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Abstract 
This paper implements different approaches used to compute the one-day 
Value-at-Risk (VaR) forecast for a portfolio of four currency exchange rates. 
The concepts and techniques of the conventional methods considered in the 
study are first reviewed. These approaches have shortcomings and therefore 
fail to capture the stylized characteristics of financial time series returns such 
as; non-normality, the phenomenon of volatility clustering and the fat tails 
exhibited by the return distribution. The GARCH models and its extensions 
have been widely used in financial econometrics to model the conditional vo-
latility dynamics of financial returns. The paper utilizes a conditional extreme 
value theory (EVT) based model that combines the GJR-GARCH model that 
takes into account the asymmetric shocks in time-varying volatility observed 
in financial return series and EVT focuses on modeling the tail distribution to 
estimate extreme currency tail risk. The relative out-of-sample forecasting 
performance of the conditional-EVT model compared to the conventional 
models in estimating extreme risk is evaluated using the dynamic backtesting 
procedures. Comparing each of the methods based on the backtesting results, 
the conditional EVT-based model overwhelmingly outperforms all the con-
ventional models. The overall results demonstrate that the conditional 
EVT-based model provides more accurate out-of-sample VaR forecasts in es-
timating the currency tail risk and captures the stylized facts of financial re-
turns. 
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1. Introduction 

In the recent past, the financial markets worldwide have experienced exponential 
growth coupled with significant extreme price changes such as the recent global 
financial crisis, currency crisis, and extreme default losses. The increasing finan-
cial uncertainties have challenged the financial market participants to develop 
and improve the existing methodologies used in measuring risk. Value-at-Risk 
(VaR) is a measure commonly used by regulators and practitioners to quantify 
market risk for purposes of internal financial risk management and regulatory 
economic capital allocations. For a given asset or portfolio of financial assets, 
probability and time horizon, VaR is defined as the worst expected loss due to 
change in value of the asset or portfolio of financial assets at a given confidence 
level over a specific time horizon (typically a day or 10 days) under the assump-
tion of normal market conditions and no transactions in the assets. For example, 
a financial institution may possibly declare that its one-day portfolio VaR is KES 
1 million at 95 percent significance level. This implies that the daily losses will 
exceed KES 1 million only 5 percent of the time given that the normal market 
conditions prevail. Statistically, estimating VaR involves estimating a specific 
quantile of the distribution of returns over a specified time horizon. The main 
complexity in modeling VaR lies in making the appropriate assumption about 
the distribution of financial returns, which typically exhibit well-known stylized 
characteristics such as; non-normality, volatility clustering, fat tails, leptokurto-
sis and asymmetric conditional volatility. Engle and Manganelli [1] noted that 
the main difference among VaR models is how they deal with the difficulty of re-
liably describing the tail distribution of returns of an asset or portfolio. The main 
challenge is choosing an appropriate distribution of returns to capture the 
time-varying conditional volatility of future return series. However, the popular-
ity of VaR as a risk measure can be attributed to its theoretical and computa-
tional simplicity, flexibility and its ability to summarize into a single value sever-
al components of risk at the firm level that can be easily communicated to the 
management for decision making.  

The existing conventional approaches for estimating VaR in practice can be 
classified into three main approaches [2]. First, the non-parametric approaches 
that often rely on the empirical distribution of returns to compute the tail quan-
tiles without making any limiting assumptions concerning the distribution of 
returns. Second, the fully parametric models approach based on an econometric 
model for volatility dynamics and the underlying assumption of statistical dis-
tribution to describe the entire distribution of returns (losses) including possible 
volatility dynamic. Finally, the semi-parametric approach utilizes both the 
flexible modeling framework of parametric approaches and benefits of 
non-parametric approaches. Historical simulation (HS) is the most commonly 
used non-parametric method introduced by Boudoukh et al. [3]. HS assumes 
that recent past observations will be sufficient to approximate well the expected 
near future observations, however, the inherent lack of observations in the tails 

https://doi.org/10.4236/jmf.2017.74045


C. O. Omari et al. 
 

 

DOI: 10.4236/jmf.2017.74045 848 Journal of Mathematical Finance 
 

of the distribution make the methods rather uncertain in estimating tail risk. 
Parametric and semi-parametric methods such as the Generalized Autoregres-
sive Conditional Heteroskedasticity (GARCH) models and Filtered Historical 
Simulation (FHS) are well-known to generally either overestimate or underesti-
mate tail risk due to the residuals often exhibiting heavier-tailed distributions 
rather than the normal or Student t-distributions which are frequently assumed. 
The conventional methods usually consider the entire return distribution and 
often fail to give accurate risk measure during periods of extreme price fluctua-
tions. According to Artzner et al. [4], the conventional VaR estimation methods 
have been criticized for various theoretical deficiencies and the failure to fulfill 
the subadditivity property of a coherent risk measure of market risk. Many 
models for estimating VaR try to integrate one or more of the stylized characte-
ristics of financial time series data. 

