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Abstract 
This paper aimed to study the effects of natural polysaccharide (gum arabic, 
GA) on the formation of vaterite calcium carbonate and its stability in 
aqueous solution. Gum arabic is a macromolecule that has a high molecular 
weight and is amphoteric in character. A 0, 2.5, 5 or 10 ml of GA solution 
(30%) was added to the calcium chloride solution with various initial concen-
trations to prepare the vaterite calcium carbonate. The calcium carbonate par-
ticles were characterized using FTIR, XRD, SEM, TEM and DSC-TG as well as 
calculation of phase contents. The results of XRD and FTIR analysis were 
showing that the presence of GA during the precipitation changes the beha-
vior of calcium carbonate to form vaterite until at lower dose used. In addi-
tion, the molar content of vaterite increased at the expense of content of cal-
cite with increasing the GA dose. There are slightly improvements in the vate-
rite content by increasing the initial concentration. The formed vaterite cal-
cium carbonates composed of aggregates as broccoli-like or spherical shape 
and with particle size 1.6 - 2.5 µm in diameter. TEM images showed that these 
aggregates composed of the sub spherical unit with diameter 15 - 30 nm. The 
thermal behavior of prepared vaterite was conformed the mineral composi-
tion of these phases. The prepared calcium carbonate, which is formed in the 
presence of different doses of gum, has a stability in the aqueous solutions at 
different temperatures, as the analyzes indicated that a very small percentage 
of the vaterite were converted to calcite. The gum arabic prevented or de-
pressed the transformation of vaterite to calcite through capped the surface of 
particles, i.e. it is more effective in stabilizing the vaterite phase with increas-
ing in initial concentration and time. 
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1. Introduction 

Calcium carbonate is one of the most important minerals in the earth’s crust [1]. 
Calcium carbonate has different phases such as calcium carbonate hexahydrate, 
calcium carbonate monohydrate, vaterite, aragonite and calcite. These poly-
morphs have different crystal structure and appearance [2]. Under all known 
conditions, the vaterite is metastable and has a higher solubility than the other 
CaCO3 polymorphs [3]. The transformation of meta-stable vaterite took place 
through dissolution process, followed by the crystallization of calcite. It is 
proved that the additives play an important role on the crystal growth rate, and 
could prevent the transformation from vaterite to calcite whether organic addi-
tives or inorganic additives [4]-[10]. Calcium carbonate is mainly used as filler 
in many industries that depend on its properties such as phase, morphology and 
size [11] [12] [13] [14]. Calcium carbonate nano particles were used in drug de-
livery and bone substitution [15] [16] [17], whereas vaterite has many properties 
that make it suitable for preparation of drug delivery carriers [18]. Vaterite has 
been used for the removal of dyes [19] [20] [21]; for adsorption of phosphate 
[22]; and metallic ions (Cu2+ and Mn2+) [23]. 

Gum Arabic (GA) is the oldest known of all the tree gum exudates [24] and 
the Sudan is considered as the largest producer of gum arabic. Talha and hashab 
are the most common types of gum arabic [25] [26]. Gum Arabic is a polysac-
charide compound that is found as a neutral to slightly acidic salt [27] [28], con-
tains soluble fiber [29], has a pH of approximately 4.5 - 5.5 [30], and is consi-
dered a comparatively weak polyelectrolyte [31]. Gum arabic is used in many 
applications as a thickener, stabilizer and emulsifier [32] [33]. Gum arabic is uti-
lized as a dispersant for carbon nanotubes [34], α-Al2O3, TiO2, ZrO2 [35], and 
Fe3O4 [36]. Copper [37]; and some of the noble metals nano particle are pre-
pared in the presence gum arabic [38] [39]. In addition, gum arabic is used in 
preparation of calcite [40], and magnetic nanoparticles [41].  

The current study aimed to study the effect of gum arabic on the spontaneous 
formation of vaterite and on its transformation to the most stable calcite at dif-
ferent initial concentrations of [Ca2+] and at different incubation temperature 
with 2 2

3Ca CO+ −        molar ratio 1:2, constant flow rate and stirring. 

