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Abstract 
Simulators play an important role in training surgery residents to perform la-
paroscopy surgery. Some of these simulators have the capability to track tool 
motion to assess performance. However, most have not utilized the data to 
analyze trainee performance in a meaningful way. The alpha shape method 
can be used to construct a geometric surface based on motion data to enable 
visualization of the performance, while the surface derivative (surface/time to 
completion)—efficiency—can be used as a metric to evaluate complex surgical 
performance. The utility of the alpha shape method was demonstrated in a 
pick-and-place task, where the motion path of laparoscopic graspers was rec-
orded by a position sensor, miniBIRD 500®. An alpha shape method was used 
to measure the surface area of the 3D points in space occupied by the tool tips 
during task performance. Results show that the surface derivative measure 
alone may be able to model the speed-accuracy tradeoff function, thereby 
simplifying the analysis and evaluation of complex motion in surgical perfor-
mance. 
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1. Introduction 

Traditional open surgery in the abdominal cavity has largely been replaced with 
the modern approach of laparoscopic or minimally invasive surgery (MIS) [1]. 
In MIS, the space within the abdomen is insufflated with carbon dioxide to in-
crease the working volume. Operations are performed through small incisions in 
the abdominal wall, typically between 0.5 - 1.5 cm. Trocars are placed through 
these incisions to allow introduction of surgical instruments (endoscopic cam-
era, graspers, scissors, etc.) into the surgical field. The MIS approach, compared 

How to cite this paper: Maddah, M.R. and 
Cao, C.G.L. (2017) Application of the Al-
pha Shape Method to Visualize and Ana-
lyze Surgical Motion. Surgical Science, 8, 
464-480. 
https://doi.org/10.4236/ss.2017.811052  
 
Received: June 30, 2017 
Accepted: November 14, 2017 
Published: November 17, 2017 
 
Copyright © 2017 by authors and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/  

  
Open Access

http://www.scirp.org/journal/ss
https://doi.org/10.4236/ss.2017.811052
http://www.scirp.org
https://doi.org/10.4236/ss.2017.811052
http://creativecommons.org/licenses/by/4.0/


M. R. Maddah, C. G. L. Cao 
 

 

DOI: 10.4236/ss.2017.811052 465 Surgical Science 
 

with the open approach in surgery, is more demanding physically and cogni-
tively for the surgeon, and requires a great deal more training before practicing 
on patients [2]. The most significant advantages of laparoscopic surgery are 
shortened recovery time, less bleeding, and reduction in post-operative pain and 
suffering for the patient. As patient safety in laparoscopic surgery is heavily de-
pendent on the surgeon’s training and experience with laparoscopic tools [3], 
the need for effective training, especially for surgical residents and novices to 
this surgical approach, has ignited tremendous new interest in the surgical edu-
cation community surrounding the acquisition and assessment of surgical skills, 
and a unifying metric to measure performance. 

The commonly used simulators for training laparoscopic surgical skills are 
box trainers (e.g., SAGES FLS [4]), and computer-based virtual reality systems 
(e.g., LapSim). These training systems are designed to record trainee perfor-
mance data, such as time, errors, and, in some, 3D position of surgical tools. 
Based on these measures, learning and performance can be assessed by various 
performance measures. 

Motor learning science has shown that expert-level skill performance is cha-
racterized by high speed and accuracy in execution, as well as smoothness of 
movement [5]. The degree of task automaticity, or how much the task can be 
performed without pre-planning and focused attention, is another indication of 
expertise [6]. For simple motor skills, the performance metric is simply defined 
by the measured reduction in these performance parameters (i.e., speed, accura-
cy, smoothness of motion, etc.) For more complex tasks, such as surgery, the 
relative importance of the various performance parameters can change depend-
ing on what the task is, which surgical procedure is being performed, or even on 
the condition of the patient, resulting in a complex metric that must be based on 
task requirements [7], as well as functional and clinical definitions of goodness 
of performance. 