EVT based approaches have in the recent past been considered in finance to 
address the shortcomings of the conventional techniques as well as improve the 
estimation of VaR. The EVT theory focuses on modeling the tail behaviour of 
the distribution instead of the entire distribution of observations. Modeling ex-
treme values has become popular in financial risk management since it targets 
the extreme events that happen rarely but have catastrophic effects such as mar-
ket crashes, currency crisis, and extreme default losses. EVT provides a robust 
framework for modeling the tail distributions and it does for the maxima of in-
dependently and identically distributed (i.i.d.) random variables what the central 
limit theorem (CLT) does for modeling the summation of random variables and 
both theories give the asymptotically limiting distributions as the sample in-
creases. In extreme value theory, there are two statistical approaches for analyz-
ing extreme values: the block maxima (BM) method and peaks-over-threshold 
(POT) method. The block maxima approach consists of splitting the observation 
period into non-overlapping periods of equal size and only considers the maxi-
mum observation in each period. The set of extreme observations selected under 
extreme value conditions approximately follows the generalized extreme value 
(GEV) distribution. The peak-over-threshold (POT) approach selects extreme 
observations that exceed a certain high threshold. The probability distribution of 
the exceedances over a given high threshold follows approximately a generalized 
Pareto distribution (GPD). POT method is considered to be more data efficient 
since it makes better utilization of all the available information and is therefore 
mostly used for practical applications. 

EVT is well established in many different fields of practice including engi-
neering, applied science, insurance and finance among many others [5] [6]. Em-
brechts et al. [7] provide an overview of the empirical application of EVT in 
modeling extreme risks in finance and specifically in estimating VaR. In recent 
years, many researchers have undertaken research in modeling extremes and es-
timating extreme risks in the stock and currency markets due to stock market 
crashes, currency crises and large credit defaults experienced in the financial 
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markets. The modeling of extreme tail losses of financial time series has been 
discussed in among others; Danielsson and Vries [8], Bali and Neftci [9], Gilli 
and Këllezi [10], Bhattacharyya et al. [11], Ghorbel and Trabelsi, [12]. Bali [13] 
demonstrates that the EVT method yields better with respect to the skewed Stu-
dent-t and normal distributions using the daily index of the DJIA stock markets. 
EVT normally assumes that extreme observations under study are usually inde-
pendently and identically distributed (i.i.d), but such an assumption is unlikely 
to be appropriate for the estimation of extreme tail probabilities of financial re-
turns.  

Parametric volatility models and the EVT theory have been combined to cap-
ture the impact of serial dependence and heteroscedastic dynamics on the tail 
behaviour of the financial return series. McNeil and Frey [14] proposed a dy-
namic two-step approach built around the standard GARCH model, with inno-
vations allowed to follow a heavy-tailed distribution. First, the GARCH model is 
fitted to the financial return series to filter the serial autocorrelation and obtain 
close to independently and identically distributed standardized residuals. Sub-
sequently, the standardized residuals are fitted using the POT-EVT framework. 
The conditional or dynamic method integrates the time-varying volatility using 
GARCH model and the heavy-tailed distribution using EVT to estimate condi-
tional VaR. Bali and Neftci [9] estimate VaR using the GARCH-GPD model and 
the model yields more accurate results than that obtained from a GARCH Stu-
dent t-distributed model. Similarly, Byström [15] and Fernandez [16] conclude 
that the GARCH-GPD model performs much better than the GARCH models in 
estimating VaR. A number of researchers have applied the McNeil and Frey [14] 
approach in estimating market risk, Chan and Gray [17], Ghorbel and Trabelsi 
[12], Marimoutou et al. [2], Singh et al. [18] and Ghorbel and Trabelsi [19] 
among others and have demonstrated that methods for estimating VaR based on 
modeling extremes measures the financial risk more accurately compared to the 
conventional approaches based on the normal distribution. 