2. Experiment  
2.1. Materials 

Gum arabic of the hashab type was obtained from Al-Nasr Company in Sudan 
and used without further purification. Calcium chloride dehydrates and sodium 
carbonate was analytical grade and used as received. Aqueous solutions of the 
reactants were prepared using doubly deionized water. Solution of gum arabic was 
prepared by dissolving GA powder in deionized water about 30 g/100 ml water.  

2.2. Calcium Carbonate Preparation 

Two litre glass flasks were used for preparation of calcium carbonate. Mixing 
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was completed with the help of an overhead mechanical stirrer. The stirring 
speed for all the reactions was maintained at 1200 rpm. Vaterite was prepared by 
addition sodium carbonate solution to calcium chloride solution with different 
initial concentrations, 0.1, 0.2 and 0.3 mole at ambient temperature. The addi-
tion doses of the gum arabic solution were 0, 2.5, 5.0 and 10.0 ml of GA solution 
(30%)/0.1 mole of CaCl2. 

In order to study the stability of formed vaterite in the aqueous solution, the 
synthesized calcium carbonate retained in mother liquor for 24 h. In addition, 
the incubation temperature effect on the stability of formed vaterite by the 
freshly prepared vaterite sample was dispersed in distilled water and refluxed 
near to 95˚C for 2 h. The prepared CaCO3 was washed with water, dried and 
kept for investigation by using FT-IR, XRD, SEM, TEM and thermal analyses.  

2.3. Instruments 

A JASCO Asia Portal-FT/IR-6300 Spectrometer using the KBr pellet method was 
used to record the FTIR spectra of the prepared samples. The sample was 
ground with dry KBr in a 1:100 mass ratio and pressed at 5 tons to form pellets. 
An XRD 7000 (Shimadzu Instruments, Japan) at a 2θ scan speed of 4˚ min−1, λ = 
0.154 nm with Cu Kα as a radiation source was used for determination of the 
crystallinity of the prepared calcium carbonates. Field emission scanning elec-
tron microscopy, a JEOL JSM 6360 DLA, Japan, and a transmission electron mi-
croscope ((TEM; Hitachi, H-800) where used for determination of the mor-
phology and size of the prepared samples. DSC (NETZSCH STA 409 C/CD in-
strument) was used for investigating the thermal behaviours of some selected 
samples. The samples are studied up to 1000˚C, using a rate of 10˚C/min in an 
He atmosphere. The molar content (%) of vaterite CaCO3 polymorphs was cal-
culated as described in [42] [43].  

3. Results 
3.1. Effect of Gum Arabic Concentration  

Figure 1(a) illustrates the XRD patterns of the prepared CaCO3 in presence of 
different dose, 0, 2.5 ml, 5.0 ml and 10.0 ml from 30% GA solution per 0.1 mol 
of CaCl2. In case of the absence GA, the peaks at 29.4˚, 36.0˚, 39.4˚, 43.1˚, 47.4˚ 
and 48.5˚ 2θ are attributed to the formation of calcite [44], while the peaks at 2θ 
values of 24.8˚, 27.0˚, 32.7˚, 43.8˚ and 55.7˚ are related to the vaterite [45]. This 
indicates that the precipitated calcium carbonate without GA is composed of a 
mixture of calcite and vaterite phases. The molar content of calcite and vaterite 
in this sample is 66% and 34%, respectively. On the other hand, the XRD pat-
terns of calcium carbonate samples prepared in presence of different doses of 
gum arabic have the characteristic peaks of vaterite only as a dominant phase. 
The molar content of vaterite in presence of GA was increased with increasing of 
dose to 100%. This means that the addition of GA to the precipitation system 
prevented the transformation of vaterite to calcite. The FTIR spectra of the  
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(a) 

 
(b) 

Figure 1. Powder X-ray diffractograms (a) and FTIR spectra (b) of calcium carbonate 
precipitated at 0.0, 2.5, 5.0 and 10.0 ml of GA/0.1 mole of Ca2+ solutions, V (vaterite) and 
C (calcite). 
 
