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Abstract 
 
We revisit the two-component Majorana equation and derive it in a new form by linearizing the relativistic 
dispersion relation of a massive particle, in a way similar to that used to derive the Dirac equation. We are 
using thereby the Pauli spin matrices, corresponding to an irreducible representation of the Lorentz group, 
and a lucid and transparent algebraic approach exploiting the newly introduced spin-flip operator. Thus we 
can readily build up the Majorana version of the Dirac equation in its chiral representation. The Lor-
entz-invariant complex conjugation operation involves the spin-flip operator, and its connection to chiral 
symmetry is discussed. The eigenfunctions of the Majorana equation are calculated in a concise way. 
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1. Introduction 
 
The so called two-component Majorana equation [1,2] 
permitting a finite mass term has been used in modern 
quantum field theory for the description of massive 
neutrinos, ever since convincing empirical evidence [3] 
for their finite masses and associated oscillations has 
been found in the past decade. Yet, in the standard model 
of elementary particle physics (see, e.g., text books [3,4]) 
the fermions involved still are assumed to be massless, 
and thus obey chiral symmetry. The corresponding 
neutrinos are conventionally described by the massless 
Weyl [5] equation involving two-component Pauli [6] 
spinors. As is well known, the Weyl equation corres- 
ponds to two possible irreducible representations of the 
Lorentz group. 

In this paper we present among other topics a novel 
derivation of the two-component Majorana equation with 
a mass term, whereby we linearize the relativistic dis- 
persion relation of a massive particle in a way similar to 
that used in deriving the Dirac equation. Moreover, a 
consistent interpretation for the Dirac equation is given 
concerning its property of covariant complex conjugation 
[7]. It emerges as an intrinsic basic symmetry of the 
reducible Dirac equation with its four-component spinors, 
and includes of course the charge exchange operation for 
the Dirac equation [8] when being coupled to a gauge 
field like the electromagnetic field. We use a concise 

algebraic nomenclature for the Dirac equation, and in a 
lucid way present its classical symmetries such as parity, 
time reversal and charge exchange. 
 
2. Dirac Equation in a Concise Algebraic 

Form 
 
In this somewhat tutorial subsection, we consider the 
Dirac equation in the standard and chiral representations. 
The derivation of the Dirac equation can be found in any 
textbook on quantum field theory (e.g., the ones of Kaku 
[5] or Das [9]). We use standard symbols, notations and 
definitions, and conventionally use units of . 
The Dirac Equation [8] generally reads 

= = 1c

= i =p 
  m                 (1) 

with   0= , = = ,p p i i t       p x  being the four- 
momentum operator acting on the spinor wave function 
 , t x . The particle mass is , and the four-vector 

named as usually  is composed of the four Dirac 
matrices. They can concisely be expressed in terms of 
the spin operator  and the three operators 

m


σ  ,  and 
  to be defined in their matrix form below. The three 
Pauli matrices, to which we may add the 2 2  unit 
matrix denoted as 0 , have standard form,  

x y z

0 1 0 1 0
= , = , =

1 0 0 0 1

i

i
  

    
    


     

   (2) 
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and build the three-vector x y z= ( , , )  σ , by help 
which we can introduce the two four-vector forms of the 
Pauli matrices, which we may refer to as Weyl matrices. 
They are defined by the four vectors  

 0= ,  σ                   (3) 

and obey =
   . Similarly to the Pauli matrices, we 

introduce the three real matrices 

0 1 1 0 0 1
= , = , =

1 0 0 1 1 0
  

    
          


      (4) 

Note that =  , and that all three matrices mu- 
tually anti-commute with each other, just like the Pauli 
matrices do. All what we need in the following are the 
algebraic properties of the operators involved, like 

= 0  , = 0   , and 0= 

= 0

, and that 
 and . Similarly, the spin operator 

components obey y x

1== 22  1= 
x y

2
    , x z z x = 0    , 

and zy 0=yz 

2( ) =σ v v

, and it is . 
Furthermore, for any three vector  the relation 

 holds. In terms of all these operators we 
can express the gamma four-vector as a direct product 
and thus rewrite it in the standard Dirac representation as  

1=2
z== 2

y
2
x 

v
2

 0= ,    σ                 (5) 