In addition to speed (time to task completion) and accuracy (error), several 
researchers have proposed using motion-related measures to assess surgical skill 
performance [8] [9] [10] [11]. Surgical tool path length and deviation, economy 
of movement, idle states, depth, total and partial time, idle time, speed, accelera-
tion, motion smoothness, and force interactions can be measured and used in 
varying combinations to assess performance in a specific surgical skill. For ex-
ample, “time” and “number of hand movements” has been shown to correlate 
with levels of expertise, while the measured path length has not [8] [10]. Re-
searchers have shown that surgical tool “motion smoothness” and “idle time” 
during surgery correlated highly with surgical tasks requiring bimanual coordi-
nation [11].  

Even though “number of movements” and “motion smoothness”, as measures 
of skill acquisition and performance, offer a better representation of the multiva-
riate construct of skill performance, the hallmark of expert performance—    
efficiency and consistency—has been more difficult to derive from motion 
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tracking data. The purpose of this paper is to present a new methodology for vi-
sualizing and analyzing motion tracking data to assess performance—the alpha 
surface reconstruction technique. Alpha surface reconstruction is an algorithm 
typically used for creating a surface from unorganized clouds of 2D or 3D 
points. It uses Delaunay triangulation to form a surface called “alpha shape”. 
The alpha shape surface can be refined depending on the desired granularity for 
surface representation. We posit that this alpha shape method can be used alone, 
or in conjunction with the other performance measures such as time and accu-
racy, to measure the efficiency and consistency of performance by trainees while 
executing a surgical task. By tracking the 3D location of the laparoscopic tool 
end-effectors in a box trainer, surgical trainees’ tool manipulation can be visua-
lized as a 3D geometrical surface with a specific size. 

Alpha Surface Construction 

In the field of geometrical representation and data visualization, there are many 
methods available to construct a surface from a set of unorganized 3D points. 
Most of the existing algorithms have been used for surface reconstruction of an 
object in the real world. The data in these methods are usually acquired from 3D 
scanners, cameras, or from mathematical models [12]. The most commonly used 
surface reconstruction algorithms are based on the interpolation (B-Spline) me-
thod [13], the least square method [14], Poisson surface reconstruction [15], and 
Voronoi/Delaunay triangulation [12] [16]. Selection of the technique for imple-
mentation is based on its strength in dealing with specific features of the object 
being reconstructed. Traditionally, the B-Spline method is used for a curve or 
surface, and volume fitting over a set of points in two and three dimensions. A 
spline is a piecewise polynomial function which covers all the space to form a 
curve/surface in two or three dimensions [17] [18]. The least square method is 
another fitting method in which errors are calculated based on the differences 
between points on the reconstructed surface and the given data. The obtained 
errors are iteratively minimized to achieve the greatest similarity between the 
real object and constructed model [19]. For analysis of laparoscopic skill per-
formance in a box trainer, the least square and B-Spline methods are thus not 
suitable. They do not allow the identification and removal of unwanted points 
(i.e., the points that are not related surgical task performance, see section 2.3) or 
noise from the data set before initiating surface reconstruction. 

The Poisson method is a method used for reconstructing surfaces based on 3D 
data points. In this method, a set of 3D points, V, are used to find a gradient 
surface. The points are to be fitted on the gradient surface χ which is obtained by 
solving the Poisson equation: ∇.∇χ = ∇∙V [15]. The Poisson algorithm uses all 
the given points at the same time to generate a surface, hence it is known as a 
global solution for surface reconstruction problems. Poisson surface reconstruc-
tion produces a smooth surface over all the given points, filling in all the holes 
(low density areas) in the dataset. In the case of the surgical tool motion in our 
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laparoscopic training box, the created Poisson surfacewould result in a much 
larger surface than the actual surface, as the isolated low-density areas are also 
connected to the created surface from the task space proper. Therefore, the 
Poisson method is not appropriate for our purpose.  

The Delaunay triangulation (DT) method has been shown to be efficient and 
accurate for dense and noise-free data [12]. It generates a mesh of triangles 
which can cover most of the points [12]. DT algorithms check for the “empty 
circle” test: a circle (sphere if in 3D) crossing any 3 points in the data must not 
include any other point in the enclosed space. Figure 1 shows the accepted and 
rejected triangulation for four sample points {A, B, C, and D}. 