This paper focuses on the implementation several different approaches to 
computing the one-day-ahead VaR forecast and the comparative performance of 
the models when applied to of a portfolio of four currency exchange rates. The 
motivation is to compare the performance of the conditional EVT model that 
captures the time-varying volatility and extreme losses with nine other conven-
tional models in forecasting VaR. The contribution to the literature is illustrated 
as follows. First, the study reviews the concepts of conventional techniques and 
also proposes the conditional EVT model that accounts for the time-varying vo-
latility, asymmetric effects, and heavy tails in return distribution. The combining 
of GJR-GARCH model [20] with EVT is likely to generate more accurate quan-
tile estimates for forecasting VaR. Secondly, we compare the accuracy of the VaR 
forecast generated from the conditional-EVT model as well as the parametric, 
semi-parametric and non-parametric conventional approaches. The estimated 
tail quantiles of the competing model and the violation ratio with which the rea-
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lized return violate these estimates give the preliminary measure of the model 
success. Finally, the out-of-sample predictive performance of the competing 
models is assessed through dynamic backtesting using the Kupiec’s [21] uncon-
ditional coverage tests and Christoffersen’s [22] likelihood ratio tests. The over-
all performance rating of the competing models is determined by ranking the 
top two models terms of the violation ratios and the passing both statistical 
backtesting tests. 

The outline of the rest of the paper is as follows. Section 2 describes the dif-
ferent conventional methods for estimating VaR considered in this paper. Sec-
tion 3 presents the dynamic backtesting procedures. Section 4 reports the em-
pirical analysis and the dynamic backtesting results of the performance of the 
methods of estimating VaR. Finally, Section 6 gives a conclusion of the study. 

2. Methods of Estimating Value-at-Risk 

Value-at-Risk (VaR) measures the maximum possible losses in the market value 
over a specified time horizon under typical market conditions at a given level of 
significance [23]. From a risk manager’s perspective, hedging against loss is 
important and as a result, this paper focuses on the negative return (loss) 
distribution such that high VaR estimates values correspond to high levels of 
risk. Suppose tp  is the price of an asset at time t and ( )1lnt t tr p p −= −  is the 
daily negative continuously compounded returns. For a given level of signific-
ance ( )1 p− , VaR can be defined as the quantile of the return (loss) distribution 
at time t. Mathematically, ( )Pr t tr VaR p> = . Therefore, VaR can be computed 
based on the equation; 

( )1 1tVaR F p−= −                         (1) 

where 1F −  is the inverse of the distribution function F  represent the quantile 
function. 

2.1. Filtered Historical Simulation 

Filtered Historical Simulation (FHS) attempts to combine the power and flex-
ibility of parametric volatility models (like GARCH or EGARCH) and the bene-
fits of non-parametric Historical Simulation into a semi-parametric model 
which accommodates the volatility dynamics of financial returns. FHS is supe-
rior to Historical Simulation since it captures the volatility dynamics and other 
factors that can have an asymmetric effect on the volatility of the empirical dis-
tribution. Given a sequence of the past return observations { }1 1

m
tr τ τ+ − =

 and esti-
mated volatility { }1ˆ , 1, 2, ,t mτσ τ+ − =   realized past standardized returns are 
given by ( )1 1 1ˆˆt t tz rτ τ τσ+ − + − + −= . By utilizing the standardized residuals, the hy-
pothetical future returns distribution is estimated and with the conditional mean 
and conditional standard deviation forecasts from the volatility model, the 
one-period-ahead VaR forecast is computed as 

{ }{ }1 1 1 11
ˆ ˆ ˆQuantile ,100mp

t t t tVaR r pτ τ
µ σ+ + + − +=

= +               (2) 
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where 1ˆtµ +  is the conditional mean and 1ˆtσ +  is the conditional standard devia-
tion forecast from the volatility model. 

2.2. GARCH Models 

Under the assumption of constant volatility over time, the volatility dynamics of 
financial assets are not taken into account and the estimated VaR fail to incor-
porate the observed volatility clustering in financial returns and hence, the mod-
els may fail to generate adequate VaR estimations. Conditional heteroscedastic 
models take into account the conditional volatility dynamics in financial returns 
when estimating Value at Risk. In practice, there are many generalized condi-
tional heteroscedastic models and extensions that have been proposed in eco-
nometrics literature. The autoregressive conditional heteroscedastic (ARCH) 
model first introduced by Engle [24] and the subsequent generalized condi-
tional heteroscedastic (GARCH) model by Bollerslev [25] are the most 
commonly used conditional volatility models in financial econometrics. In this 
paper, the focus is on standard GARCH, Exponential GARCH (EGARCH), 
Glosten-Jagannathan-Runkle GARCH (GJR-GARCH) models. 