prepared CaCO3 with different doses of gum arabic are shown in Figure 1(b). 
The bands at 876 and 712 cm−1 are related to calcite phase [46], which appeared 
only in sample without GA. All samples, which are formed with different dose of 
GA, have absorption bands at 745, 875, and 1083 cm−1 with a splitted band at 
1420/1490 cm−1 as indicating to a vaterite phase [47]. The intensity of vaterite 
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bands was increased with concentration of gum up to 10 ml/0.1 mol of Ca2+ [48]. 
Also, the relatively ratio of I746/I712 increases with increasing of GA indicates that 
the content of polycrystalline vaterite increased [49]. 

Figures 2(a)-(c) show the SEM images of some selected samples. Figure 2(a) 
shows the SEM micrographs of the CaCO3 particles that obtained in absence of 
GA, it is clearly shown that the CaCO3 particles have a regular plate-like calcite 
structure and an average length of approximately 3.7 mm and 3.3 mm in width. 
The SEM images of CaCO3 particles (Figure 2(b)), which are prepared with 2.5 
ml of GA/0.1 mole of calcium chloride, have a typical broccoli-like agglomerate 
of vaterite, which is composed of subunits while that formed with 5.0 ml of 
GA/0.1 mole composed of submits particles with only the spherical morphology 
of vaterite (Figure 2(c)). This means the fraction of spherical vaterite increased 
with the increase of the concentrations of GA [50]. The surface morphology 
(smooth or rough) and crystal interior depend on the moment the GA is inter-
fering with the crystallization process and polyelectrolyte chain length [51]. The 
TEM image of sample prepared without GA (Figure 2(d)) shows that the crys-
tals consisted of rhombohedral crystals 85 - 95 nm in length and 55 - 75 nm in 
width, and its surface appeared as a sponge-like structure with minor amount of 
spherical particles that related to vaterite. TEM images of the vaterite precipi-
tated with 5 ml of GA/0.1 mole of calcium chloride sample showed the forma-
tion of mono-dispersed uniform spherical particles 15 to 30 nm in diameter. 

As showing in Figure 3(a), the calcite DSC-TG curve, which formed without 
GA, appeared a very small shoulder at 77˚C that was related to removal of phys-
ical water, and the main endothermic peak at approximately 699˚C indicating 
calcination of calcium carbonate. The weight loss percentage associated with this 
peak was 39% and the calculated calcium carbonate content was approximately 
90%. Also, Figure 3(b) illustrates the DSC-TG curves of sample prepared in 
presence of 5.0 ml GA/0.1 mole of Ca2+. The DSC curve of this sample reveals 
four endothermic peaks. The first peak, at 85˚C, may be related to removal of the 
physically water that adhered on the surface of the vaterite agglomerate [52]. The 
peaks at 125˚C, 165˚C are attributed to water formed in crystals inside the pores 
of vaterite [53]. These peaks are related to the approximately 5.0% loss in weight. 
An exothermic signal at 397.3˚C is related to converting vaterite to calcite. The 
last endothermic peak at 635˚C and simultaneous mass change about (39.83%) 
demonstrated the decomposition of calcium carbonate and release of carbon 
dioxide. The calcium carbonate content can be calculated from TG to be ap-
proximately 99.5% [54]. 

3.2. Effect of the Initial Concentrations of Ca2+ 

The Figure 4(a) displays the XRD patterns for calcium carbonate samples pre-
pared from calcium chloride solution have initial concentrations 0.1, 0.2 and 0.3 
moles in the presence of 5 ml of GA/0.1 mole of Ca2+. As showing from Figure 
4(a), All the samples have peaks at 24.8˚, 27.0˚, 32.7˚, 43.8˚ and 55.7˚ 2θ which  
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(c) 

 
(d) 

Figure 2. SEM images of calcium carbonate prepared with (a) 0.0 ml; (b) 2.5 ml; (c) 5.0 ml of GA/0.1 mole of Ca2+ and (d) TEM 
images of calcium carbonate prepared with 0.0 ml and 5.0 ml of GA/0.1 mole of Ca2+. 
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(a) 