Finally, we can concisely quote the Dirac equation 
with mass term in conventional Hamiltonian form as 

  , = ,i t m
t

        
σ x

x
tx





       (6) 

Subsequently, we shall also work with the Dirac 
equation in its chiral representation, and therefore quote 
the relevant matrices here, which are given instead of (4) 
in the form  

1 0 0 1 0 1
= , = , =

0 1 1 0 1 0
  

    
        

    (7) 

Here we used to ease the notation the same symbols as 
in the standard representation. There is another important 
matrix named 5 , which (see for example the textbook 
of Kaku [4]) is defined as 5 0 1 2= i 3     . Inserting the 
above matrices and the Pauli matrices we obtain,  

5
0= x y zi 0=             (8) 

Here we used the properties that 0=x y z i    , 

0 , and 2
0 =   =

=
. By means of  the chiral 

projection operators, 

5
)1/2(1 P , can be written  

1 0 0 0
= , =

0 0 0 1
P P 

  
  
  





           (9) 

We are subsequently going to consider the symmetry 
properties of the Dirac Equation (1), including chirality. 

3. New Derivation of the Majorana Equation 
 
In this section a novel derivation of the two-component 
Majorana equation [8] term is presented, by linearizing 
the standard dispersion relation of a massive relativistic 
particle. For this purpose, we have at the outset to define 
an important operator, which is not of pure algebraic 
nature but involves the complex-conjugation operator 
named as . This antisymmetric operator called  is 
defined as 

C S
= yS i C , and obeys the relations 

 and . The operation of  on 
the spin vector σ  leads to its inversion, i.e., the 
operation 

S

1 =

SS  = †1 =

S S

1=2 S S

σ σ
σ

 yields a spin flip. Also remem- 
ber from Equation (2) that , where the super- 
script T indicates the transposed matrix. As  flips the 
spin, we have 

T* = σ
S

 SS =

C
, and  because of 

the action of . Therefore,  also anti-commutes 
with the momentum four vector 

= iSSi
S

p , and thus we have 

0 0 = 0Sp p S and =S Sp p 0 . 
Making use of the spin-flip operator  one can 

derive the Majorana equation with a mass term in new 
and straightforward way from the relativistic energy and 
momentum relation which in fact is constitutive for all 
field equations, , where the four-momentum 
of the particle is . The energy-momentum 
relation is usually written as mass-shell condition,  

S

2 2=E m  P
= ( ,P E P

2

)

2=P P m
                 (10) 

Following Dirac [8], his Equation (1) results from a 
linearization of (10), which requires to go beyond the 
algebra of complex numbers and needs the introduction 
of his famous matrices =α σ  and  , yielding the 
Hamiltonian = m   pαH . As shown in text books 
[4,5], one requires four-dimensional matrices to obtain 
the algebra of the Dirac matrices defined in Equations 
(2-5). The Pauli matrices (2) alone only suffice if there is 
no mass term, in which case one obtains the Weyl 
equation [5]. 

However, recalling the above properties of the spin 
flip operator, = yS i C , we can overcome this problem 
and still use the two-component representation given by 
the Pauli matrices (2). Namely, by help of  we can go 
a mathematical step beyond pure matrix algebra and 
define the linear but non-hermitian operator  

S

= mS  σ pH                (11) 

When squaring this equation and multiplying it out, 
the key properties 

2 = 1S  , , and = 0S Sσ σ = 0Si iS  
must be exploited. Because of this last relation,  and 

 also anti-commute with . Thus with  we 
obtain  

0p
H=0pp S

     22 2
0 0 0= =m S p S p p     σ p σ p σ p   (12) 
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which when inserting the differential operators explicitly 
yields the Klein-Gordon equation. Similarly, we obtain 
from (11) with 0  a linear wave equation (named 
after Weyl without the mass term), which involves only 
the Pauli matrix operators acting on a two-component 
spinor named 

=p H

  and reads as follows:  

  , = ,i t m
t

       
σ x

x
S tx       (13) 

This equation is nothing but the two-component 
Majorana equation [2], as it can be derived from Dirac’s 
equation in chiral form, if one imposes on it the con- 
dition of Lorentz-covariant complex conjugation, a pro- 
cedure which is clearly described in a recent tutorial 
paper of Pal [7]. 

