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Abstract

We generalize the previously considered cases of a harmonic oscillator subject to a random force (Brownian
motion), or having random frequency, or random damping. We consider here a random mass which corre-
sponds to an oscillator where the particles of the surrounding medium adhere to the oscillator for some (ran-
dom) time after collision, thereby changing the oscillator mass. Such a model is appropriate to chemical and
biological solutions as well as to some nano-technological devices. The first moment and stability conditions

for white and dichotomous noise are analyzed.
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1. Introduction

Brownian motion is described by the dynamic equation
of a harmonic oscillator supplemented by thermal noise

n(t),
d’x dx o,
_ = t 1
dt 7 dt X 77( ) @
with the correlation function
<n(t)n(t,)>=Ds(t, -t,) )

The random force 7(t) enters Equation (1) additively.

When the noise has an external origin rather than an
internal origin, the associated noise enters the equation of
motion multiplicatively. If the noise arises from the fluc-

A [1+&(L)],

the equation of motion (1) takes the following form

tuations of the potential energy U = %a)

—+;/—+a)2[l+§ )]x=0 (3)

Another possibility for the generalization of the dy-
namic Equation (1) is the inclusion of random damping

2
%+y[1+§(t)]%+a)zxzo (4)

There are many applications in physics, chemistry and
biology of the models described by equations (3) and (4)

[1].
We recently studied [2] still another possibility for
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introducing randomness in the oscillator Equation (1), by
considering an oscillator with a random mass, which
describes a new type of Brownian motion-Brownian
motion with adhesion. In this situation the molecules of
the surrounding medium not only randomly collide with
the Brownian particle, which produces its well-known
zigzag motion, but they also stick to the Brownian
particle for some (random) time, thereby changing its
mass. The appropriate equation of motion has the
following form

+7/%+a) x=n(t) (5)
t

Among appllcatlons of (5) is an RLC electrical circuit
subject to a voltage V (t) with a fluctuating inductance
L, which is described by the following equation
ERTEE SR A©

dt C dt

There are many situations in which chemical and
biological solutions contain small particles which not
only collide with a large particle, but they may also
adhere to it. The diffusion of clusters with randomly
growing masses has also been considered [3]. There are
also some applications of a variable-mass oscillator [4].
Modern applications of such a model include a nano-
mechanical resonator which randomly absorbs and de-
sorbs molecules [5]. The aim of this note is to describe a
general and simplified form of the theory of an oscillator
with a random mass, which is a useful model for des-
cribing different phenomena in Nature.

[1+£(1)

L[1+&(t)
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2. Model

We have to modify Equation (5) slightly since this
equation describes the dynamic equation with a mass that
can bhoth increase or decrease due to fluctuations. As
distinct from Equations (3) and (4), we replace (f(t) in
Equation (5) by a positive random force &*(t), which
corresponds to the fact that the mass of the Brownian
particle can only increase due to the adhesion of the
molecules of the surrounding medium,

d’x  dx
[1+§2 (t)]F+yE+a)2x=ry(t) @)
We consider the simple form of color noise—the asy-
mmetric dichotomous noise (random telegraphic process),
which means that the random variable &(t) takes
values A or —B. Denote the rate of transition for
to —B by 7, and the reverse rate by ,. For this form
of the Ornstein-Uhlenbeck noise, the correlation function
is

r=1,+7, (8)

<E(t)é(t,)>= szexp{_@}

For the limiting case of white noise, o> — o and
r—0 with o’z =D remaining constant,

(6(t)(t))=Ds(t -1,) ©)
The quadratic noise &% (t) can be written as
£(t)=0"+A¢ (10)

with ¢°=AB and A=A-B. Indeed, for £=A,
one obtains &% = AB+(A-B)A=A?, and for
&=-B, &=8*

Equation (7) then takes the following form,

3. First Moment

First of all, one has to transfer the stochastic Equation
(11) to the deterministic equations for the average values
(x),<x2> etc. For this purpose we use the well-known
Shapiro-Loginov procedure [6] which yields for expo-
nentially correlated noise (8)

d"x d 1Y
= —+= X 12
<§dt”> [dt TJ <§> (12)
Inserting (12) into (11) (with n = 2) one obtains, after
averaging,
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dt? dt dt r

(l+ az)d2—<x>+yM+ o*(X) = —A(i+lj2 (&x)

(13)

A new function (£x) enters Equation (13). A second
equation for the two functions (x) and (&£x) can be
obtained by multiplying Equation (11) by 1+ 0 —A&(t),
using Equation (12) and the following exact expression

for the exponentially corre- lated noise, for splitting
averages [7]

<§(t)§(t)%> = <§(t)§(t)><%> = o%r d;t(2><> (14)
which gives

R¥+<l+ 02)[7/%+a}2j<x>

—A[;/(%+%j+wz}(§x>:0

2
where R = (1+ o-z) —A?c?z. It was assumed that there

(15)

is no correlation between the internal and external
sources of noise, (£7)=0.

