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Abstract 
In order to improve some shortcomings of the standard particle swarm opti-
mization algorithm, such as premature convergence and slow local search 
speed, a double population particle swarm optimization algorithm based on 
Lorenz equation and dynamic self-adaptive strategy is proposed. Chaotic se-
quences produced by Lorenz equation are used to tune the acceleration coeffi-
cients for the balance between exploration and exploitation, the dynamic 
self-adaptive inertia weight factor is used to accelerate the converging speed, 
and the double population purposes to enhance convergence accuracy. The 
experiment was carried out with four multi-objective test functions compared 
with two classical multi-objective algorithms, non-dominated sorting genetic 
algorithm and multi-objective particle swarm optimization algorithm. The 
results show that the proposed algorithm has excellent performance with fast-
er convergence rate and strong ability to jump out of local optimum, could 
use to solve many optimization problems. 
 

Keywords 
Improved Particle Swarm Optimization Algorithm, Double Populations,  
Multi-Objective, Adaptive Strategy, Chaotic Sequence 

 

1. Introduction 

Particle swarm optimization (PSO) algorithm, which is an intelligent optimiza-
tion algorithm, has many characteristics such as simple structure, less parameter, 
easy description and realization, strong global search ability and no need for 
gradient information, widely used in many fields, such as function optimization, 
multi-objective problem solving, pattern recognition, etc., especially applicable 
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to solving the problem of nonlinear, multi-extreme value and non-differentiable 
and multivariable complexity optimization [1] [2] [3] [4]. However, similar to 
other intelligent algorithms, the standard PSO algorithm also has shortcomings 
such as precocious convergence and local search capability [5] [6]. For example, 
when it is used in the high dimensional complex optimization problems, popula-
tion may when no search to the global optimal point form the premature con-
vergence problem, then can’t guarantee the algorithm can converge to the global 
extreme value point. At the same time, in the search process, when the particle is 
approaching or entering the most advantageous area, the convergence speed is 
obviously slow. 

For the lack of PSO algorithm, the researchers propose many improvement 
strategies [7] [8] [9]. At present, the improvement of PSO algorithm mainly fo-
cuses on the adjustment of the algorithm parameters and the updating of the 
particle structure and trajectory [10] [11] [12], aiming to make the algorithm 
solve or improve the problem of local search slow, precocious convergence, and 
improve the convergence speed and precision of the algorithm to improve the 
performance of the algorithm [13] [14]. Among them, the introduction of inertia 
weight factor [15], shrinkage factor and adaptive mutation operator is the most 
representative, such as a linear gradient method [16], the fuzzy adaptive method 
[17] [18] and distance information such as inertia coefficient adaptive control 
method [19], the compression factor of PSO algorithm, PSO algorithm of adap-
tive mutation operator, etc. In addition, standard PSO algorithm and the hybrid 
PSO algorithm combined with collaborative strategy [20], chaos theory [21] and 
other algorithms are also attracted by researchers [22] [23], such as the quantum 
PSO algorithm with chaotic mutation operator [24]. Besides, There are also 
many researches on discrete PSO algorithm, multi-objective PSO algorithm and 
so on [25] [26]. 

Although the improved PSO algorithm improves both performance and effi-
ciency, it is difficult to improve the local search ability of the algorithm while 
avoiding precocious convergence. There are many academics and industry re-
searchers have been exploring and experimenting with new approaches to pro-
vide better performance, higher efficiency and lower cost particle swarm opti-
mization [27] [28]. Therefore, in this paper, a self-adaptive double population 
PSO algorithm based on Lorenz equation was proposed, called LSA-DPSO. In 
the LSA-DPSO algorithm, Lorenz equation and the dynamic adaptive weight 
adjustment strategy were introduced. In order to verify the feasibility and effec-
tiveness of the proposed algorithm, the convergence speed and accuracy are 
discussed compared with standard PSO algorithm and classical multi-objective 
algorithm. 

2. LSA-DPSO Algorithm 
2.1. Standard PSO 

PSO is an evolution algorithm proposed in 1995 by scholars Eberhart and Ken-
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nedy [29]. In the process of particle optimization, the potential solution of the 
problem is assumed to be a “particle” in the n-dimensional space, and the par-
ticle will fly at a certain speed and direction in the solution space. In the iterative 
process, all particles are represented by two global variables to represent the best 
position of the particle itself (pbest) and the best position of all particles (gbest), 
Let’s say in a n dimensional search space, The population of m particles is

( )T
1, 2, , nX x x x=  , The position of the ith particle is expressed 

( )T
,1, ,2, ,,i i i i nx x x x=  , The velocity is expressed as ( )T

,1, ,2, ,,i i i i nv v v v=  . Its in-
dividual extremum is represented as ( )T

,1, ,2, ,,i i i i np p p p= 

 
,The global extre-

mum of the particle population is ( )T
,1, ,2, ,,g g g g np p p p=  , during the k + 1 

iteration, the particle updates its speed and position through formula (1) and (2). 