The GARCH model specification has two main components: the conditional 
mean component that captures the dynamics of the return series as a function of 
past returns and the conditional variance component that formulates the 
evolution of returns volatility over time as a function of past errors. The 
conditional mean of the daily return series can be assumed to follow a first-order 
autoregressive process,  

0 1 1t t tr rϕ ϕ ε−= + +                          (3) 

where 1tr −  is the lagged return, 0ϕ  and 1ϕ  are constants to be determined 
and tε  is the innovations term.  

The dynamic conditional variance equation of the GARCH (p, q) model can 
be characterized by 

2 2 2
0

1 1

p q

t i t i j t j
i j

σ α α ε β σ− −
= =

= + +∑ ∑                    (4) 

where 0 0α > , 0iα ≥  and 0jβ ≥  are positive parameters with the necessary 
restrictions to ensure finite conditional variance as well as covariance stationary. 
Empirical studies within the financial econometrics literature have demonstrated 
that the standard GARCH (1, 1) model works well in estimating and produce 
accurate volatility forecasts. The parameters of the conditional variance equation 
of the GARCH (1, 1) model under the assumption of normally distributed 
innovations can be estimated through the maximization of the log-likelihood 
function given by  

( ) ( )( )2 2

1

1| ln 2π ln
2

T

t t t
t

l r σ ε
=

Θ = − + +∑                (5) 

where ( )0 1 1, ,α α βΘ =  are the parameters of the model.  
The GARCH models have been extensively used in modeling the conditional 
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volatility in financial time series data and it assumes that positive and negative 
shocks have the same effect on future conditional volatility since it only depends 
on the squared past residuals. However, a number of empirical studies have 
observed that negative shocks (bad news) like market crashes, currency crisis, 
and economic crisis have a greater impact on volatility relative to a positive 
shock (good news) such as a positive financial performance of markets or 
positive economic growth of the country. Such a phenomenon leads to the 
concept leverage effect [26]. The asymmetric GARCH models are designed to 
capture leverage effects in financial return series. 

To account for the occurrence of asymmetric effects between financial returns 
and volatility changes, Nelson [27] proposed the asymmetric exponential 
GARCH (EGARCH) model, which can capture magnitude as well as sign effects 
of the shock. The conditional variance equation of EGARCH model is given by 

( ) ( )2 2
0

1 1
ln ln

p q
t i i t i

t i j t j
i jt i

ε γ ε
σ α α β σ

σ
− −

−
= =−

+
= + +∑ ∑            (6) 

where iγ  represents the leverage effect of positive or negative shocks. When the 
market experiences positive (good) news, the impact on the conditional volatility 
is ( )1 i t iγ ε −+ . On the contrary, when there is negative (bad) shock’s effect the 
impact on volatility is equal to ( )1 i t iγ ε −− . The existence leverage effects cha-
racteristics can be tested under the hypothesis that iγ  is expected to be nega-
tive. 

Another GARCH extension model that accounts for the asymmetric effect is 
the GJR-GARCH model introduced by [20]. The conditional variance equation 
of the GJR-GARCH (p, q) is given by 

2 2 2 2
0

1 1 1

p p q

t i t i i t i t i j t j
i i j

Sσ α α ε γ ε β σ−
− − − −

= = =

= + + +∑ ∑ ∑              (7) 

where t iS −
−  is an indicator variable which is assigned to value one if t iε −  is 

negative and zero otherwise. When 0γ > , it implies that bad news (negative 
shocks) has a bigger impact than good news (positive shocks). The GJR-GARCH 
models reduce to the standard GARCH model when all the leverage coefficients 
are equal to zero. 

The one-step-ahead forecast of conditional variance for the GARCH, 
EGARCH and GJR-GARCH models are as follows: 

2 2 2
1| 0 1 1

1 1

p q

t t i t j j t j
i j

σ α α ε β σ+ + − + −
= =

= + +∑ ∑                 (8) 

( ) ( )1 12 2
1| 0 1

1 11

ln ln
p q

t i i t i
t t i j t j

i jt i

ε γ ε
σ α α β σ

σ
+ − + −

+ + −
= =+ −

+
= + +∑ ∑         (9) 

( )2 2 2
1| 0 1 1 1

1 1

p q

t t i i t i t i j t j
i j

Sσ α α γ ε β σ−
+ + − + − + −

= =

= + + +∑ ∑           (10) 

