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Abstract 
 
One of the most important factors affecting the precision of the performance of a GPS receiver is the relative 
positioning of satellites to each other. Therefore, it is essential to choose appropriate accessible satellites 
utilized in the calculation of GPS positions. Optimal subsets of satellites are determined using the least value 
of their Geometric Dilution of Precision (GDOP). The most correct method of calculating GPS GDOP uses 
inverse matrix for all combinations and selecting the lowest ones. However, the inverse matrix method, es-
pecially when there are so many satellites, imposes a huge calculation load on the processor of the GPS 
navigator. In this paper, the rapid and precise calculation of GPS GDOP based on Recurrent Wavelet Neural 
Network (RWNN) has been introduced for selecting an optimal subset of satellites. The method of NNs pro-
vides a realistic calculation approach to determine GPS GDOP without any need to calculate inverse matrix. 
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1. Introduction 
 
Global Positioning System (GPS) is a satellite based po-
sitioning system which was rapidly grown in the past two 
decades. It can cover almost all around the world, using 
satellite signals in order to measure accurate time, alti-
tude, longitude and latitude in every desirable point on 
earth, sea or air as well as space. 

The methods of calculating the coordinates in a GPS 
receiver are based on the utilizing four visible satellites 
in a set of visible satellites and errors may usually hap-
pen when one or more satellites are invisible or the in-
formation sent by them are unclear. There are various 
algorithms for the classification of visible satellites that 
can be used to classify appropriate satellites in one group. 
Considering the geostationary position of satellites in 
earth's orbit, five to eight GPS satellites are visible at any 
position on earth. To calculate the coordinates of that 
point on the earth the four-satellite groups can be used 
differently [1,2].  

In the common algorithm used for the most GPS re-
ceivers, the first selected satellite is the one whose con-
necting line joining the satellite to its receiver is more 
vertical. After selecting the base satellite, the other three 
satellites are determined based on their most appropriate 
geometric configuration. At the beginning of locating 

and after appropriate selection of four satellites accord-
ing to the said algorithm, the error occurring within a 
specified limit is acceptable; but the increase in the time 
of the original selection increases proportionally the oc-
curred error. Therefore, it is required that the selection is 
repeated within specified intervals. To reduce the errors 
of calculation, it is necessary to reduce the temporal in-
terval existing between the classification and frequent 
selections of appropriate satellites. The increase rate of 
calculation error after selection, and fixation of satellites 
depends on the different parameters including manufac-
turing technology of receiver, quality of receiver, applied 
algorithms, and number of tracking channels. Any in-
crease in tracking channels of a receiver increases the 
ability of the receiver in selecting and classifying satel-
lites. Therefore, the receivers having more tracking 
channels cause less error than other receivers. As the 
vehicles using the GPS moves, the initial selected satel-
lites disappear in horizon and become invisible to the 
human eye. At this stage, other appropriate satellites 
shall be selected [3,4].  

The best method for calculating the Geometric Dilu-
tion of Precision (GDOP) of GPS satellites is to use in-
verse matrix for all configurations and selecting the 
smallest one; but, the inversion of matrix imposes a huge 
calculation load on the processor of the navigator [5].  
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The use of Neural Networks (NNs) is a solution for 
complicated issues, for which no mathematical models 
are available. NNs use several simple computing units 
called neuron (nervous cells) patterned after the cells of 
human brain. The neurons of each NN process and con-
vert the stimulations or input data to send them to the 
outputs. These outputs may be connected to the inputs of 
other neurons. These neurons connecting to each other 
form a NN. A NN consists of one input and one output 
layer. The data are received by a NN through its input 
layer and processes by all layers before receiving the 
output layer [6].  

The objective of this paper is to suggest a rapid 
method for calculating GPS GDOP using the NNs. This 
method strongly decreases the load of GPS GDOP clas-
sical method calculations for selecting an optimal subset 
of satellites by GPS navigator processors. This paper has 
been organized as follows. In the Section 2, the concept 
of GPS GDOP has been studied in brief. In the Sections 
3, 4 and 5, the manner of rapid and precise calculation of 
GPS GDOP based on RWNN to select an appropriate 
subset of navigator satellites. To study the workability of 
this method, it has been tested and compared in the Sec-
tion 6. Finally, the Section 7 provides us with the con-
clusion.  
 
2. The Concept of GPS GDOP 
 
GPS receivers report usually the geometric quality of 
satellites based on Position Dilution of Precision (PDOP). 
PDOP shows the vertical and horizontal DOP, i.e. geo-
graphical longitude, latitude, and altitude. Low DOP 
increases and high DOP decreases the probability of pre-
cision. If the sides of the pyramid formed by four satel-
lites are almost equal (equiangular pyramid), this con-
figuration leads to an appropriate GPS GDOP and vice 
versa. GPS GDOP is a very effective tool for GPS. All 
receivers use the algorithms based on GPS GDOP to find 
the best subset of visible satellites used for tracking. To 
locate satellites, azimuth ( AZ ) and angle of elevation 
( ) can be used. To define the concept of GPS GDOP, 
it is helpful to use sample calculations expressing a 
compromise between precision and the position of satel-
lite. For this purpose, the matrix of 

