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Abstract 
 
We generalize the previously considered cases of a harmonic oscillator subject to a random force (Brownian 
motion), or having random frequency, or random damping. We consider here a random mass which corre-
sponds to an oscillator where the particles of the surrounding medium adhere to the oscillator for some (ran-
dom) time after collision, thereby changing the oscillator mass. Such a model is appropriate to chemical and 
biological solutions as well as to some nano-technological devices. The first moment and stability conditions 
for white and dichotomous noise are analyzed. 
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1. Introduction 
 
Brownian motion is described by the dynamic equation 
of a harmonic oscillator supplemented by thermal noise 
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The random force  enters Equation (1) additively. 
When the noise has an external origin rather than an 
internal origin, the associated noise enters the equation of 
motion multiplicatively. If the noise arises from the fluc- 
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the equation of motion (1) takes the following form 
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Another possibility for the generalization of the dy- 
namic Equation (1) is the inclusion of random damping 
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There are many applications in physics, chemistry and 
biology of the models described by equations (3) and (4) 
[1]. 

We recently studied [2] still another possibility for 

introducing randomness in the oscillator Equation (1), by 
considering an oscillator with a random mass, which 
describes a new type of Brownian motion-Brownian 
motion with adhesion. In this situation the molecules of 
the surrounding medium not only randomly collide with 
the Brownian particle, which produces its well-known 
zigzag motion, but they also stick to the Brownian 
particle for some (random) time, thereby changing its 
mass. The appropriate equation of motion has the 
following form 
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Among applications of (5) is an RLC electrical circuit 
subject to a voltage  V t  with a fluctuating inductance 

 which is described by the following equation  ,L
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There are many situations in which chemical and 
biological solutions contain small particles which not 
only collide with a large particle, but they may also 
adhere to it. The diffusion of clusters with randomly 
growing masses has also been considered [3]. There are 
also some applications of a variable-mass oscillator [4]. 
Modern applications of such a model include a nano- 
mechanical resonator which randomly absorbs and de- 
sorbs molecules [5]. The aim of this note is to describe a 
general and simplified form of the theory of an oscillator 
with a random mass, which is a useful model for des- 
cribing different phenomena in Nature. 



M. GITTERMAN 
 

1137

2. Model 
 
We have to modify Equation (5) slightly since this 
equation describes the dynamic equation with a mass that 
can both increase or decrease due to fluctuations. As 
distinct from Equations (3) and (4), we replace  t  in 
Equation (5) by a positive random force  which 
corresponds to the fact that the mass of the Brownian 
particle can only increase due to the adhesion of the 
molecules of the surrounding medium,  

 2 t ,
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1 =

dd
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tt
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We consider the simple form of color noise—the asy- 
mmetric dichotomous noise (random telegraphic process), 
which means that the random variable  t  takes 
values A  or  Denote the rate of transition for  
to  by 1

.B A
B  , and the reverse rate by 2 . For this form 

of the Ornstein-Uhlenbeck noise, the correlation function 
is 
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For the limiting case of white noise,  and 2 
0   with  remaining constant, 2 = D 
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The quadratic noise  2 t  can be written as 

 2 2=t                 (10) 

with 2 = AB  and = .A B   Indeed, for = A , 
one obtains  = =2 2AB A B A  A

= ,B
, and for  

    2 2= B
Equation (7) then takes the following form, 
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3. First Moment 
 
First of all, one has to transfer the stochastic Equation 
(11) to the deterministic equations for the average values 

2,x x  etc. For this purpose we use the well-known 
Shapiro-Loginov procedure [6] which yields for expo- 
nentially correlated noise (8) 
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Inserting (12) into (11) (with ) one obtains, after 
averaging,  

= 2n
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A new function x  enters Equation (13). A second 

equation for the two functions x  and x  can be 

obtained by multiplying Equation (11) by  21 ,t     

using Equation (12) and the following exact expression 
for the exponentially corre- lated noise, for splitting 
averages [7] 

       
22 2

2
2 2

dd d
= =

d d 2d

xx x
t t t t

t t
     

t
 (14) 

which gives 
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where  22 2 2= 1 .R       It was assumed that there 

is no correlation between the internal and external 
sources of noise, = 0 . 