The advantage of dichotomous noise is that the
averaging procedure (14) allows one to avoid an infinite
system of high-order correlations. Excluding the corre-
lator (£x) from Equations (13) and (15), one obtains a
cumbersome fourth-order differential equation for (x),
which we do not write here. In a similar way one can

find the equations for the second moment <x2>.

4. Stability Conditions

Here we consider the much less trivial problem of the
stability of the solutions. For a deterministic equation,
the stability of the fixed points is defined by the sign of
a , found from the solution of the form exp(at) of a
linearized equation near the fixed points. The situation is
quite different for a stochastic equation. The first mo-
ment (x(t)) and higher moments become unstable for
some values of the parameters. However, the usual linear
stability analysis, which leads to instability thresholds,
turns out to be different for different moments making
them unsuitable for the stability analysis. A rigorous
mathematical analysis of random dynamic systems
shows [8] that, similar to the order-deterministic chaos
transition in nonlinear deterministic equations, the
stability of a stochastic differential equation is defined by
the sign of Lyapunov exponents A . This means that for
stability analysis, one has to go from the Langevin-type
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equations (3), (4) and (11) to the associated Fokker-
Planck equations which describe properties of statistical
ensembles.

The Lyapunov exponent A is defined as the expo-
nential divergence rate of neighboring trajectories [8],
i.e.,as

= limlim= I dt X(Hg) (16)

T—)ooz—)O X( )

It is convenient to take limit ¢ — 0 first. Then, after
substituting in (16) the expansion

X(t+&)=x(t)+edx/dt+---, one obtains
_Thﬂl_j dtz (t Ejzpsl(z)dz a7

where the new variable z = has been introduced,

dx/dt

X
and P, (z) is the stationary solution of the Fokker-
Planck equations corresponded to the Langevin equa-
tions expressed in the variable z. Turning from the
variable x in the Langevin Equations (5), (6) and (11)
to the variable z :(dx/dt)/x, one gets

dz _ dPx/dt?  (dx/dt)’ _ dPx/dt? 2
dt X X2 X

(18)
Multiplying Equation (11) with =0 by
1+0? —A&(t), one obtains
d’x N
RF+(1+0 )[}/E+w x) Ag( L xj (19)
Replacing the variable x by the variable z leads to
dz

E_A( )+&B(2) (20)
where
A(z)=-2*-B(2), B(2)= = (L+ ") (2 + o).
A (21)
&)= £0)

4.1. White Noise

First, we start with white noise for which

(G(L)a(t)=

DA?
<1+ o’ )2

The Fokker-Planck equation associated with Equation
(5) has the following form ( Stratonovich interpretation)

[9]

St -t,) (22)
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oP(z,t) 0
=——[A(z)P
—— == [A()P] o
DA* 0 0
t———5 =B )L}—B(Z)P}
2(1+0%) z
which, for the stationary case reduces to
DA’ 0
-[A(2)P, [+ ——=B(z)=[B(z)P, |=J (24
|: t:' 2(1+02)2 62[ t:l

where J is the constant probability current.
The solution of the homogeneous equation (24) (with
J=0)is

c o0 2(1+0') jdy

_ A(y)
(=50 DA (25)

B*(y)

The solution of the inhomogeneous Equation (24) can
be obtained by the method of variation of constants,
which leads to

2
o () 4) (1+0'2)
SI'(Z)_ DAZB(Z) exp

2(1+0%) (A
DA?

ety | 21 AR
L B(y)exp DAZ jcdx Bz(x) (26)

C (1+0')
B o7

The constant C and the reference point z=c are
not important for our analysis, and we may assume
C=0 for c=—o