E

H  is defined as 
follows [7]: 

Cos( 1) * Sin( 1) Cos( 1) * Cos( 1) Sin( 1) 1

Cos( 2) *Sin( 2) Cos( 2) * Cos( 2) Sin( 2) 1

Cos( 3) * Sin( 3) Cos( 3) * Cos( 3) Sin( 3) 1

Cos( 4) *Sin( 4) Cos( 4) * Cos( 4) Sin( 4) 1



 
 




E Az E Az E

E Az E Az E
H

E Az E Az E

E Az E Az E





 

(1) 

GPS GDOP shall be defined as follows: 

1 trace[adj( )]
GDOP trace( )

det( )

 
T

T

T

H H
H H

H H
  (2) 

GPS GDOP provides us with a simple interpretation of 
the fact that how much a unit of measurement error par-
ticipates in the occurrence of positioning error for a 
specified position, and it determines the factor of meas-
urement noise amplitude.  

3. Rapid and Precise Calculation of GPS 
GDOP Using Neural Networks 

To prepare experimenting data, all input and output 
variables are normalized within an interval of [0,1] to 
reduce the experimenting time. whereas, TH H  is a 4 × 
4 matrix, it has four eigenvalues i

 We know that four eigenvalues for the matrix of  
( ).  1, 2,3, 4i 

  1TH H


 is equal to 1
i
 . Considering that the trace of  

a matrix is equal to the sum of its eigenvalues, the fol-
lowing equation is formed as follows [8]:  

1 1 1
1 2 3 4GDOP 1                  (3) 

The mapping with the definition of four variables is as 
follows:  

1 1 2 3 4 trace( )        Tx H H       (4) 

2 2 2 2 2
1 2 3 42 trace         

Tx H( ) H

H

   (5) 

3 3 3 3 3
3 1 2 3 4 trace ( )         

Tx H    (6) 

4 1 2 3 4 det( )Tx H H                (7)  

GPS GDOP can be shown as a functional mapping of 
 from 

4R R 1 f


 directly to GPS GDOP; i.e. 

 1 fn f  


: 

Input:  1 2 3 4, , ,
T

x x x x  

Output: GPS GDOPy  

The mapping from f


 to GPS GDOP is strictly 
non-linear and cannot be determined analytically, but it 
can be approximated using a NN. The NN used in this 
paper has been designed for the mapping of  
from 

4 1R R
f


 to GPS GDOP. The Figure 1 shows the overall 
diagram block of GPS GDOP approximation using NNs 
including Recurrent NN (RNN), Wavelet NN (WNN), 
and Recurrent Wavelet NN (RWNN). 
 
4. RWNN Architecture 

The RWNN topology is made of tree layers, one input 
layer, one hidden layer, and one output layer. Figure 2 
presents a kind of tree layer RWNN structure. The input 
layer has M  nodes. The output layer also has only one 
neuron whose output is the signal represented by the  
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Figure 1. The overall diagram block of GPS GDOP    
approximation using NNs. 

 

 

Figure 2. RWNN architecture with (M + 1, N + 1, 1) struc-
ture.  
 
weighted sum of several wavelets. The hidden layer is 
composed of finite number of wavelets representing the 
signal. 

The components of the proposed RWNN essentially 
include: kx -value of the

 
-th input neuron; k j -output 

of.the -th hidden.neuron;
 

j I
jkw -interconnection weight 

between the
 

-th input neuron and
 

-th hidden neuron; k j
O
jw -interconnection weight between the j -th hidden 

neuron and the output neuron; D
jw -recurrent weight 

for j -th hidden neuron. 
The net internal activity of neuron j  at time n, is 

given by: 

)]1([,)()(
0

)( 


 njnetba
D
jwnkxnI

jkw
M

k
njnet 

 

(8) 

where,  is the sum of input to the( )jnet n j -th recurrent 
neuron,

 
, j   is the output of the -th recur-

rent neuron and is computed by passing  
through the wavelet function 

( )na b net  j
( )jnet n

, (.)a b j , obtaining: 

,

( ) ( )
( )

( )
j j

a b j
j

net n b n
net n

a n
 

 
     

  
       (9) 

where,  and  are the dilation and transla-
tion coefficients of the -th wavlon in hidden layer, 
respectively. The RWNN output of the Figure 2 network 
is computed: 

( )ja n ( )jb n
j

   ,
0

( )
N

O
j a b j

J

y n w n net n


          (10) 

The wavelet function which we have considered here 
is the called “Gaussian-derivative” function as: 

21

2( )
x

x xe


              (11) 

 
5. Learning Algorithm for RWNN 
 
The basic principle of the RWNN is to use the gradient 
steepest descent method to minimize the cost function. 
The training of RWNN is traditionally based on minimi-
zation of the cost function. Suppose a set of training 
samples is available, the problem can be characterized as 
choosing the weights (or coupling strengths) of a given 
network such that the following total squared error is 
minimized [9]: ∑ 

 221 1
( ) ( ) ( ) ( )