The Delaunay triangulation method does not control for the size of the trian-
gles. It produces larger triangles in sparsely populated regions in which points 
are far from one another and smaller triangles in dense regions in which points 
are very close to one another. Hence it takes into account all unwanted points 
for surface reconstruction. This could cause the reconstructed surface to resem-
ble a larger convex hull with a larger measured area than the actual object 
(Figure 2). 

Alpha shape algorithm is a method derived from Delaunay triangulation (DT) 
methods [20] [21]. The major difference between DT and the alpha shape algo-
rithm is the additional constraint in the latter—the radius of each circle passing 
through the three vertices of the triangles must be less than a predefined value, 
alpha (α) (Figure 1). The alpha value ranges from zero to infinity, and generates 
different shapes, called alpha shape, depending on the alpha value. For α = 0, the 
alpha shape is the point itself. When α is chosen large enough (infinity), the al-
pha shape is a convex hull which is the output of the DT algorithm. The alpha 
value can be determined experimentally to achieve a balance between size and 
shape/surface contours. Alternatively, a pre-determined alpha value can be set to 
allow the comparison of sizes and shape/surface of reconstructed data sets. 

The concept of alpha shapes can be generalized to data points in three dimen-
sions. According to the formal definition in Edelsbrunner’s earlier work [22], for 
a given set of 3D points S, an α-ball was defined as a sphere with the radius of α.  

 

 
Figure 1. Empty circle test for Delaunay triangulation. Accepted triangulation: A and D 
do not lie in the interior of the circles passing through “BCD” (red circle) and “ABC” 
(black-dashed circle), respectively. Rejected triangulation: C lies in the interior of the cir-
cle passing through “ABD” (green circle). 
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Figure 2. Delaunay triangulation (a) input points (unwanted data points are indicated by 
the yellow circle on the left) (b) convex hull with extraneous points removed (c) convex 
hull with extraneous points included. 

 
The α-ball, b, moves around the entire space S and their intersection T= b∩S 
can then include a number of points ranging between a single data point (α=0) 
and all the data points (b = S). Any subset T of S (T ⊆  S) with the size of k + 1, 
0 ≤ k ≤ 3, define a k-simplex which is a convex hull of the points in T. For the 
larger size of the T inside the α-ball, the convex hull (obtained from Delaney 
triangulation and consisting of k-simplexes with 0 ≤ k ≤ 2) is called an 
α-exposed shape Fk,α. In fact, inside any α-ball in the S, the alpha shape is a poly-
tope in which F2,α triangles are its boundary, F1,α lines are the edges and F0,α 
points are the vertices of the triangles. The α parameter can play a role in con-
trolling the surface size which makes it an attractive feature for data analysis. It 
can be used to remove the noisy and irrelevant data points from the dataset (see 
section 2.5). The alpha shape method, thus, appears to be the superior technique 
for the analysis of motion-related performance data in laparoscopic surgery.  

To evaluate the alpha shape method, we analyzed data collected from an expe-
riment that was conducted to examine the value of training technical and 
non-technical skills simultaneously in laparoscopic surgery using a box trainer 
[23]. The hypothesis was that training both technical and non-technical skills at 
the same time would be more efficient for learning the new skill. Time to task 
completion and error results from that experiment were compared with motion 
efficiency and consistency results from the alpha shape method. The experimen-
tal design is described in brief again here. 

2. Methods 
2.1. Subjects 

Twenty-six participants were divided into three different groups according to 
their surgical experience/training: Novices, Intermediates, and Experts. One 
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subject from the Expert group was excluded from the study due to a malfunction 
of the data acquisition system during the experiment. The Novices were Wright 
State University engineering students who had no prior surgical experience. The 
Intermediate group consisted of surgical interns at the Miami Valley Hospital in 
Dayton, OH. These interns had each performed fewer than 50 laparoscopic 
training cases. Fourth- and fifth-year General Surgery and OB/GYN residents at 
the same hospital were considered Experts in our study as they had each per-
formed more than 400 laparoscopic training cases. The study was approved by 
the Wright State University Institutional Review Board. 