 
(b) 

Figure 3. DSC-TG curves of calcium carbonate prepared without GA (a) and with 5.0 ml 
(b) of GA/0.1 mole of Ca2+, DSC curves (solid line) and TG (dotted line). 
 
are related to the vaterite calcium carbonate. In addition to the intensity of cha-
racteristic peaks of vaterite was increased slightly with increasing of the initial 
concentrations. The molar content of vaterite, for all samples, is about 100%. 
The FTIR spectra of CaCO3 samples (Figure 4(b)), which were prepared with  
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(a) 

 
(b) 

Figure 4. Powder X-ray diffractograms (a) and FTIR spectra (b) of calcium carbonate 
precipitated with 5 ml of GA/0.1, 0.2 and 0.3 mole of Ca2+ solutions, V (vaterite) and C 
(calcite). 
 
different initial concentrations of Ca2+, are pointed to the vaterite is the only one 
component in all samples at all concentration and also agreement with the re-
sults of X-ray diffraction analyses. 

Figure 5(a) shows SEM images of calcium carbonate prepared from calcium 
chloride solution with initial concentration 1.0 mole in presence of 5 ml of  
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(a)  

 
(b) 

Figure 5. SEM images (a) and TEM images (b) of calcium carbonate prepared with 5 ml GA/1.0 mole of Ca2+, at room temp., for 
24 hrs. 
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GA/0.1 mole of Ca2+. As it show calcium carbonate has aggregate particles as 
broccoli—or cauliflower—like aggregates and have diameter near about 15 to 30 
nm. TEM images (Figure 5(b)) shows these aggregate particles composed from 
subunits have spherical shape with particles size changed from 30 - 40 nm. 

Figure 6 shows the DSC-TG curves of the thermal behaviour of prepared cal-
cium carbonate from calcium chloride solution with initial concentration 1.0 
mole in presence of 5 ml of GA/0.1 mole of Ca2+. It shows six endothermic peaks 
at 110˚C, 117.4˚C, 169˚C, 388˚C, 429˚C, and 671˚C. As shown above, this sam-
ple is composed of vaterite. The releasing of surface and crystalline water of va-
terite and gaylussite was observed from signals at 110˚C, 117.4˚C and 169˚C. 
The TG curve shows the weight loss associated in this step to be approximately 
5.5%. The endothermic peaks at 388˚C and 429˚C indicated double hydrated 
crystal transformation from low temperature form into high temperature form. 
In this step, the mass reduction is related to ignition of GA and the loss of 
well-deep water in vaterite. The endothermic peak at 671˚C is associated with 
the decomposition of CaCO3, where the mass change at this peak was 33.0% and 
the concentration of calcium carbonate was approximately 75% [55]. 

3.3. Stability of Vaterite 

In order to study the effect of gum arabic on the stability of precipitated calcium 
carbonate, it was retained in the mother liquor for 24 hours. Figure 7(a) illu-
strates the XRD patterns of CaCO3 particles which were prepared from calcium 
chloride solution its concentration is 0.1 mol in the presence of different doses of  
 

 
Figure 6. DSC-TG curves of calcium carbonate prepared with 5 ml GA/1.0 mole of Ca2+: 
DSC curves (solid line) and TG (dotted line). 
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(a) 

 
(b) 

Figure 7. Powder X-ray diffractograms (a) and FTIR spectra (b) of calcium carbonate 
precipitated at 0.0, 2.5, 5.0 and 10.0 ml of GA/0.1 mole of Ca2+ solutions prepared at room 
temp for 15 min. and 24 hrs, V (vaterite) and C (calcite). 
 
