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ABSTRACT 
 
Both global warming and influenza trouble hu-
mans in varying ways, therefore it is important 
to study the trends in both global warming and 
evolution of influenza A virus, in particular, 
proteins from influenza A virus. Recently, we 
have conducted two studies along this line to 
determine the trends between global warming 
and polymerase acidic protein as well as matrix 
protein 2. Although these two studies reveal 
some interesting findings, many studies are still 
in need because at least there are ten different 
proteins in influenza A virus. In this study, we 
analyze the trends in global warming and evo-
lution of polymerase basic protein 2 (PB2) from 
influenza A virus. The PB2 evolution from 1956 
to 2008 was defined using the unpredictable 
portion of amino-acid pair. Then the trend in this 
evolution was compared with the trend in the 
global temperature, the temperature in north 
and south hemispheres, and the temperature in 
influenza A virus sampling site and species 
carrying influenza A virus. The results show the 
similar trends in global warming and in PB2 
evolution, which are in good agreement with our 
previous studies in polymerase acidic protein 
and matrix protein 2 from influenza A virus. 
 
Keywords: Global Warming; Influenza; Virus; Po-
lymerase Basic Protein 2 
 
1. INTRODUCTION 

Changes in environmental conditions can rapidly shift 
allele frequencies in populations of species with rela-
tively short generation times [1]. The global warming 
imposes the new danger not only on environments, but 
also on humans and various species [2]. As a result we 
would see the composition of species, such as proteins, 

under the influence of global warming although some 
proteins could be hidden deeply inside cells. Thus, it is 
important to compare the trends in global warming and 
protein evolution of interest family in order to see if 
there are similar trends in both. 

Accordingly, we recently conducted two studies to 
analyze the trend in both global warming and evolution 
of polymerase acidic protein (PA) [3] and matrix protein 
2 [4] from influenza A virus. 

It is well known that the evolution of protein family is 
a process of mutations, and therefore we could represent 
this evolution if we could represent mutated proteins 
along the time course. We need to do so because the 
global warming is the change in temperature over time. 
However, a mutation in protein is an event of changing 
one letter to another because amino acids in protein are 
presented as 20 letters, which are neither scalar data nor 
victors, whereas the temperature is a scalar datum. 

This means that we need to convert the letter-based 
proteins into scalar data in order to plot them along the 
time course to see their evolutionary trend. Since 1999, 
our group has developed three approaches to convert 
either a single amino acid or a protein into a scalar da-
tum based on random principle (for review, see [5,6,7,8]). 
Using our approaches, we can effectively represent a 
protein family over time, which provides the basis for 
conducting the study on analyzing the trends in global 
warming and evolution of proteins of interest. 

At this moment, we are particularly interest in the po-
lymerase basic protein 2 (PB2) form influenza A virus, 
because it is a subunit of RNA-dependent RNA poly-
merase complex associated with the transcription and 
replication of the influenza A viral genome [9]. The PB2 
subunit interacts with PA in the cytoplasm initially and is 
subsequently transported as a dimer into the nucleus [10]. 
The viral RNA polymerase complex is important for the 
efficient propagation of the virus in the host and for its 
adaptation to new hosts [11], and considered as a major 
determinant of the pathogenicity of the 1918 pandemic 
virus [12]. 
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Figure 1. Global temperature anomaly (°C) and evolution of PB2 proteins from influenza A viruses. The dotted lines and points 
were regressed lines and the mean of all PB2 proteins at a given year (n = 2397 from 1956 to 2008). 

 
The mutations in PB2 protein can affect the virulence 

of influenza A virus [13], change RNA binding activity 
[14,15], and contribute to intra- and inter-host transmis-
sion in diverse virus backgrounds [15,16]. 

Openly accessible at  

The aim of this study is to use the unpredictable por-
tion of amino-acid pair to convert symbolised PB2 pro-
teins into numerical data, and then to analyze the trends 
in global warming and the evolution of PB2 proteins 
from influenza A virus, in order to explore the potential 
impact of global warming on protein evolution. 

2. MATERIALS AND METHODS 

2.1. Temperature Data 

The global, north and south hemispheric temperature 
anomalies from 1850 to 2007, whose anomaly is based 
on the period 1961-1990, were obtained from Had-
CRUT3v [17,18]. The local temperature from 1956 to 
1998 based on 0.5 by 0.5° latitude and longitude grid- 
box basis cross globe was obtained from New et al. [19]. 

2.2. PB2 Data 

A total of 5092 full-length PB2 sequences of influenza A 

virus sampled from 1956-2008 was obtained from the 
influenza virus resources [20]. After excluded identical 
sequences, 2397 PB2 proteins were used in this study. 

2.3. Converting PB2 Proteins into Scalar 
Data 

For presenting PB2 protein family along the time course, 
we need to convert each PB2 protein into a scalar datum, 
which must differ for different PB2 proteins. Among our 
three random approaches (for review, see [5,6,7,8]), the 
simplest one is the amino-acid pair predictability, by 
which we view if the combination of two adjacent amino 
acids can be explained by the permutation. For a whole 
protein, we can determine the percentage of how many 
amino-acid pairs can be predicted according to the per-
mutation. We have used this method in many studies (for 
publications in 2008, see [21,22,23,24,25]). 

For a PB2 protein, we counted the first and second 
amino acids as a pair, the second and third amino acids 
as another pair, until the next to terminal and the termi-
nal amino acids as the last pair. Then, we determined 
whether an amino-acid pair could be explained by per-
mutation, or predicted by random mechanism in other 
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Figure 2. Trends in temperature and PB2 evolution grouped according to north (n = 2177) and south (n = 220) hemispheres. The 
dotted lines were regressed lines. 
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words. Finally, we calculated the percentage of how 
many amino-acid pairs were predictable and unpredict-
able in a PB2 protein. 