2 2
E n e n d n y n          (12) 

where  and  represent the desired and actual 
output of the output neuron, respectively.  is a time 
varying error. The output weights can be adjusted ac-
cording to:  

( )d n ( )y n
( )e n

,

( )
( 1) ( )

( )

( )
( ) ( ) ( ) ( )

( )

O O
j j O

j

O O
j j aO

j

E n
w n w n

w n

y n
w n e n w e n net n

w n



   b j


  



       

 

(13) 

where,   is a learning rate. The recurrent weights are 
updated as follow: 

( ) ( )
( 1) ( ) ( ) ( )

( ) ( )
D D D
j j jD D

j j

E n y n
w n w n w n e n

w n w n
  

    
 

 

        (14)

 

To determine the partial ( )

( )D
j

y n

w n




 derivative, is dif-

ferentiated the network dynamics with respect to  

as follow: 

( )D
jw n

, [ ( )]( )
( )

( )
a b jO

jD D
j j

net ny n
w n

w w




  n
         (15) 

where 
, ( )

( )

a b j

D
j

net n

w n

    


 is done by using the chain rule 
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for differentiation, obtaining: 

, ,

,

[ ( )] [ ( )] (

( )( ) ( )

( )
( )

( )

a b j a b j j

D D
jj j

j
a b j D

j

net n net n net n

net nw n w n

net n
net n

w n

 



  


 


     

)

 (16) 

Or: 

, ,

,

,

( ) ( )

( )( )

( 1)
( 1) ( )

( )

a b j a b j

D
jj

a b jD
a b j j D

j

net n net n

a nw n

net n
net n w n

w n

 




        


           

 (17) 

Equation (17) is non-linear dynamic recursive equa-
tion and can be solved recursively with given initial con-
dition as: 

, (0)
0

(0)
a b

D
jw





               (18) 

The inputs weight can be adjusted as follow: 

,

( )
( 1) ( )

( )

( )
( ) ( )

( )

( )
( ) ( ) ( )

( )

I I
jk jk I
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I
jk I
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







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


 



    


    (19) 

where 
, ( )

( )

a b j

I
jk

net n
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   

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(20) 

With initial conditions: 

, (0)
0

(0)
a b

I
jkw





             (21) 

The translation coefficient of the -th wavlon in 
hidden layer can be adjusted according to: 

j

'
,

( )
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( )

( )( ) ( )
( )

1( ) ( ) ( ) [ ( )]
( )

j j

j
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O
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



 
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
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 (22) 

The dilation coefficient of the -th wavlon in hidden 
layer is updated as follow: 

j

'
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
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 (23) 

 
6. Testing the Proposed Method 
 
The parameters of the proposed NNs have been opti-
mized on the test data based on try and error method. 
Figure 3 shows the approximation error values using 
RWNN for 900 data. 

The Table 1 shows four significant statistical charac-
teristics of approximation error including maximum, 
minimum, average, and RMS for the approximation of 
GPS GDOP for 900 test data using RWNN. 

The approximation with RNN and WNN has been 
done and the comparative results have been shown in 
Table 2. Root Mean Square (RMS) was used to evaluate 
approximations results [10]. RMS value is computed 
using: 

 2

Real NN
1

1
RMS GDOP GDOP





 
i T

iT
 (24) 

where  is number of tests. T
As it is visible over this Table, the RWNN is more  

 

Table 1. Maximum, minimum, average and RMS error for 
the approximation of GPS GDOP for 900 test data deter-
mined using RWNN. 

Parameters Value 

Maximum 3.5928 
Minimum -3.4024 
Average 0.0544 

RMS 0.4590 

 
Table 2. Comparison of RNN, WNN and RWNN perform-
ance for GPS GDOP approximation. 

NN Type RNN WNN RWNN
RMS Value 0.5338 0.5172 0.4590 
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Figure 3. The approximation error values of GPS GDOP 
determined based on RWNN for 900 data with (4, 3, 1) 
structure. 
 
Table 3. Comparison CPU time of classical method and NN 
approach for GPS GDOP approximation. 

Model Name CPU Time [msec.] 
Matrix inversion method 1.080 

NN approach 0.029 

 
efficiency in comparing with RNN and WNN; this is 
because of the RMS approximation error shortage over 
them. 

Table 3 presents the comparison CPU time of classi-
cal method and NN approach for GPS GDOP approxi-
mation. The simulation results demonstrate that NN ap-
proach is accurate and faster than classical method. 

 
7. Conclusions 
 
In this paper, the rapid and precise calculation of GPS 
GDOP using RWNN has been studied for the selection 
of an appropriate subset of navigator satellites. The 
method of NNs is a realistic computing approach used 
for the calculation of GPS GDOP without any need to 
inverse matrix, which imposes a huge computing load on 
the processor of the navigator. The performance of the 
proposed NN has been studied on the test data of the 
paper. The results show that the proposed method is fully 

capable to select an optimal subset of GPS satellites with 
the best geometric configuration. The results of simula-
tion show that the efficiency of RWNN is better than 
RNN and WNN. 
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