GA solution. As show, the peaks at 29.4˚, 36.0˚, 39.4˚, 43.1˚, 47.4˚ and 48.5˚ 2θ 
are attributed to the formation of calcite which was appeared mainly in samples 
that retained in mother liquor. This is indicted to the converting the vaterite to 
calcite whereas the CaCO3 samples that prepared without GA turned to calcite 
completely after 24 h, with the molar content of calcite 34% but after 24 hours in 
the mother liquor has become 100%. The intensities of the characteristic peaks 
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of calcite decreased with addition of GA. The calcite contents are 100, 34, 6, and 
4% with GA dose 0, 2.5, 5.0 and 10.0 ml, respectively. On the other hand, FTIR 
spectra (Figure 7(b)) show the sample that incubated for 24 hr in absences of 
GA was completely converted to calcite (the bands at 875 and 712 cm−1). While 
in the presence of GA there are traces of calcite was appeared. 

3.4. Effect of Incubation Temperature 

Figure 8 displays the XRD patterns of calcium carbonated incubated at 95˚C for 
120 min. Figure 8(a) shows the XRD patterns of sample prepared with different 
dose of GA and incubated at ambient temp and at 95˚C. It shows that the cal-
cium carbonate prepared in the absence of gum arabic at room temperature 
contains a mixture of calcite (40%) and vaterite (60%) but when prepared at 
95˚C, the aragonite phase appeared (30%), located at 2θ 26.19˚, 27.16˚, 37.8˚, 
38.5˚ and 45.87˚ [56] while calcite and vaterite content decreased to 48% and 
22%, respectively. This is mainly due to transform of vaterite to calcite and to 
aragonite, where at elevated temperature which stabilized the aragonite phase 
[51]. With addition 2.5 ml of GA to precipitation solution, at room temperature, 
the vaterite phase became the main component (100%) of calcium carbonate to 
vaterite but at 95˚C the sample composed of 56% vaterite, 29% aragonite and 
15% calcite. This is contributed to the dissolution and recrystallization of vate-
rite to aragonite and calcite. As the dose of GA increases, the dissolution and re-
crystallization process of vaterite prevented whereas the content of vaterite was 
slightly changed from 100% to 94% and 95% for 5 and 10 ml of GA, respectively. 
This confirms the ability of GA molecules to absorb and bind to the surface of 
vaterite calcium carbonate particles and prevent them from switching to other 
phases despite the high temperature of the medium that helps to transform 
process. Figure 8(b) illustrates the FTIR spectra of the calcium carbonate sam-
ples that incubated at ambient temperature and 95˚C. The characteristic bands 
of calcite and aragonite were appeared in samples without and with 2.5 ml of GA 
after fluxes at 95˚C for 2 hr but did not appear with increasing GA dose. These 
spectra are conformed on that the GA molecules adsorbed strongly on the sur-
face of vaterite particles and prevent the dissolution and recrystallization process 
either to calcite or aragonite. However it is known that the thermal treatment or 
elevation incubation temperature help to forming the aragonite phase. 

Figure 9(a) shows the XRD patterns of calcium carbonate precipitated with 5 
ml GA/0.1, 0.2 and 0.3 mol of Ca2+ at 95˚C. It is shown that at low initial con-
centration aragonite phase only was formed that appears from the peaks located 
at 2θ 26.19˚, 27.16˚, 37.8˚, 38.5˚ and 45.87˚) [56]. While the vaterite phase 
formed with increasing concentration of Ca2+ with minor amount of calcite. This 
is undoubtedly due to the properties of gum arabic, which works to form the va-
terite and prevent its transformation into calcite. The absorption bands at 700, 
855, and 1083 cm−1 are related to aragonite (Figure 9(b)) that shows the forma-
tion of aragonite phase in the presence of 5 ml GA at the lowest concentration of 
Ca2+. While with initial concentration of Ca2+ increases only vaterite phase  
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(a) 

 
(b) 

Figure 8. Powder X-ray diffractograms (a) and FTIR spectra (b) of calcium carbonate 
precipitated at 0.0, 2.5, 5.0 and 10.0 ml of GA/0.1 mole of Ca2+ solutions prepared at room 
temp for 15 min. and 95˚C for 120 min., V (vaterite) and C (calcite). 
 