2.2. Laparoscopic Training System 

A ProMIS simulator, with a torso-shaped laparoscopic training box, was used to 
simulate the laparoscopic surgery environment (Figure 3). The trainer box was 
equipped with a built-in video camera located in the pubic bone area of the box, 
which provided a view of the workspace. Position trackers (Flock of Bird mini-
Birdsensors) were used to track the 3D position of the surgical tool tip at a sam-
pling rate of 12.82 Hz. The workspace was displayed on a computer monitor that 
was placed beside the trainer box and clearly visible to the participants in the 
experiment. Inside the trainer box were placed a large paper cup (7.1 cm diame-
ter, 2.0 cm deep) containing small 3D objects, and two smaller paper cups (4.2 
cm diameter, 2.4 cm deep). The large cup was positioned on one side (e.g., left) 
of the workspace inside the trainer box, while the two smaller cups were placed 
on the other side (e.g., right), as shown on the monitor (Figure 3). 

The small 3D objects inside the large cup were made of balsam wood, forming 
geometric shapes similar to those employed by Shepard and Metzler (1971) in 
their classic mental rotation experiments [24]. These 3D objects were of two dif-
ferent shapes that were mirror images of each other (Figure 4). 

2.3. Task 

In the experiment, participants were asked to use laparoscopic graspers, inserted 
into the trainer box, to pick up the objects from the large cup and transfer them 
into either one of the smaller cups as quickly and as accurately as possible 
(without dropping the objects), without regard for the geometric orientation of  

 

 
Figure 3. Torso-shaped laparoscopic training box (ProMIS simulator). 
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Figure 4. Two different geometrical shape of the objects. Shape laparoscopic training box 
(ProMIS simulator). 

 
the objects. The pick-and-place task was a modified version of the FLS Peg 
Transfer task [4] and constituted the technical hand-eye coordination skill in 
basic laparoscopic surgery (training condition = Technical). Alternatively, par-
ticipants were asked to sort the objects into the two cups according to the orien-
tation of the objects. A photo showing the classification of the two orientations 
was placed next to the monitor as a label for the object destinations (Figure 3 
and Figure 4). In addition to the hand-eye coordination, required to perform 
the technical task, sorting required participants to perform mental rotation to 
classify the grasped object to one of two geometric orientations. Thus, the non- 
technical skill was encapsulated in the mental rotation task (training condition = 
Combined). A third condition, to isolate the non-technical skill, required par-
ticipants to sort the 3D objects as described, but using their hands to manipulate 
the objects directly, thus removing the technical component of the laparoscopic 
task (training condition = Non-Technical). Once all the objects have been trans-
ferred, the cup positions were reversed and subjects had to repeat the transfer 
task in the opposite direction using the same graspers. 

2.4. Experimental Design 

Participants were divided evenly into one of three training groups with a differ-
ent order of training (see Table 1).  

Three subjects from each of the expertise levels were in each training group, 
resulting in 9 subjects per group. All participants performed one “pre-test” trial 
in the Combined condition, then 10 trials in each block of training (T, NT, C). 
At the end of each block, a test trial in the Combined condition was performed, 
with the last test trial being “post-test”. Subjects in the Combined group were 
trained in blocks 2 and 3 only, so as to have equal exposure to the technical and 
non-technical aspects of the task as the other two groups. Performance measures 
such as time to task completion, errors (dropped objects and wrong sort), and 
tool tip 3D position were recorded throughout the trials. 

2.5. Motion Analysis-Alpha Shape Construction 

Performance measures such as “time to task completion” and “error” were ana- 
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Table 1. Training program for an individual subject. Group T = Technical skill trials first, 
Group NT = Non-Technical skill trials first, Group C = Combined skill trials first T = 
Technical, NT = Non-Technical, C = Combined. 

 Pre-test 
Training  
Block 1 

test 
Training  
Block 2 

test 
Training  
Block 3 

Post-test 

Number of trials 1 10 1 10 1 10 1 

Group T C T C NT C C C 

Group NT C NT C T C C C 

Group C C   C C C C 

 
lyzed using pair-wise t-tests [25]. Post-test performance improvement over pre- 
test performance would provide evidence to support learning; while the group- 
wise comparison results would support efficiency of training schedule (i.e., 
training technical skills first before non-technical skills, or vice versa, or com-
bine the two skills in training).  