( ) ( )1
, , 1 , , 2 , ,
k k k k k k
i d i d i d i d g d i dv v c p x c p xω+ = + − + −                (1) 

1 1
, , ,
k k k
i d i d i dx x v+ += +                           (2) 

where 1,i M=  ; ω  is called an inertial weight factor, which keeps the par-
ticles in motion and has the ability to expand the search space. c1 and c2 are the 
learning factors, which represent the weight of each particle to the extreme posi-
tion statistical acceleration item. ,

k
i dv , ,

k
i dx are respectively the velocity and posi-

tion of the d dimension in the kth iteration of the particle i; ,
k
i dp  is the position 

of the individual extremum of particle i in d dimension, ,
k
g dp  is the position of 

the population in the global extreme value of d dimension. 

2.2. LSA-DPSO 

There are three factors that determine the change in particle velocity in PSO al-
gorithm. 1) Inertial weight factor, instruct the speed information of the previous 
moment which compares current speed with front speed. 2) Cognitive factors, 
which is the development capacity factor, not only the optimal error of the par-
ticle itself, but also the partial excavation and development capability of the par-
ticle. 3) Exploration factor, the social sharing ability coefficient, expresses its er-
ror that distances the best and how the particle share and cooperate. Under the 
circumstances, the inertia coefficient determines the search step length, which is 
better for global search and smaller for local exploration. Cognitive factors and 
exploration factors are collectively called learning factors, which represent the 
optimal and global optimal proportion of particles themselves. By adjusting the 
learning factors properly, the global and local search steps of the particles can be 
weighed and the exploration factors can be changed to realize the local optimal 
algorithm, when the algorithm is in precocious convergence. 

Based on the above, the authors developed LSA-DPSO algorithm by mixing 
She mixed Lorenz equation and dynamic adaptive strategy into a dual popula-
tion PSO algorithm. LSA-DPSO using adaptive evolutionary inertia weight ad-
justment strategy, improve the convergence speed, chaotic sequence produced 
by Lorenz equation optimizing algorithm of learning factor c1 and c2, jump out 
of local optimum when entering the premature convergence and using a dual 
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population to improve the diversity of it. The inertial weight factor is dynami-
cally adjusted by formula (3). 

( ) ( )max max min maxavePgbest k Plbest k kω ω ω ω= − − − ×          (3) 

Among them, omega max and omega min respectively indicate the maximum 
and minimum value of the inertial weight; Pgbest(k) represents the global opti-
mum of the k-th iteration; Plbestave represents the local optimal average of all 
particles; kmax represents the maximum number of iterations and k is the current 
iteration number. 

The learning factor c1 and c2 produce chaotic sequences through the typical 
Lorenz equation, as shown in formula (4). 

( )d
d
d
d
d
d

x a x y
t
y rx y xz
t
z xy bz
t

 = − −

 = − −



= −

                           (4) 

In the formula, the parameters a, b and r are the positive control parameters, 
which are respectively 10, 8/3, and 28, and the learning factor (c1, c2) has a chao-
tic state, which is defined as: 

( )
( )

1

2

c x t

c y t

=


=
                            (5) 

Because of the randomness and regularity, the change of chaotic variables 
making the algorithm can maintain the diversity of the population, improve the 
problem of premature convergence and improve the global search performance. 

The steps of LSA-DPSO algorithm are as follows: 
1) Initialize the particle group 
The particles are initialized to two subpopulations A and B, and the positions 

and velocities of all the particles of A and B are initialized, and the initial posi-
tions and velocities of the particles are randomly generated. The current position 
of each particle is used as the maximum value of the particle, and the optimal 
value of the subgroup A and B is selected as the global optimal value of subgroup 
A and B. 

2) Calculate the adaptive value of population particles. 
3) Compare the adaptive value of each particle with the adaptive value of the 

best position of its own, and make the better current position as the best position 
of the particle. 

4) The adaptive value of each particle is compared with the adaptive value of 
the global best position, and the better current position is the best position. 