For the GARCH model under the assumption of normally distributed innova-
tions, the estimation of Value-at-Risk is computed as 

https://doi.org/10.4236/jmf.2017.74045


C. O. Omari et al. 
 

 

DOI: 10.4236/jmf.2017.74045 853 Journal of Mathematical Finance 
 

( )1| 1ˆˆ ˆp
t t t tVaR r pµ ϕ σ+ += + +Φ                   (11) 

where ( )pΦ  is the p-th quantile of the standard normal distribution.  
Bollerslev [28] proposed using the standardized Student’s t-distribution model 

the innovation component of the GARCH models since it captures the 
non-normality characteristics of excess kurtosis and heavy-tailed distribution of 
financial returns. Under this assumption, VaR can be computed as 

1| , 1ˆˆp
t t t v p tVaR r tµ ϕ σ+ += + +                    (12) 

where ,v pt  is the p-th quantile of the Student-t distribution with v degrees of 
freedom. 

2.3. Extreme Value Theory 

Extreme value theory (EVT) deals with events that rarely happen but their im-
pact possibly catastrophic. EVT focuses on the modeling of the limiting distribu-
tions generated by the tail distribution of the extreme values and the estimation 
of extreme risk. In financial risk management, the peak over threshold (POT) 
method is commonly used. In this paper, the focus is also on the POT method. 
EVT assumes that extreme data are usually independently and identically dis-
tributed (iid). However, the assumption is unlikely to be appropriate for the es-
timation of extreme tail probabilities of financial returns which are known to 
exhibit some serial correlations and volatility clustering. 

The POT method considers the distribution of exceedances conditionally over 
a given high threshold u is defined by  

( ) ( ) ( ) ( )
( )

Pr , 0
1u F

F y u F u
F y X u y X u y x u

F u
+ −

= − ≤ > = ≤ ≤ −
−

   (13) 

where Fx < ∞  is the right endpoint of F.  
From the results of Gnedenko-Pickands-Balkema de Haan Theorem [29] [30] 

for a sufficiently large class of underlying distribution function F , the excess 
conditional distribution function ( )uF y , for an increasing threshold u can be 
approximated by  

( ) ( ), ,uF y G y uξ σ≈ →∞                   (14) 

( ),G yζ σ  is the Generalized Pareto Distribution (GPD) which is given by 

( )
( )

1

,

1 1 , 0

1 exp , 0

y
G y

y

ξ

ξ σ

ξ
ξ

σ
σ ξ

−  − + ≠  =   
 − − =

             (15) 

where ( )0, Fy x u∈ −    if 0ξ ≥  and [ ]0,y σ ξ∈ −  if 0ξ < . ξ  is the shape 
parameter and σ  the scale parameter for the GPD. Consequently, if 0ξ > , the 
GPD is a heavy-tailed Pareto distribution and if 0ξ = , the GPD is a light-tailed 
exponential distribution and if 0ξ <  the GPD is a short-tailed Pareto type II 
distributions. Gilli and Kellezi [10] indicates that in general, financial losses have 
heavy-tailed distributions and therefore only the family of distributions with 
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0ξ >  are suitable in financial analysis since they are heavy-tailed.  
The application the POT method requires an appropriate threshold value u to 

be determined. The selection of the threshold value is usually a compromise be-
tween bias and variance. Ideally, the threshold u should be set adequately high to 
guarantee exceedances have a limiting distribution that is within the domain of 
attraction of the generalized Pareto distribution. Conversely, if u is set extremely 
high, there is the likelihood to have very few exceedances to sufficiently estimate 
the parameters of the GPD. The common practice is to make a choice of a thre-
shold value that is as low as possible provided it gives a reliable asymptotic ap-
proximation of the limiting distribution [31]. In this paper, the threshold u is 
determined using two popular techniques; the Hill estimator [32] and the mean 
excess function (MEF).  