formed. The SEM and TEM images of the aragonite prepared at 95˚C in pres-
ence 5 ml of GA/0.1 mol Ca2+ are displayed in Figure 10(a). The SEM images 
are shown only particles with needle morphology or the big spindles of aragonite 
that composed from nanoparticles about 75 - 150 nm. TEM images of aragonite 
show the individual needle-like shape that is composed of separate spindled con-
tinuous filaments or as a fingerprint. 
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(a) 

 
(b) 

Figure 9. Powder X-ray diffractograms (a) and FTIR spectra (b) of calcium carbonate 
precipitated at 95˚C for 120 min. with 5 ml GA/ 0.1, 0.2 and 0.3 mol Ca2+, V (vaterite) 
and C (calcite). 
 

The DSC curve of aragonite (Figure 10(b)) clearly shows four endothermic 
peaks. The peaks at 120˚C and 200˚C are related to the evaporation of occluded 
water and decomposition of gum arabic [57]. According to the TG curves, the 
reduction in mass in this step was approximately 24%. Aragonite is a metastable 
phase of calcium carbonate and converted to calcite upon heating, as shown 
from the peak at 410˚C. This process is endothermic. The water appeared to be  
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(a) 

 
(b) 

Figure 10. SEM images and TEM images (a) DSC-TG curves: DSC curves (solid line) and TG (dotted line); (b) of calcium carbo-
nate prepared with 5 ml GA/1.0 mole of Ca2+ at 95˚C for 120. 
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released uniformly during the transformation process and didn’t cause any dis-
tortion of the DSC curve [58]. The endothermic peak at 677˚C is related to the 
calcination of calcium carbonate. The mass change according to this peak was 
approximately 43.9%, which indicate that the concentration of calcium carbo-
nate was approximately 99.5%. 