The 3D positions of the laparoscopic tool tips were used to construct a surface 
of the tools’ movements for each participant. The obtained surfaces recon-
structed using the alpha shape algorithm would indicate the space that were 
swept by the surgical tools, and can be used as an index to differentiate the sub-
jects’ levels of expertise. That is, a larger swept area was expected for the novices, 
whereas smaller areas were expected for the experts.  

Because the reconstructed shape is, in general, determined by the alpha value 
(radius of the alpha-ball), the best value of α in the alpha shape reconstruction 
algorithms is usually selected by trial-and-error and based on the final shape of 
the reconstructed object. For example, in a non-uniform distribution, the densi-
ty varies locally and finding a global α which is perfectly suited for the entire 
space is impossible.Harada and Xu suggested a piecewise-linear technique in 
their alpha shape algorithm to choose dissimilar α values according to local den-
sities [26]. As an alternative to finding the local densities, in this paper, local ra-
dii values were obtained from local Delaunay triangulations. The average value 
of the radii of the circles (spheres in 3D), which pass through vertices of the local 
Delaunay triangles, was selected as the global alpha value. As an example, α1, α2 
and α3 are the local Delaunay radii for the given sampled points of “A”, “B”, “C”, 
“D” and “E” in Figure 5. The number of accepted triangles in the alpha algo-
rithm is subject to the defined alpha value. For the biggest radius of α3, as a pre-
defined alpha value, all the triangles in Figure 5 are accepted and for the smal-
lest radius of α2, only “ABC” triangle is accepted. Furthermore, the median ra-
dius of α2 eliminates “CDE”, the biggest triangle, while accepting “ABC” and 
“BCD”. Hence the median value is fit for the purpose of creating surfaces in 
dense regions such as “ABCD” in Figure 5. This method avoids unwanted 
points (e.g., “E”) which are relatively far from the densest area. Therefore, the 
average of all local radii for each data set can be the alpha value which provides 
the maximum coverage of all the points while discarding all the unwanted points  
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Figure 5. Two different geometrical shape of the objects. Shape laparoscopic training box 
(ProMIS simulator). 

 

 
Figure 6. (a) 3D point cloud (input data for the alpha shape algorithm) from one subject 
during post-test; (b)-(d) different reconstructed alpha shapes for the input dataset with α 
= 0.06, α = 0.09 and α = 12.7. 

 
simultaneously. 

Figure 6 shows the 3D point cloud of a subject in post-test, and the surfaces 
reconstructed using the alpha shape algorithm with α = 0.06, α = 0.09 and α = 
12.7 for the same subject. Selected alpha value for this subject would be 0.067 
which is the average value of local radii of Delaunay triangulation. 

3. Results 

The average radius of Delaunay triangle circles in pre- and post-test for experts, 
intermediates and novices were calculated and shown in Table 2. The calculated 
values in Table 2 represent the best α for each subject in each of the pre-test and 
post-test. For example, α = 0.11 was selected for pre-test surface of intermediate 
subject #3, and α = 0.09 was selected for post-test surface of the same subject, as 
is shown in Figure 7. These alpha values were used to construct pre-test and 
post-test surfaces for individual participants. 
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Table 2. Calculated alpha value for subjects in the expert, intermediate, and novice 
groups. 

Subject No. 
Novice Group Intermediate Group Expert Group 

Pre-test Post-test Pre-test Post-test Pre-test Post-test 

1 0.13 0.20 0.04 0.08 0.06 0.10 

2 0.07 0.07 0.08 0.08 0.06 0.09 

3 0.04 0.07 0.11 0.09 0.07 0.10 

4 0.06 0.06 0.06 0.08 - - 

5 0.05 0.07 0.05 0.08 0.06 0.11 

6 0.06 0.07 0.17 0.10 0.07 0.10 

7 0.06 0.07 0.05 0.08 0.07 0.06 

8 0.06 0.09 0.05 0.07 0.08 0.07 

9 0.08 0.13 0.09 0.09 0.08 0.10 

 

 
Figure 7. (a) Intermediate # 3 pre-test 3D points (b) Intermediate#3 pre-surface alpha = 
0.11; (c) Intermediate # 3 post-test 3D points (b) Intermediate # 3 post-surface alpha = 
0.09. 