By setting appropriate threshold u, the parameters ξ  and σ  of the GPD 
can be estimated by maximizing the log-likelihood function given by 

( ) 1

1

1log 1 log 1 , if 0
, |

1log , if 0

n

i
i

n

i
i

n y
L y

n y

ξ
σ ξ

ξ σξ σ
σ ξ

σ

=

=

    − − + + ≠       = 
− − =

∑

∑
       (16) 

Using the results of the estimation of the distribution of exceedances, we can 
estimate the tails of the distribution by substituting ( )uF y  with ( ),G yξ σ  and 
( )F u  with the empirical estimator ( )1 uN n− , 

( ) ( )( ) ( ) ( ),1 , forF x F u G x u F u x uξ σ= − − + >             (17) 

Thus, the cumulative distribution function for the tail of the distribution is 

( ) ( )
ˆ ˆ1 1ˆ ˆ

ˆ 1 1 ( ) 1 1 1
ˆ ˆ

u u uN N NF x x u x u
n n n

ξ ξ
ξ ξ
σ σ

− −      = − + − + − = − + −              

 (18) 

Therefore, for a given probability ( )p F u≥ , pVaR  can be estimated as  

( )
ˆ

1
ˆ

1 1ˆ
p

t
u

nVaR u p
N

ξ
σ
ξ

−

+

   = + − −    
                 (19) 

Many empirical research studies on the performance of EVT based methods 
of estimating VaR have revealed that unconditional models generate VaR 
forecasts that respond slowly to varying market conditions. However, extreme 
price movements in financial markets due to unpredictable events like financial 
crisis, currency crisis or even stock market crashes cannot be fully modeled by 
using volatility models like GARCH [33].  

2.4. The GARCH-GPD Method 

As noted in Section 2.4, financial return series exhibit stochastic volatility that 
results in the phenomenon of volatility clustering, non-normality distribution 
resulting in heavy tails of the returns distribution and autocorrelation, all which 
violate the independent and identically distributed (i.i.d.) assumption of EVT. 
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Therefore in order to address the deficiencies of the financial return series we 
adopt the conditional extreme value theory introduced by McNeil and Frey [14]. 
The conditional-EVT model suggests first to use a GARCH model to filter the 
financial return series such that the residuals obtained are relatively close to 
satisfying the i.i.d. assumption of the original financial return series. In the next 
step, the POT based method is applied to model the tail behavior of standardized 
residuals obtained with GARCH model. Consequently, the conditional EVT 
approach handles both dynamic volatility and heavy-tailed exhibited by the 
return distribution. The McNeil and Frey [14]’s two-step approach denoted by 
GARCH-GPD can be stated as follows: 

Step 1: The GARCH-type model assuming the error term follows a Student 
t-distribution is fitted the currency exchange return series by maximum 
likelihood estimation method.  

Step 2: EVT is applied to the standardized residuals obtained in Step 1 to 
estimate the tail distribution. The POT method is used to select the exceedances 
of standardized residual beyond a high threshold.  

From the fitted GARCH model the realized standardized residuals tz  are 
computed as follows: 

( ) 1 1 2 2
1 2

1 2

, , , , , ,t k t k t k t k t t
t k t k t

t k t k t

r r rz z z µ µ µ
σ σ σ

− + − + − + − +
− + − +

− + − +

 − − −
=  
 

       (20) 

The standardized innovations sequence ( )1 2, , ,t k t k tz z z− + − +   is assumed to be 
i.i.d observations which can be denoted as order statistics ( ) ( ) ( )1 2 kz z z≤ ≤ ≤ . 
Given that uN  denote the number of excess observations exceeding a high 
threshold u and assuming that the excess residuals follow the GPD, the estima-
tion of the tail estimator ( )zF z  given by 

( ) ( )
ˆ1ˆ

ˆ 1 1
ˆ

u
z

NF z z u
n

ξ
ξ
σ

−
 

= − + −  
 

                  (21) 

Inverting Equation (30) for a given probability ( )p F u≥ , ( ) 1
p
tVaR z
+

 is giv-
en by  

( ) ( )1

ˆ
1 1ˆ

p u
t

NVaR z u p
n

ξσ
ξ

−

+

  = + − −     
               (22) 

Therefore, the one-day-ahead conditional EVT-VaR for the return is given by 

( )1| 1| 1| 1
ˆ ˆ pp

t t t t t t tVaR VaR zµ σ+ + + +
= +                   (23) 

The conditional heteroscedastic models and semi-parametric VaR estimation 
approaches; conditional-GPD model and FHS described in this section are used 
to estimate the currency risk. The non-parametric HS and the parametric ap-
proaches; EVT, variance covariance and RiskMetrics both of which assume a 
normal distribution of the return series are also implemented. In order to 
validate the forecasting accuracy and measure the comparative performance of 
the conditional-GPD approach with the conventional procedures of estimating 
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VaR forecasts, statistical backtesting procedures introduced in Section 3 are 
performed. 