The advantage of dichotomous noise is that the 
averaging procedure (14) allows one to avoid an infinite 
system of high-order correlations. Excluding the corre- 
lator x  from Equations (13) and (15), one obtains a 
cumbersome fourth-order differential equation for ,x  
which we do not write here. In a similar way one can 
find the equations for the second moment 2 .x  
 
4. Stability Conditions 
 
Here we consider the much less trivial problem of the 
stability of the solutions. For a deterministic equation, 
the stability of the fixed points is defined by the sign of 
 , found from the solution of the form  exp t  of a 
linearized equation near the fixed points. The situation is 
quite different for a stochastic equation. The first mo- 
ment  x t  and higher moments become unstable for 
some values of the parameters. However, the usual linear 
stability analysis, which leads to instability thresholds, 
turns out to be different for different moments making 
them unsuitable for the stability analysis. A rigorous 
mathematical analysis of random dynamic systems 
shows [8] that, similar to the order-deterministic chaos 
transition in nonlinear deterministic equations, the 
stability of a stochastic differential equation is defined by 
the sign of Lyapunov exponents  . This means that for 
stability analysis, one has to go from the Langevin-type 
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equations (3), (4) and (11) to the associated Fokker- 
Planck equations which describe properties of statistical 
ensembles. 

The Lyapunov exponent   is defined as the expo- 
nential divergence rate of neighboring trajectories [8], 
i.e., as 
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It is convenient to take limit 0   first. Then, after 
substituting in (16) the expansion 
   = d d ,x t x t x t     one obtains  
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where the new variable 
d d
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x t

z
x

 has been introduced, 

and  is the stationary solution of the Fokker- 
Planck equations corresponded to the Langevin equa- 
tions expressed in the variable
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variable x  in the Langevin Equations (5), (6) and (11) 
to the variable  = d d ,z x t x  one gets 
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Multiplying Equation (11) with = 0  by 
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Replacing the variable x  by the variable  leads to z
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4.1. White Noise 
 
First, we start with white noise for which 
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The Fokker-Planck equation associated with Equation 
(5) has the following form ( Stratonovich interpretation) 
[9] 
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which, for the stationary case reduces to  
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where J  is the constant probability current. 
The solution of the homogeneous equation (24) (with 

) is = 0J
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The solution of the inhomogeneous Equation (24) can 
be obtained by the method of variation of constants, 
which leads to 
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The constant C  and the reference point =z c  are 
not important for our analysis, and we may assume 

 for = 0C =c .  
Inserting (21) into (26), one transforms Equation (26) 

to the following form, 
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where  
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There is no need to perform an analysis of Equation 
(27), since the analogous calculation has been performed 
for the case of random damping [10] yielding the 
following result after substitution in Equation (17),  
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where 1K  is a modified Bessel function of the second 
kind, and J  and Y  are Bessel functions of the first 
and second kind, respectively. The Bessel functions are 
always positive, and the sign of the Lyapunov exponent 
  is the same as the sign of the hyperbolic function 

1 sinh f u   , i.e., the sign of 1 .f  
Therefore, an oscillator with fluctuating mass becomes 

unstable when  i.e., the instability of the fixed < 1,f

point  occurs for = 0z
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 and does not 

depend on the oscillator frequency  . 
 
4.2. Dichotomous Noise 
 
According to [11,12], the stationary solution of the 
Fokker- Planck equation, corresponding to the Langevin 
equation (19) having the correlation function (8), has the 
following form 
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Equation (30) has been analyzed for different forms 
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The first term in (31) defines the deterministic steady 
states while the first two terms relate to the white noise 
limit ( ,  0   with  Finally, the 
last two terms define the corrections coming from the 
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