 
In addition to the calculated surfaces, connecting consecutive points of sub-

jects’ hand movements (see Figure 6(a)), the tool trajectory inside the training 
box can be measured by summing Euclidean distances from the start to the end 
point for each trial. The calculated average surfaces (using the alpha values in 
Table 2), trajectories, and “time to completion” for different training groups (T, 
NT and C) are shown in Table 3. Moreover, the averages of technical and non- 
technical errors in Table 3 indicate the errors due to dropping and incorrect 
sorting of the objects [25].  

Comparison of the average of reconstructed surfaces for pre-test and post-test 
in Table 3 shows that most of the post-test surface areas are smaller than pre- 
test surfaces. To evaluate the interaction effects between the strategy and expe-
rience factors, and the contrast within the pre- and post-tests, a three factor 
ANOVA (test, experience and strategy) was performed on the results of surface,  
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Table 3. Mean trajectory, surface, time, technical and non-technical errors of the expert, intermediate, and novice groups in dif-
ferent training strategies. 

 
Mean Surface (cm2) Mean Time (s) Mean Trajectory (cm) Mean Tech (#) Mean Non-Tech (#) 

Pre-test Post-test Pre-test Post-test Pre-test Post-test Pre-test Post-test Pre-test Post-test 

Novice (T) 25.30 18.33 153 92 157.69 99.82 0.33 0.67 1.3 0.3 

Novice (NT) 28.89 21.78 186 95 163.21 114.3 3 0 1.7 0 

Novice (C) 21.17 21.31 187 106 121.24 123.72 2.3 1 1.7 0 

Intermediate (T) 32.58 31.96 160 112 346.6 151.56 2 1.3 1 0.33 

Intermediate (NT) 42.18 28.26 252 113 564.4 155.43 2 0.67 2.3 0.33 

Intermediate (C) 37.34 21.41 259 101 229.31 135.62 1.3 0 2 0.3 

Expert (T) 28.81 26.47 137 99 176.4 179.86 0.67 1.3 1 0.67 

Expert (NT) 25.89 17.08 130 160 194.19 114.63 1 1 1 0 

Expert (C) 20.72 20.72 111 111 127.3 129.24 0 0 1.3 0.67 

 
trajectory, time, and technical and non-technical errors. 

Surface. ANOVA results showed a significant effect of training on surfaces, (F 
(2, 1) = 25.44, p < 0.001). There was also a significant main effect for experience 
(F (2, 1) = 5.43, p = 0.02) but no significant effect for strategy (T, NT and C) 
(F(2,1) = 0.78, p = 0.475). There was no significant interaction between strategy 
and experience (F (2, 1) = 0.44, p = 0.78). A post hoc Tukey HSD test indicated 
significant differences in overall surface between experts and intermediate par-
ticipants (p = 0.042), and between novices and intermediate participants (p = 
0.023). Novices and experts were not different. 

Time. A significant contrast between pre and post-test time to task comple-
tion was observed (F (2, 1) = 44.285, p < 0.001). There was a significant main ef-
fect for experience (F (2, 1) = 4.969, p = 0.02) whereas no difference was seen 
amongst training strategies (F (2, 1) = 0.894, p = 0.42). The interaction between 
strategy and experience was not significant (F (2, 1) = 0.66, p = 0.62). 

Trajectory. There was a significant contrast between pre and post-test trajec-
tories (F (2, 1) = 5.156, p = 0.036). Also, there was a significant main effect for 
experience (F (2, 1) = 5.00, p = 0.020) whereas no significant difference was ob-
served within the training strategies (F (2, 1) = 1.246, p = 0.313). The interaction 
between strategy and experience was not significant (F (2, 1) = 0.734, p = 0.582). 

Tech error. As reported in [25], both strategy (F (2, 1) = 5.1, p = 0.007) and 
experience level (F (2, 1) = 7.7, p < 0.001) showed a significant main effect in 
technical error. Also, a significant interaction between strategy and experience 
(F (2, 1) = 8.04, p < 0.001) was seen in technical error. 