3. Backtesting Value-at-Risk 

Backtesting is a statistical procedure designed to compare the realized trading 
losses with the VaR model predicted losses in order to evaluate the accuracy of 
the VaR model. It is an important component of the VaR estimation. The Basel 
Committee on Banking Supervision (BCBS) framework requires banks and other 
financial institutions using internal VaR risk models to routinely validate the 
accuracy and consistency of their models through backtesting [34]. In financial 
econometrics, backtesting implies the assessment of the forecasting performance 
of the financial risk model by using historical data for risk forecasting and 
comparison with the realized rates of return [35]. In order to determine the 
reliability and accuracy of the VaR model, backtesting is used to determine 
whether the number of exceptions generated have come close enough to the 
realized outputs, in order to enable the reaching of the conclusion that such 
assessments are statistically compatible with the relevant outputs. In this study, 
the unconditional coverage test proposed by Kupiec [21] and Christoffersen [22] 
conditional coverage tests are used to perform the comparative assessment of the 
VaR models. 

In order for the backtesting tests to be implemented an indicator function of 
VaR exceptions sometimes referred to as the “hit sequence” [35] is defined. Let 

1+tI  be an indicator function of VaR violations that can be denoted as: 

1 1
1

1 1

1 if

0 if
t t t

t
t t t

r VaR
I

r VaR
+ +

+
+ +

≥=  <
                    (24) 

and 1
T

ttN I
=

= ∑  denotes the number of exceedances over a given time period 
when the actual loss exceeds the VaR forecast. Kupiec [21] suggested the 
unconditional coverage (UC) test for assessing the reliability of VaR forecast 
models based on the actual number of VaR estimate violations over a given time 
period is proportional to the expected number of VaR violations of the predicted 
models. The null hypothesis of the UC test is  

0 ˆ: NH p p
T

= =                          (25) 

where p is the specified probability of occurrence of the violations 
corresponding to the confidence level α  of the VaR model, i.e. ( )1p α= −  
and p̂  is equal to the observed number of exceedances (N) divided by the 
sample size (T).  

The unconditional coverage likelihood ratio test statistic is defined as: 

( ) ( )22 ln 1 2ln 1 ~ 1
T N N

T N N
uc

N NLR p p
T T

χ
−

−      = − − −           
      (26) 

The statistic is asymptotically distributed as a chi-square probability distribution 
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with one degree of freedom. Kupiec’s unconditional test only gives the essential 
condition to categorize a VaR model as satisfactory but it does not account for the 
possibility of clustering of violations, which can be as a result of the volatility of the 
return series. Thus, backtesting VaR model should not exclusively rely on uncon-
ditional coverage tests [36]. VaR model validation is also reliant on a test of the 
randomness of these VaR violations, to avoid clustered violations. 

Christoffersen [22] proposed a complete test of correct conditional coverage 
to determine the out-of-sample forecast accuracy of a VaR model which ad-
dresses both the unconditional coverage property and independence property. 
The unconditional coverage property puts a restriction on the frequency of VaR 
violations. The independence property or exception clustering places a restric-
tion on the ways in which these violations may occur. Under the null hypothesis 
that the violations (exceptions) on any given day are independent and the aver-
age number of violations observed at any two different days must be indepen-
dently distributed, the appropriate likelihood ratio test statistic is defined as: 

( ) ( ) ( ) ( ) ( )00 0101 11 2
01 01 11 112 ln 1 2ln 1 1 ~ 2T N N nn n

ccLR p p ππ π π π χ−   = − − + − −     (27) 

where nij is the number of observations of the hit sequence with a j following an 
i, j = 0, 1. The test statistic is asymptotically distributed as a chi-square 
distribution with two degrees of freedom.  

4. Empirical Results 

The empirical analysis is based on daily average currency exchange rates: US 
Dollar vs Kenya Shillings (USD/KES), UK Sterling Pound vs Kenya Shillings 
(UKP/KES), European Union Euro vs Kenya Shillings (EUR/KES) and South 
Africa Rand vs Kenya Shillings (SAR/KES) downloaded from the Central Bank 
of Kenya (CBK) website. Specifically, the data consists of an average of 3097 
observations of daily returns excluding public holidays and weekends for each 
currency exchange rate. The currency pairs consist of some of the most popular 
and widely traded currencies in Kenya. The data is for the period from 
November 2, 2004, to March 31, 2017, which gives between 3096 and 3081 The 
negative log returns is the first differences of the logarithms of daily currency 
exchange rates multiplied by 100 and is denoted by ( )1 1log 100t t tr p p+ += − ×  
where tp  is the daily average currency exchange rate at time t.  