Inserting (21) into (26), one transforms Equation (26)
to the following form,

P, =P, (w)= Joy (W)_f_1 exp{—g (W‘%ﬂ

NA
v @7)
*jwdxx'lexp[g(x—iﬂ
L »
where
2
4}/(14—0 )
f=—— 28
DAZ (28)

There is no need to perform an analysis of Equation
(27), since the analogous calculation has been performed
for the case of random damping [10] yielding the
following result after substitution in Equation (17),
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_ 4[ duK, (8bsinhu)sinh[ (1 f)u]
~ ®2[33,(4/D)+Y}, (4/D)]

where K, is a modified Bessel function of the second
kind, and J and Y are Bessel functions of the first
and second kind, respectively. The Bessel functions are
always positive, and the sign of the Lyapunov exponent
A is the same as the sign of the hyperbolic function
sinh[(1- f)u], i.e., the sign of 1-f.

Therefore, an oscillator with fluctuating mass becomes

unstable when f <1, i.e., the instability of the fixed
2

(29)

point z=0 occurs for > >y and does not

4@+aﬂ

depend on the oscillator frequency .
4.2. Dichotomous Noise

According to [11,12], the stationary solution of the
Fokker- Planck equation, corresponding to the Langevin
equation (19) having the correlation function (8), has the
following form

B
o?B? — A

1% 1 L
'exp{‘zf dV{Aw)—aB(y)*A(v>+08<y>ﬂ

(30)
Equation (30) has been analyzed for different forms
of functions A(z) and B(z):

A=-z, B=1[13]; A=z, B=-z [14];
A=z-z", B=z [15]; A=z-7°, B=1 [16];
A=z-7°. B=1z[1718]; A=z-7% B=1z[11,12].
The zeroes of functions F,(z)=+oB(z)-A(z)
determine the boundary of P, (z), which diverges or

vanishes at the boundaries and determine the boundary
of support of P,(x). The latter means that a system
will approach the state z located in intervals (z,,z,)
or (z,,z,), depending on its initial position. Another
important characteristic of P, (x) is location of its
extrema, which define the macroscopic steady states. The
steady states x, of (30) obey the following equation
[11,12].

) d
Ax,—o rB(xm)&A(xm) o
2 1
220A(x ) LA, )—r ALD) Blw)

dx dB(x,, )/dx
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The first term in (31) defines the deterministic steady
states while the first two terms relate to the white noise
limit (¢ >, 7—>0 with o’z =const). Finally, the
last two terms define the corrections coming from the
final correlation time r,

For
A=ax’+Bx+x;, B=pfx+K (32)

with, according to (21),

2

a=-1p=-T(1+o’)in=-T(1+0") (33)

one obtains
o’B? - A?
= [ax2 +(1+ o-)(,b’x+/c)][—ax2 —(1—0-)(,6’x+/c)]
(34)
and
iz dx
27 aX2+(l+0')(ﬂX+K)
1 dx t o dx
=_ — 35
2ra(% )| (%) J(x—XZJ )
=— ! In2—%
2ta (X -%) (z2-%)

~N

:2m<x13—x»ﬁ(xd—xxg)‘j(xfxxn} oo

_ 1 Z—X,
S 2ta(% %) (z2-%)
where
_(1+U),B (1+O')ﬂ _(l+0')/<
R 2at a (37)

=—7Q, £7°Q} -~ 0*Q,

o2 1008, J{(l—o)ﬂj .
’ 2a 2a a (38)
=—7Q_+y’Q* -0’Q.

with

Q="——7F— (39)
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Inserting (32)-(38) into (30) gives

P (Z) — N (Z _ Xl )—1—[2105()(1*&)}_1 (Z _ Xz )7l+[21a(x1—x2):|_1

) ( Z-%, )—l+[2r(x3—x4)]_1 (Z X, )—1—[21(x3—x4)]71

(40)

which, according to (17), defines the boundary of
stability of the fixed point x =0 for different values of
parameters yQ, and ®°Q,, which depend on charac-
teristics w?, y ofanoscillatorand o, A and 7 of
noise.

5. Conclusions

We have introduced a new model of a stochastic
oscillator having a fluctuating mass, which, among other
processes, describes Brownian motion with adhesion.
That is, the particles of the surrounding medium not only
collide with the Brownian particle but also adhere to it
for some (random) time after the collision, thereby
changing its mass. For white and dichotomous sources of
noise, one can find the two first moments. A detailed
stability analysis has been performed for white and
dichotomous noise.
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