4. Discussion 

The chemical composition of organic compounds plays an important role in the 
crystallization process and hence the form and type of product, whereas these 
additives change the properties of the solid-liquid interface during the crystalli-
zation and recrystallization process. The presence of −COOH, −OH and −NH2 
are the main functional groups in gum arabic acquire it slightly acidic properties. 
The Wattle blossom model of gum arabic [59] indicates that it consists of arabi-
nogalactan (GA), arabinogalactan protein (AGP), and glycoprotein (GP) (Figure 
11(a)), this means GA has a hydrophilic and hydrophobic species. The pH value 
of the native gum arabic solution was 4.58, and its isoelectric point was 1.8. At 
this point, the carboxylic and amino groups carry negative and positive charges, 
respectively [60]. The carboxylic groups become fully protonated and less hy-
drophilic in acidic media at pH < pKa, whereas at pH > pKa, the carboxylic 
groups become ionized and have lower hydrophobicity. Thus, the GA molecule 
will compress and expand [61] [62], Figure 11(b). These conditions help to 
form strong bonding between calcium ions and gum arabic molecules as shown 
in Figure 11(c). Dror et al. was reported [63], in aqueous systems of GA, which 
electrostatic repulsion does not play a controlling role in emulsion stabilization, 
but steric repulsion might be the main mechanism for particle stabilization. 
Amorphous calcium carbonate is formed once the carbonate ions are added to 
the calcium ions solution, which is directly converted to the hydrated calcium 
carbonate. These forms are converted into vaterite or aragonite according to the 
precipitation conditions and then turned into the most stable form of calcite. At 
the first period of the spontaneous process, the nuclei formed will act as seeds 
and will further grow to larger sizes before aggregation and forming secondary 
particles. The presence of GA resulted in the capture of calcium ions by fully io-
nized carboxylic groups to form a Ca2+-GA complexes, (GA(COO−) + Ca2+ ↔ 
GA(COO)Ca2+. These complexes are formed rapidly and make the surface of the 
aggregates the most active site for nucleation. It is well known that vaterite crys-
tals predominately grow from supersaturated solution. The (0 0 1), (1 0 1), and 
(1 1 0) planes of vaterite are positively charged and contain exposed Ca ions; 
thus, complex adsorbs preferentially on these faces and block further growth to 
another axes and prevent vaterite transformation [64]. By further vaterite grow-
ing under GA complexes, pores of the spherical vaterite particles are filled, giv-
ing rise to the raspberry shapes by aggregation of several spheres. At high con-
centrations of GA, the vaterite is the most formed phase. Whereas, the GA mo-
lecules becomes more incorporated into calcium carbonate crystal facets and a  
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 11. Scheme of reaction of GA with calcium ion and precipitation of calcium car-
bonate, (a) behaviour of GA in aqueous solution; (b) effect of change of pH on the ter-
minal functional groups of GA; (c) combination of calcium ion with GA molecules and 
formation of GA-Ca+ complex; (d) absorption of GA on the surface of vaterite. 
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multilayer formed at the surface of the particle by intermolecular hydrogen 
bonding between adsorbed and free GA molecules. In addition, the physical 
presence of the adsorbed GA molecules changes the surface charge density. 
Therefore, GA molecules will only bridge near the closest point of interaction 
between particles as a bolaform molecule, but do not help to form large aggre-
gates with only an enhancement of steric stabilization of the small primary par-
ticles and which prevents their aggregation leading to smaller secondary par-
ticles. In addition, at high concentrations of GA, the molecules may start 
self-associating in solution and therefore shift the equilibrium established be-
tween the free and adsorbed GA molecules. The low concentration of calcium 
and carbonate increases the content of the samples prepared from vaterite phas-
es with the concentration of gum arabic, due to the strength of gum arabic 
bonding with calcium carbonate particles, which hinders their conversion to cal-
cite despite the conditions. As the concentration of reactive materials increases, 
the sample content of the vaterite increased and reduced the calcite content that 
related to increase the supersaturation conditions [65]. Actually, the stability of 
CaCO3 polymorphic phases mainly depends on the properties of additives and 
their own solubility in aqueous solution [66]. The stability of these phases’ solids 
decreases in the following order: ACC < vaterite < aragonite < calcite. Whereas 
the bulk lattice energies of calcite over aragonite is due to its higher entropy 
content at elevated temperatures rather than its bulk lattice energy, which favors 
aragonite [67]. Therefore, the stability of polymorph and morphology of CaCO3 
minerals are directed by both thermodynamic and kinetic factors [68]. When the 
prepared vaterite retained in mother liquor there are traces of calcite phase 
(about 6%) were formed due to dissolution and recrystallization process of vate-
rite. This explains the hiding power and strong bond between vaterite surface 
and GA molecules, whereas the GA formed a multilayer at the surface of the 
particle by intermolecular hydrogen bonding between adsorbed and free GA 
molecules [48] [69]. At elevated incubation temperature, the GA contaminated 
CaCO3 particles exhibit strong resistance towards aggregation into flocs and are 
stable to recrystallization process in water [48] [69]. This stabilization effect is 
achieved when the amount of GA is sufficient to cover the surface of all formed 
particles and formed the GA shell. So the uncoated particles will then undergo 
dissolution and recrystallization and formed traces of calcite. The formation of 
aragonite at concentration 0.1 mol of Ca2+ may related to decrease the supersa-
turation conditions that enhanced by elevated temperature [70]. 

5. Conclusion 

The effects of gum arabic on the formation and morphology of calcium carbo-
nate were investigated. Different analytical techniques were used to study the 
mineral and chemical composition, microstructure and thermal behaviour of 
prepared calcium carbonate. Based on the obtained results, we can provide the 
following. GA has ability to directing of calcium carbonate to formation vaterite. 
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Increasing the GA dose enhances the molar content of vaterite. Vaterite aggre-
gates as broccoli—or cauliflower was formed at low dose of GA and full spheri-
cal particles at high dose. The increasing of initial concentration of Ca2+ has 
slightly effect on the vaterite content. GA improved the stability of vaterite under 
aqueous solutions up to 24 hrs and elevated temperature. SEM and TEM analysis 
were shown that all the prepared vaterite calcium carbonate composed from 
nano sized particles. GA as biomaterial can be use for preparation of bio-vaterite 
calcium carbonate. 
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