Non-Tech error. As reported in [25], there was no significant main effect for 
either strategy (F (2, 1) = 0.47, p = 0.63) or experience (F (2, 1) = 2.3, p = 0.10). 
There was, however, a significant interaction between the two factors (F (2, 1) = 
8.69, p < 0.001). 

The surface measures from alpha shapes (the calculated areas of the alpha 
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shapes) can be used to evaluate the efficiency of the subjects’ performance. Effi-
ciency is defined as the ratio of surface to time using the following equation: 

Efficiency = Surface (alpha shape area)/time to completion 

The calculated efficiencies using the average surface and time from Table 3 
are shown in Table 4. To evaluate any effects between the strategy-experience 
and the contrast within the pre-post average efficiencies, a three factor ANOVA 
(test, experience and strategy) was performed on the results in Table 4 for all the 
subjects. Results indicate a main significant contrast between pre- and post-test 
efficiencies (F = 26.19, p < 0.001). Neither experience (F (2, 1) = 1.40, p = 0.27) 
nor strategy (F (2, 1) = 1.38, p = 0.28) showed a significant effect on efficiency.  

Similar to the results for surface analysis, there was not any significant inte-
raction between strategy and experience (F = 0.20, p = 0.93).  

To quantify the agreement between different performance measures, indices 
of time, trajectory, errors, and surface changes (deltas) were determined as fol-
lows:  

Δs = Pre-test(area)-Post-test(area) 
Δt = Pre-test (time to completion)-Post-test (time to completion) 
Δte = Pre-test (number of T errors)-Post-test (number of Terrors) 
Δnte = Pre-test (number of NT errors)-Post-test (number of NT errors) 
Δtr = Pre-test (trajectory length)-Post-test (trajectory length) 
where Δs, Δt, Δtr, Δte and Δnte represented improvements in surface, time, 

trajectory, “technical error” and “non-technical error”, respectively (Table 5). 
For example, in the T training strategy (technical skill trials first), the average 
surface improvement delta was 6.97 cm2 for the novices, 0.63 cm2 for the inter-
mediates and 2.34 cm2 for the experts (highlighted in Table 5). The similarity 
between surface improvement delta and the other performance measure deltas 
in Table 5 can be measured by mean correlation values (see Table 6). 

 
Table 4. Mean efficiencies and technical errors of the expert, intermediate and novice 
groups in different training strategies. Groups: T = Technical, NT = Non-Technical, C = 
Combined. 

 
Mean Efficiency (cm2/s) Mean Technical Errors (#) 

Pre-test Post-test Pre-test Post-test 

Novice (T) 0.15 0.21 0.33 0.67 

Novice (NT) 0.18 0.20 3 0 

Novice (C) 0.13 0.19 2.3 1 

Intermediate (T) 0.22 0.28 2 1.3 

Intermediate (NT) 0.18 0.26 2 0.67 

Intermediate (C) 0.15 0.21 1.3 0 

Expert (T) 0.23 0.26 0.67 1.3 

Expert (NT) 0.17 0.25 1 1 

Expert (C) 0.19 0.20 0 0 
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Table 5. The average of improvement deltas for different training schedules. Groups: T = 
Technical, NT = Non-Technical, C = Combined. 

 
Novice 

Δs (cm2) Δtr (cm) Δt (s) Δte (#) Δnte (#) 

Group T 6.97 57.87 61 −0.34 1 

Group NT 7.11 48.91 91 3 1. 7 

Group C −0.13 −2.48 81 1.3 1.7 

 Intermediate 

 Δs (cm2) Δtr (cm) Δt (s) Δte (#) Δnte (#) 

Group T 0.63 195.04 48 0.7 0.67 

Group NT 13.92 408.97 139 1.33 1.97 

Group C 15.93 93.69 158 1.3 0.7 

   Expert   

 Δs (cm2) Δtr (cm) Δt (s) Δte (#) Δnte (#) 

Group T 2.34 −3.46 38 −0.63 −0.67 

Group NT 8.81 79.56 −30 0 1 

Group C 0.0 -1.94 0 0 0.63 

 
Table 6. The cross correlations between improvement deltas for different training strate-
gies. 