Obviously, the Majorana Equation (13) is very sensi- 
tive to the operation . Namely, when we apply it from 
the left side we find that  

S

      , = , = ,i S t mS S t m
t

        
σ x x

x
t x  

(14) 

Consequently, if   solves the Equation (13) with the 
plus sign in front of , then σ S  solves it with the 
minus sign, but with a minus sign also at the mass term. 
Therefore, Equations (13) and (14) are closely connected, 
and represent only one independent complex spinor field, 
which can either be   or S . Instead of its two 
complex component fields we may consider four real 
fields, which correspond to the real and imaginary parts 
of the two components of  , and hence the name 
Majorana equation for (13), because it is equivalent to 
the real four-component representation of the Dirac 
spinor as obtained from (1) by a unitary transformation, a 
result which is explicitly shown in [3], for example. 

Making again use of the spin-flip operator , one can 
derive the Majorana equation with a mass term in yet 
another way from the relativistic energy-momentum 
mass-shell condition (10). The algebra of the newly 
defined four-vector  permits a represen- 
tation that is equivalent to the Clifford algebra of the  
matrices. Namely, we find a decomposition of the metric 
tensor  in the form,  

S

 0= ,S S  σ 


g

 , = = 2S S S S S S g       

0

       (15) 

which is validated by using the anti-commutator  

 , =S σ , and that . Note also that 2 = 1S  = 4S S
  . 

Consequently, we can write the mass shell condition (10) 
also in the form:  

2= = =P P g P P S S P P m   
           (16) 

Here the momentum four-vector components were 

treated as real numbers. 
Returning finally to Equation (13) again, we now 

derive its eigenfunctions. In order to solve (13), we make 
the usual plane-wave ansatz,  
    , = exp expt u iEt i v iEt i       x P x P x . The 

resulting linked eigenspinor equations are 

    , = ,E u E mSv σ P P P E           (17) 

    , = ,E v E mSu  σ P P P E          (18) 

By insertion of the first into the second equation, or 
vice versa, the relativistic dispersion relation yields the 
two eigenvalues  

  2
1,2 =E m P 2P



           (19) 

which are obtained from the requirement for nontrivial 
solutions of the spinors  and  to exist. The nega- 
tive root in (19) cannot be neglected, since as usually it is 
related to antiparticles. We can solve (17) for v  and 
insert it back into the above ansatz for  to obtain 
finally the solutions of (13) and (14) in the concise forms  

u v

 , t x

   , = 1 exp
E

t S iEt
m

      
 

σ P
x Pi u x    (20) 

   , = exp
E

S t S iEt i
m

      
 

σ P
x P u x    (21) 

To validate these solutions by direct differentiation, 
careful attention must be paid to the anticommutation 
rules between  and i , respectively . We are free 
to choose for the eigenspinor  the two standard spin 
up and down eigenfunctions:  and . 
Similar solutions like that of Equations (20) and (21) are 
obtained for the negative energy root in (19), yielding the 
antiparticle wavefunctions. Superposition of all these 
Fourier modes and their summation over the momentum 
variable  leads finally to the general solution of the 
Majorana fields, whose quantization then readily follows 
from the canonical rules [2-4,9]. 

S σ
u
†
1u (1,0)= (0,1)=†

2u

P

 
4. Symmetries of the Dirac Equation 

Revisited 
 
Let us now consider the symmetries of the Dirac 
equation, in particular the charge exchange , parity 

, and time reversal  operations. Generally speaking 
the Dirac equation is invariant under the symmetry 
operation , if the spinor  

C
P T

O

= O O                  (22) 

also fulfils the Dirac equation. Therefore, when applying 
the operation O  from the left and its inverse  
from the right, whereby the unit operator is given by the 

1O

Copyright © 2011 SciRes.                                                                                 JMP 



 
1112 E. MARSCH 

decomposition , we obtain the result 1 = 1OO

 1 1 , = 0i i m t
t

     
 


xO O O

     
σ

x
O O  

(23) 

We still need to define the time and space coordinate 
inversion operations T  and P  on a spinor   by  

  , = ,T t  x x t

tx

tx

             (24) 

  , = ,P t  x              (25) 

and also recall the complex conjugation operation , 
which gives , and yields  

C
1 =CiC i 

  *, = ,C t x              (26) 

Here the asterisk denotes as usually the complex 
conjugate number. In what follows we do not always 
quote explicitly the unit matrix 0 , or the unit matrix 
simply named , which is associated with the matrices 
in (4) and (7). With all these preparations in mind, it is 
easy to see which operators provide the requested 
symmetry operations. We compose them in the Table 1. 
To complete the operator algebra, it is important to note 
the following commutation relations. Of course, the 
coordinate reversal operators  and 

1

T P  commute with 
 ,  and  , and alike with the three Pauli matrices. 