For example, a PB2 protein (strain A/Virginia/UR06- 
0139/2007(H1N1) and accession number ABW40267) 
was composed of 759 amino acids. There were 53 
threonines “T” and 59 arginines “R” in this protein. If 
the appearance of amino-acid pair TR could be ex-
plained by the permutation, it would appear 4 times in 
the PB2 protein (53/759 59/758 758=4.12). Act　 　 ually 
there were 4 pairs of TR in it, so the appearance of TR 
was predictable. By clear contrast, there were 34 aspara-
gines “N” and 28 prolines “P” in this PB2 protein. Ac-
cording to the permutation, the amino-acid pair NP 
would appear once (34/759 28/758=1.25) in this pr　 o-
tein. However, it appeared 5 times in realty, which was 
unpredictable. In this way, we classified all of the 
amino- acid pairs in ABW40267 PB2 protein as predict-
able and unpredictable. 

It is absolutely necessary that the predictable/unpre- 
dictable portion is subject to a tiny difference between 
two PB2 proteins, thus different PB2 proteins should 
have different values to be distinguishable. In the past, 
we have tested many proteins to verify this request and 

got the positive answer [3,4,5,6,7,8,21,22,23,24,25]. For 
instance, the predictable and unpredictable portions were 
36.49% and 63.51% for ABW40267 PB2 protein. Another 
human H1N1 influenza A virus was isolated from USA 
in 2007, its PB2 protein (accession number ABW 40410) 
had only one amino acid at position 108 different from 
that of ABW40267 PB2 protein. However, its predictable 
and unpredictable portions were 36.82% and 63.18%. 

In this manner, we converted 2397 letter-symbolized 
PB2 proteins into 2397 scalar data [26]. As each PB2 
protein had its sampling year, we thus had two scalar 
datasets, the temperature recorded each year and the 
unpredictable portion of PB2 protein sampled each year. 
Hence we could plot both datasets along the time course 
to observe their trends. 

3. RESULTS AND DISCUSSION 

Figure 1 showed the trends in both global warming and 
evolution of PB2 proteins, where both trends revealed 
similar as indicated by their regressed lines. The unpre-
dictable portion of PB2 proteins increased over time, 
which was similar to that the global temperature in 
creased along the time course. 
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Figure 3. Point-to-point temperature versus PB2 proteins (n=828) from 1956 to 1998. Each point presented a local temperature (°C) 
at the given year (upper panel), corresponding to the place where a PB2 protein was sampled (lower panel). The dotted lines were 
regressed lines. 
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Figure 4. Point-to-point temperature (°C) versus PB2 proteins sampled from different species. The dotted lines were regressed lines. 
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On the other hand, we cannot ignore these trends be-

cause we cannot create another earth without global 
warming but with active influenza virus for comparison 
over the same time span. As the validation of global 
warming is done through the comparison along the time 
course, we would argue that the validation of PB2 evo-
lution should also be done along the time course, i.e. the 
comparison between any two different time points. 

Moreover, the global temperature was generally di-
vided into north and south hemisphere, so we could 
group PB2 proteins accordingly to see if the trend still 
held on in such circumstance. As shown in Figure 2, the 
similar trend was clearer in north hemisphere than in 
south one, which could be explained by the fact that 
most of PB2 proteins were sampled in north hemisphere. 

This study demonstrated the changes in the unpre-
dictable portions of PB2 proteins were different in dif-
ferent species. In human and swine, the trends of evolu-
tion of PB2 proteins were similar to that of temperature, 
but not in avian (Figure 4). This difference can be due to 
the fact that the place where avian was sampled would 
not be the place where the mutation occurred, because 
migratory birds are common reservoirs responsible for 
spreading avian influenza viruses [28,29,30,31]. Climate 
change would almost certainly alter bird migration, in-
fluence the avian influenza virus transmission cycle and 
directly affect virus survival outside the host [32,33]. On 
the other hand, the human and swine were generally lo-
calized, thus the present results indicate the potential 
impact of global warming on the evolution of influenza 
A viruses. 

Actually the data of PB2 proteins in Figures 1 and 2 
were averaged in each year. For example, there were 
only 2 samples in 1956, but 220 PB2 proteins were sam-
pled in 2007. Another way to analyze the trends is to 
apply the point-to-point method, that is, we coupled each 
PB2 protein with the temperature according to its sam-
pling place and year. In other word, we took the tem-
perature measured at each geographical latitude and lon-
gitude of the place where a PB2 protein was sampled at 
the same year to make the comparison. 

Figure 3 displayed 828 point-to-point relationships 
between temperature and unpredictable portion of PB2 
proteins from 1956 to 1998, and their regression indi-
cated the similar trends. The results in Figure 3 were in 
consistent with what we found in Figures 1 and 2, that is, 
there were similar trends between global warming and 
evolution of PB2 proteins. 

Global climate changes affect the functioning of eco-
systems, in particular host-pathogen interactions, with 
major consequences in health ecology [34,35,36]. The 
results in this study are in good agreement with our pre-
vious studies [3,4], thus these results furthermore sug-
gest the general trend in evolution of proteins from in-
fluenza A virus. However, much studies are in need be-
cause there are still seven other proteins from influenza 
A virus, which we have yet to study. 

Because influenza viruses were hosted in different 
species, we could advance our analysis by the point-to- 
point relationship between temperature and species, 
from which the PB2 proteins were sampled. Figure 4 
demonstrated the trends of PB2 evolution with respect to 
the temperature in three major species. The results sug-
gested that the trends were similar in human and swine, 
but different in avian. 4. ACKNOWLEDGEMENTS 
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