5) To compares the best position of the global best position in subgroup B 
with the global best position in subgroup A, and USES A better position as the 
global extreme value of A group. Then we can compare the good position as the 
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global extreme value of group B. 
6) Obtain the learning factor c1, c2 and inertial weight respectively, and update 

the velocity and position of the particles. 
7) If the end condition of the algorithm is satisfied, the global best position is 

the optimal solution, saving the result and ending. Otherwise return steps (2). 

3. Numerical Experiments 
3.1. Experiment Functions and Evaluation 

Multi-objective optimization is the most typical optimization problem. As the 
goals are often contradictory and constrained, it is difficult to achieve optimal 
simultaneous optimization, which means that one of the objectives must be op-
timized at the expense of other goals. The solution to such a problem is usually 
not unique, but the existence of a series of optimal solutions, known as 
non-inferior solutions, which are often referred to as Pareto optimal solutions. 
Because swarm intelligence algorithm can parallel search multiple solutions in 
the search space, some classical multi-objective optimization problem can verify 
the performance of the algorithm very well. In this paper, the multi-objective 
optimization test function proposed by Schaffer [30] and Deb [31] is used as an 
experimental case, and the test function is shown in Table 1. 

The advantages and disadvantages of non-inferior solutions are evaluated by 
means of convergence and distribution indicators: 

Convergence index (GD) [32], which is used to describe the distance between 
the non-dominant solution and the optimal front end of the real Pareto algo-
rithm. 

2

1

N

i
I

d
GD

N
==
∑

                           (6) 

Among them, N represents the number of ungoverned solutions that the algo-
rithm searches for, id  Represents the shortest Euclidean distance of all solu-
tions in the optimal front end of the true Pareto and the i-th pare to solutions. 

Distribution index (SP) [33], SP is used to evaluate the uniformity of distribu-
tion of ungoverned solution concentrated solutions. Among them, the algorithm 
parameters are set to: 

( )
1 2

2

1

1 n

i
i

d d
nSP

d
=

 −  =
∑

                       (7) 

1

1 n

i
i

d d
n =

= ∑                            (8) 

Among then, N is the number of ungoverned solutions, id  Represents the 
shortest distance between the i th non-inferior solution in the target space and 
all solutions in the optimal front end of the real Pareto. 
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Table 1. Experimental test function. 

Function Define Feature 

SCH1 

( ) ( ) ( )( ) [ ]1 2min , . . 5,7f x f x f x s t x= ∈ −  

( ) 2
1f x x=  

( ) ( )2

2 2f x x= −  

Convex type 

SCH2 

( ) ( ) ( )( ) [ ]

( )

( )
( )
( )
( )

( )

1 2

1

2

2

min , , . . 5,10

, 1
2 , 1 3

4 , 3 4
4 , 4

5

f x f x f x s t x

x x
x x

f x
x x

x x

f x

= ∈ −

− ≤ 
 − + < ≤ =  − < ≤ 
 − + > 

= −

 Discontinuous 

ZDT2 

( ) ( ) ( )( ) [ ]1 2min , , . . 5,10f x f x f x s t x= ∈ −  

( )1 1f x x=  

( ) ( ) ( )( )2

2 11f x g x x g x = −   

( ) ( )
2

1 9 1
n

i
i

g x x n
=

 = + − 
 
∑  

Concave type 

ZDT3 

( ) ( ) ( )( ) [ ]1 2min , , . . 0,1if x f x f x s t x= ∈  

( )1 1f x x=  

( ) ( ) ( ) ( ) ( )1
2 1 11 sin 10πxf x g x x g x x

g x
 

= − − 
  

 

( ) ( )
2

1 9 1
n

i
i

g x x n
=

 = + − 
 
∑  

Discrete type 

3.2. Experimental Results 

It proposed the LSA-DPSO algorithm to simulate the multi-objective test func-
tion SCH1, SCH2, ZDT2 and ZDT3. The population size is 60; the maximum 
iteration number is set to 500; the maximum and minimum values of inertia 
weight are 0.9 and 0.3 respectively. Pareto non-inferior solution was obtained by 
algorithm, and the distribution of Pareto non-inferior solutions of each function 
was plotted in Figures 1-4. 

To solve the multi-objective function, the optimal target domain is the boun-
dary of the fitness value region, which is called the effective interface. As can be 
seen from the Pareto non-inferior solution drawn from the graph, the four test 
functions accurately give the effective interface, and the complete Pareto 
non-inferior solution can be obtained. It can be seen from the distribution of 
solution that the solution distribution of each function is even. 