Correlation Δt (s) Δtr (cm) Δte (#) Δnte (#) 

Δs (cm2) 0.602 0.525 0.292 0.298 

Subscripts: s = surface, t = time, tr = trajectory, te = technical error, nte = non-technical error. 
 

The mean correlation value (regardless of training groups) between “surface” 
and “time” was higher than the other three measures.  

4. Discussion 

Depicting the tool movements in the simulated laparoscopic surgery task as 
point clouds allows for direct visualization of the subjects’ performance. The 
calculated surface of the alpha shape from the point clouds provided a means for 
quantitative analysis of human performance. 

The results of the ANOVA tests show that the surface data derived from the 
alpha method were able to differentiate between post- and pre-test performance 
and amongst expertise levels of the subjects (Table 3), similar to the “time to 
completion” and “trajectory” measures. Correlation results (Table 6) also con-
firm that the surface improvement deltas are strongly correlated with the time 
and trajectory deltas. These results suggest that the surface measure can be used 
as an index of learning or performance improvement, to the same extent that 
time and trajectory are measures of performance. Further analyses taking into 
account errors show that the surface measure is more than simply a surrogate of 
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time or trajectory. Surface is poorly correlated with the number of technical er-
rors committed by the subjects (r = 0.29) whereas time and trajectory are highly 
correlated with technical error (r = 0.52 and 0.41, respectively). This suggests 
that surface and technical error can be considered independent indices to eva-
luate subjects’ motor performance.  

We posit that efficiency, the derivative of surface measure (i.e., surface/time to 
completion), captures the speed-accuracy tradeoff phenomenon that is characte-
ristic of skill performance during the learning stages. The speed-accuracy tra-
deoff phenomenon is observed when learners have not yet mastered the motor 
skill to the level of automaticity; speed is increased at the expense of higher error 
rates, while more accurate performance requires slowing down and taking more 
time to complete the task. Whereas speed (trajectory/time to completion) and 
error are both required to evaluate performance, efficiency alone is adequate to 
evaluate the performance of the subjects (Figure 8). Figure 8 illustrates the dis-
parate measures of speed, accuracy, surface, and efficiency for the 3 expertise le-
vels at baseline performance. Traditionally, speed and accuracy are taken to-
gether to subjectively evaluate the performer. That is, the expert performer is 
expected to be better (i.e., faster and/or more accurate) than the novice in task 
performance. If the observed speed is in fact lower, as in the case of the Interme-
diate versus Novice (Figure 8), one looks to the higher error measure to recon-
cile the discrepancy according to the speed-accuracy tradeoff function. A similar 
discrepancy is observed in the trajectory measure (Figure 8). The efficiency 
measure, on the other hand, fits the model of human performance with respect 
to expertise, and can provide a clear and concise score that takes into account 
the speed-accuracy function (Figure 8). 

Efficiency, when applied to the analysis of skill performance in simulated la-
paroscopic surgery, was able to differentiate the subjects’ expertise according to  

 

 
Figure 8. Pre-test measure indices: Speed, accuracy, surface and technical error vs. expe-
rience level. 
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baseline performance, as well as measure the learning effect between pre-test and 
post-test.  

In this paper, we assessed skill performance using surface, calculated from the 
alpha shape of point clouds, and compared the results with the measures of time, 
trajectory, technical and non-technical errors. Similar to the time and trajectory 
measures, the surface index can be used to partially assess performance. Moreo-
ver, we showed that surface and its derivative, efficiency of performance, can be 
an even more sensitive and complete indicator of performance as it takes into 
account the speed-accuracy tradeoff. 

The role of alpha surface may be used in combination, or alone, to assess skill 
or learning, allowing the evaluation of consistency and efficiency of perfor-
mance. In future, the concept of “surface” can be extended to a “manifold” in a 
higher dimension space to address other complex movements. The alpha surfac-
es can be replaced with topological manifolds in four-dimensional space in 
which every point has its coordinates as (x, y, z, vt) instead of (x, y, z). Thus, the 
alpha surface forms an alpha volume in 4-dimensional space and the time and 
surface assessment methods can be merged into a single time-space evaluation 
method. 
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