These in turn anti-commute with , but obey S
[ , ] = [ , ] =, ] = [  σ σ σ 0

]
, with the commutator denoted 

by . [,
Let us first consider in (23) the time reversal, 

. Apparently, it does not affect the mass 
term with 

ST== TO
 , and also leaves the first term as well as 

and α unchanged. Therefore, also σi  *= ,yi   txT  
solves the Dirac Equation (23). Similarly, the parity 
operation = = PO P  commutes with the mass term 
and does not affect the first term in (23). But it also 
leaves the momentum term invariant since   and  
both change signs together. Therefore, also 

 solves the Dirac equation. Finally, we 
introduce charge conjugation as 

x

= = S
=  xP , t

O C , which 
changes the signs of all three terms in (23) with no net 
effect, yet thereby leaves the kinetic term σ

 * ,i t  x
 invariant 

as well. Therefore, also y  solves the 
Dirac equation. In conclusion, the symmetry operations 
of Table 1 work in a transparent and simple way on the 
Dirac equation. We finally quote the charge conjugation 
operator explicitly in chiral matrix form (7) as 

= C

 
Table 1. Symmetry operations. 

Operation Time reversal Parity Charge conjugation 

Operator = STT  = PP  

0
=

0

S

S



 

C



1

                (27) 

In the standard representation (4) we simply get the 
transposed matrix. Consequently, , as it 
should be. Traditionally, the operator  is associated 
with charge conjugation, because the effect it has on the 
Dirac equation when coupled to a gauge field, like the 
electromagnetic four-vector potential  , is simply that 
the sign of the charge is changed. As the minimal 
coupling [4,9] to the field (the particle charge is e ) 
yields the replacement,  

2 2= =SC
C

A

ieA                     (28) 

the effect of  will, solely due to the action of , be 
the substitution of  by 

C C
e e . However, what then is the 

meaning of for the free Dirac equation, when not 
being coupled to a gauge field? 

C

 
5. Chiral Symmetry and Complex 

Conjugation 
 
Again, what is the genuine symmetry the operation  
is related with? The answer has been given in a most 
lucid way by Pal [7] in his recent paper. The operation 

 in fact is the Lorentz-covariant complex conjugation, 
which is an operation that of course makes sense without 
even considering gauge fields. However, the operator  
plays a key role not only in this issue, but also for the 
two irreducible representations of the Lorentz group 
related with two-component Pauli spinors. We recall the 
operator  causes the spin  to flip and inverts its 
direction. The parity operation does not change the sign 
of  being a pseudo vector, which is consistent with 
the required invariance of the spin angular momentum 
commutator, 

C

σ

C

S σ

σ

= 2iσ σ σ
C
, under parity. So the intrinsic 

symmetry described by  is closely connected with the 
degeneracy of the Dirac equation (with its four- 
component spinors) with respect to a spin flip, which 
corresponds to interchanging the two irreducible 
representations of the Lorentz group. As a consequence, 
we can combine the two interrelated Majorana Equations 
(13) and (14), and thus construct from them the four- 
component spinor  

=
S





 
 
 

C                  (29) 

How does this state  transform under the opera- 
tion ? We apply the charge-conjugation or covariant 
complex conjugation operation in its matrix form in (27) 
on this special spinor and then obtain  

C
C

= SC  
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=
0

= =
0

S

S S S

 
 

 
     

     
     

CC C     (30) 

Consequently, the charge-conjugation operator leaves 
the special state  C  unchanged, which therefore is an 
eigenfunction with eigenvalue unity.  

