)-(37)). 

Considering that the perturbation in any physical 
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3. A Continuously Stratified Plasma Layer 
 
For a finite thickness layer of incompressible plasma 
through porous media bounded on the other interface by 
a rigid boundary at , 0z  z h  and 
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use Equation (12), then the dispersion relation (16) takes 
the form 
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From the system of Equations (17)-(21), it is clear that, 
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4. Special Cases 
 
Here, some special cases are considered from Equation 
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This case is considered by Goldston and Rutherford 
(see ref. [18]), where the system represents an exponen-
tially growing perturbation. 
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This case is studied in Refs. [29-33]. It is clarified that, the 
quantum term has stabilizing effect on RTI problem. This 
influence is obvious from Equations (23) and (24), where 

quantum classical 

0 k k  
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for all the values of wave number. Also, 
the system increases as  increases through the range 

max , when  it starts to decreases 
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Then the normalized growth rate from Equation (22) is 
given by 
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   (25) 

Also, from Equations (23) and (25) one can see that, 
the stress relaxation time has a stabilizing role on the 
given system. This role increases with increasing of the 
magnitudes of stress relaxation time. While in the pres-
ence of quantum term the normalized growth rate in 
Equation (25) takes the form 
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from above results it very clear that 

, stress relaxation stress relaxation classicalquantum     

4) At , we 
find that 1 , 2 , while 3  4  are as in Equa-
tions (20) and (21). So the normalized growth rate given 
by 
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(27) 

corresponds Equation (33) ref. [33], where the normalized 
growth rate given by 
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(28) 

and in the presence of the strain retardation, Equation(28) 
becomes 
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(29) 

From Equations (28) and (29) one can see that, the 
stabilizing role that plays the stress strain retardation 
time on the given system. 

In the general case, if we wish to look into the effect 
of various factors, on the instability of the considered 
system, Equation (22) is to be numerically solved. Per-
taining results are presented in Figures 1-3.  

Figure 1 shows the effect of the factors  

1 0
 and  every one is 

alone, where the square normalized growth rate

0.8,q
 

2
0.1, 0.1, 0.3k        0.5

 
  is 

plotted against the square normalized wave number 2k . 
One can see that, in the absence of  the magni-
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  are less than their magnitudes in the classical 
case, which means that these factors have a stabilizing 
effect on the considered system. Also, it can be seen that, 
no mode of maximum instability exists when 0q

   as 
the square normalized growth rate 2  usually increases 
by increase with the square normalized wave number 
values. While, in the presence of quantum term  
(the detailed description of this case is given in the next 
part), there is a mode of maximum instability, where the 
square normalized growth rate
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Figure 1. The square normalized growth rate γ2 against the 
square normalized wave number k*2, where the role of the 
different parameters are separated occurred at n = 1, h* = 1 
and g* = 10. 
 

instability, for our example in Figure 1 and at  
we note ), and when  the square 
normalized growth rate 

0.8q
 

2

max 2.5k 
2 2

maxk k 
2  starts to decreases as 

increases and then goes to the complete stable at 

c  (
2

ck  is the critical value for stability, at this 
point the square normalized growth rate goes to zero). 
This means that the quantum term has a crucial capability 
to suppress the instability, while the other factors have 
not liked this strength. 

2

k

2

k 5. 5 

The role of porosity of the porous medium, the me-
dium permeability, kinematic viscosity with quantum 
term is explained in ref. [33]. So, our next numerical 
results concentrate on the role of both strain retardation 
and stress relaxation. 

Figures 2 and 3 are plotted to indicate the influence of 
the strain retardation time 

0
  and the stress relaxation 

time   on the problem, respectively, in the presence of 
quantum effect . Figure 2 shows that the pres-
ence of 

0

0.8q
 

  does not effect on both the maximum point 
 for the instability and the corresponding critical 

point
2

for the stability, where  and 
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Figure 2. The role of the strain retardation time 

0 (0.1,0.3,0.5)

0.1 k


 

with the parameters , , q
  0.8   

0   
1

1 , 

  0 , n  1 , h  1  and . g  10

 
at 0 . The same note for the stress relaxa-
tion time  is shown in Figure 3. How-
ever, the magnitudes of 

(0.1,0.3,0.5)

(0.1,0 .3,0.5)
2  in the presence of both 

0
  

and 
  are less than their magnitudes in the presence of 

the quantum term alone, which implies that both 
0

  and 


  have a stabilizing role on the considered system. For 

the same values, the effect of the stress relaxation time 


  is greater than the effect of the strain retardation time 

0
  on the considered system. 
 
5. Conclusions 
 
The effect of quantum term on the Rayleigh-Taylor in-
stability of stratified fluid/plasma through porous media 
has been studied. The effect of elasticity is revealed  
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Figure 3. The role of the stress relaxation time 
(0.1,0.3,0.5)  

with the parameters , , , q
  0.8   

0
0.1   k

 
1

1  0 0 , 

, h and . n  1   1 g  10

 
through the strain retardation time and the stress relaxa- 
tion time. It is found that, the critical point for the stability 

 that occurs in the presence of quantum term remains 
unchanged by the addition of the other parameters of the 
problem. Both maximum max  and critical c  point for 
the instability are unchanged by the addition of the strain 
retardation and the stress relaxation. All growth rates are 
reduced in the presence of porosity of the medium, the 
medium permeability, the strain retardation time and the 
stress relaxation time. These results indicate that quantum 
effect plays a major role in securing a complete stability 
for the system at hand, while other parameters are only of 
secondary significance.  

2

ck

k k

Finally, our select model is more stable than those 
considered in refs. [29-33]. This discrepancy highlights a 
stabilizing role due to the presence of both the strain re-
tardation and the stress relaxation on Rayleigh-Taylor 
instability problem, increasing the dissipation of any 
disturbance, thus providing an increased stability. 
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Appendix 
 
Here, if we put  

 1 1 1, , 1x y zu u uU ,  0,0, g g ,  1 1 1, ,x y zQ Q QQ
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Then, the system Equations (3), (7) and (9) maybe writ-
ten as 
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Now, Using the expression (10) in the system of equa-
tions (30)-(37) maybe written as 
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