When solving complex multi-objective functions such as discrete and discon-
tinuities, the algorithm also gives an accurate and non-inferior solution set, such 
as SCH2 and ZDT3. 

The above results show that the LSA-DPSO algorithm is superior in solving 
the multi-objective problem, and obtains a non-inferior solution which is very 
close to the real Pareto frontier, and has a large number of non-inferior solutions 
with good distribution, what is verifies the feasibility and accuracy of the algorithm. 
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Figure 1. Pareto non-inferior solution of SCH1. 

 

 
Figure 2. Pareto non-inferior solution of SCH2. 

 

 
Figure 3. Pareto non-inferior solution of ZDT2. 
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Figure 4. Pareto non-inferior solution of ZDT3. 

 
In order to further verify the robustness and stability of the algorithm, each 

test function with the LSA-DPSO algorithm run 5 times, statistics of each test 
function index of the convergence of GD, SP distribution index and calculating 
the average time of CT, and four statistical evaluation index of the test function, 
and the results are shown in Table 2. 

The data show that the LSA-DPSO algorithm performs well in solving mul-
ti-objective problems that confirms the feasibility, accuracy and efficiency of 
LSA-DPSO algorithm. GD indicates that noninferior-solutions are very close to 
the real Pareto. And through the data of SP, noninferior-solutions are well dis-
tributed. Meanwhile, from the differentia of CT index, the difference between 
functions is within acceptable limits. 

To compare the advantages of each algorithm. We contrast LSA-DPSO algo-
rithm with the NSGA-II algorithm and the MOPSO algorithm by decomposing 
each algorithm five times using various target test functions. The statistical re-
sults are shown in Table 3. 

In terms of convergence accuracy and distribution, the LSA-DPSO algorithm 
is superior. At the point of GD and SP, The optimal front-end distance that is 
obtained through the LSA-DPSO algorithm is closer than other two algorithms, 
what indicates LSA-DPSO has better convergence and accuracy. At the point of 
CT, the execution time of LSA-DPSO algorithm is lower than NSGA II algo-
rithm but higher than that of MOPSO. The reason is that the LSA-DPSO algo-
rithm is dynamically adjusted with the flight process of the particle, which will 
surely consume more time than the standard PSO algorithm, which is long and 
single-directional flight search. As an inevitable result, the convergence and dis-
tribution of the non-inferior solutions obtained by the LSA-DPSO algorithm are 
better than those of the other two algorithms. 

Through the LSA-DPSO algorithm for four multi-objective optimization 
function of numerical experiments show that the LSA-DPSO algorithm has a 
better comprehensive performance, introducing Lorenz equation of chaotic  
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Table 2. Performance statistics of LSA-DPSO optimization test functions. 

Performance indicators SCH1 SCH2 ZDT2 ZDT3 Average 

GD 0.000335 0.000336 0.000353 0.000340 0.000341 

SP 0.00338 0.00335 0.00336 0.00325 0.00334 

CTa 17.7 17.6 18.4 19.8 18.4 

aComputation time. 

 
Table 3. The comparison results of three algorithms are optimized 

Performance indicators NSGA IIa MOPSOb LSA-DPSO 

GD 0.000366 0.000465 0.000341 

SP 0.00465 0.00521 0.00334 

CT 22.5 17.5 18.4 

anon-inferior classification multi-objective genetic algorithm, bmulti-target particle swarm optimization al-
gorithm. 

 
sequence to improve the premature convergence problem of PSO algorithm, 
through dynamic adaptive mechanism of multiple species and improve the algo-
rithm convergence speed and accuracy. 

4. Conclusion 

This paper presents an algorithm that is based on the dynamic adaptive dual 
population particle swarm of Lorenz equation. By using the chaos sequence 
generated by Lorenz equation, the learning factor is optimized and the dynamic 
adaptive adjustment strategy is adjusted to the inertia weight, it improved the 
convergence speed, accuracy and the problem that the convergence of PSO algo-
rithm is premature. Through the test function experiment, the proposed algo-
rithm is used to solve the multi-target problem, and the obtained non-inferiority 
solution can approach the optimal solution set of Pareto very well, and the dis-
tribution is even. It indicates the performance of LSA-DPSO algorithm is better. 
In this paper, the algorithm is used to solve the problem of complex optimiza-
tion problems such as non-linear, multipolar and multivariable, which can pro-
vide references for many practical engineering applications. 
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