We recall here Dirac’s Equation (6) in its chiral matrix 
form:  

0
=

0
p i




 


= m   






 
 

 
       (31) 

Apparently, any chiral Dirac spinor can be decom- 
posed into two-component Pauli spinors such that 

† † †= ,    

R = =P 

, where the plus sign indicates the 
right-chiral and minus sign the left-chiral components of 
the original Dirac spinor. We recall the chiral projection 
operators defined in (9), which yield the spinors 

 and  †
,0  †

L = = 0,P    . 
Now by comparison with equation (29) we have the 

obvious connections,  =  and  S=

C

. Therefore, 
a comparison with the Majorana Equations (13) and (14) 
shows that  fulfils the chiral Dirac equation, but it is 
special in so far as it also is an eigenfunction of the 
charge-conjugation operator, which is to say the cova- 
riant complex conjugation operator . Because of this 
constraint the spinor (29) is determined fully by the 
two-component spinor 

C

  that obeys the Majorana Equa- 
tion (13). If we then apply  separately to the right- or 
left-chiral fields we obtain  

C

       
R L L

= and =      
   

C C CC C
R

C



   (32) 

Thus this operator exchanges the chirality of the chiral 
projections of the complex-self-conjugate spinor , 
and it transforms left- into right-handed states and vice 
versa, a virtue which is essentially associated with the 
spin flip operator  defining C . In conclusion, in this 
special situation the operator  acts as chirality con- 
jugation or reversal. While being composed of the two 
irreducible Majorana equations, the reducible chiral 
Dirac equation has as an intrinsic symmetry this chirality 
conjugation. The same chirality reversal is obtained for 
the real four-component Majorana equation, in which 
complex conjugation of the chiral eigenspinors changes 
the left- into right-chiral spinors and vice versa. 

C

S
C

When we use the standard Dirac representation with 
the matrices of (4), the standard Dirac spinor can also be 
decomposed into two-component Pauli spinors such that 

† † †
1 2= ,   , and by comparison of the Majorana 

equations with the chiral representation we have the 
connections,  1 2= 2    , and  

 1,2 = = 1 S      . We insert these components 

in a four-component spinor that is again called . 
How does this state transform under the operation 

C

S=C ? We apply the charge-conjugation operation in 
its matrix form based on (7) on the above defined spinor, 
and by using 2 = 1S   we obtain  

 
 
1

= =
10

SS

S

0

S
 


   
      

C CC


C

      (33) 

Again, the charge-conjugation operator leaves the 
eigen spinor  in the standard representation of the 
Dirac equation unchanged. Upon insertion of  in the 
standard Dirac equation, we obtain  

C

     =i S m Si S
t
      
    

 
σ

x
     (34) 

    i i =S S m S
t
      
     

 
σ

x
    (35) 

Thus it is readily verified that solves (6), since C   
and S  by definition fulfill individually the respective 
Majorana Equation (13) and (14). 
 
6. Summary and Conclusions 
 
We reconsidered the two-component Majorana equation. 
By making use of the spin-flip operator, we derived this 
equation with a mass term in a novel and manifestly 
covariant way, which revealed its intimate relations to 
the Dirac equation in its chiral as well as standard form. 
The eigenfunctions of the two-component Majorana 
equation were also calculated. 

The new mathematical approach employed here 
demonstrates for self-complex-conjugate states the com- 
plete equivalence of the complex Majorana equation with 
its two-component spinor  and the Dirac equation, 
when being constrained to its four-component spinor 
solutions which can be built up by the two Majorana 
spinors 

C
  and S . However, the complex Majorana 

equation does not guarantee, but in fact breaks one of the 
important basic field symmetries, namely charge 
exchange (represented here by the operator ), and thus 
for the CPT-invariant description of massive charged 
fermions the unconstrained complex Dirac equation is of 
course required. 

S

The two-component Majorana equation, coming in 
two related forms (13) and (14) that are connected by a 
spin flip, represents the simplest possible covariant 
relativistic wave equation for a massive but uncharged 
fermion. These two forms represent the two irreducible 
representations of the Lorentz group in terms of Pauli 
spinors and matrices. Thus the Majorana equation can 
directly be derived by linearization of the quadratic rela- 
tivistic energy-momentum relation, a procedure which 
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leads to (11) without explicit recourse to the Dirac 
equation. 
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