Figure 1 is a plot of the daily currency exchange prices, daily currency returns 
for the four currency exchange rates. Each plot of the currency prices illustrates 
the features exhibited by financial time series data namely; extreme movements, 
time-varying volatility clustering, i.e. upward movements have a tendency to be 
followed by other upward movements and downward movements also followed 
by other downward. In financial econometrics modeling a conditional heteros-
cedastic model can be proposed to model the volatility clustering in the daily 
currency exchange price returns and the measures of risk coverage are 
conditional on the current volatility dynamics. 
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Figure 1. Daily currency prices and daily returns (period from November 02, 2004 to March 31, 2017). 

 
Table 1 presents the basic summary statistics of the daily negative returns of 

the currency exchange rates. For all the exchange rates the mean and median are 
close to zero, which is one of the stylized facts of daily financial time series data. 
The standard deviations for all the series are reasonably high which confirms the 
high volatility displayed in the return plots. Skewness for most of the series is  
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Table 1. Summary statistics of currency exchange returns. 

 USD/KES UKP/KES EUR/KES SAR/KES 

No. of Obs. 3097 3081 3096 3096 

Maximum 5.0000 7.3910 4.094 14.941 

Minimum −4.4470 −4.9310 −5.089 −8.354 

Mean −0.00768 0.00468 −0.002174 0.01632 

Median −0.00613 0.004125 −0.002186 −0.01109 

Std. deviation 0.4616 0.7493 0.7464 1.15619 

Skewness 0.04875 0.04119 −0.02363 0.78958 

Kurtosis 22.290* 7.659* 4.075* 12.4923* 

JB-Test 64,229.2064* 7631.2243* 2176.0046* 20,485.6667* 

ADF-Test −12.00 −14.00 −14.00 −15.00 

Q(20) 120* 49* 39* 48* 

Q2(20) 2100* 830* 1700* 870* 

*Significant at 5% level. 

 
positive, except for EURO/KES exchange rate which is negative. Kurtosis for all 
currencies is high, with the lowest kurtosis estimate of 4.075 and the highest 
estimate of 22.29 giving a strong indication of the presence of fat tails, thus exhi-
biting an important characteristic of financial time series data, namely leptokur-
tosis. Moreover, the Jarque-Bera (JB) normality hypothesis is rejected for each 
return series also confirming that all daily returns series are far from being 
normal distributed. The Augmented Dickey-Fuller (ADF) test is used to verify 
the stationarity of the return series. The test indicates that the return series can 
be assumed to be stationary since the unit root null hypothesis is rejected at all 
levels of significance. This is usually expected as continuously compounded 
returns are considered and taking the logarithms amounts to a variance 
stabilizing transformation. Finally, to test the presence of conditional heterosce-
dasticity in the data, the autocorrelation of squared residuals was tested. The 
Ljung Box Q statistic for all currencies is significantly high above the critical 
value of 31.404, thus the null hypothesis of no serial autocorrelation is rejected, 
and thus we confirm the strong presence conditional heteroscedasticity in the 
data. This indicates that a conditional heteroscedastic model should be consi-
dered in the modeling of the currency exchange returns. Asymmetric GARCH 
models may also prove practical, because of the leverage effect. Finally, a distri-
bution other than the normal (e.g. the Student t distribution) for the errors may 
be considered, since the currency returns demonstrate excess kurtosis and the 
heavy-tailed distributions. 

Table 2 presents the parameter estimates from the AR(1)-GJR-GARCH (1, 1) 
model fitted based on the in-sample period. The parameters of the fitted models 
are estimated using the maximum likelihood method. The parameters for the 
mean equation are not statistically significant for all the returns series except for 
the USD/KES. The parameters for the conditional variance equation, ( 0 1,α α   
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Table 2. Parameter estimates of the AR (1)-GJR-GARCH (1, 1) model with Student t 
distribution. 

Parameters USD/KES UKP/KES EUR/KES SAR/KES 

0ϕ  0.012795* 0.001017 0.002487 −0.029625 

1ϕ  0.122312* −0.005381 −0.035785 −0.027115 

0α  0.013240* 0.007766* 0.007689* 0.050791* 

1α  0.293133* 0.069715* 0.071443* 0.109711* 

1β  0.677415* 0.918373* 0.924463* 0.859588* 

1γ  0.056905 0.000542 −0.014933 −0.006687 

Shape 2.857848* 10.328140* 9.369216* 6.904317* 

JB 3388.7024* 38.4253* 86.8614* 771.6861* 

Q(20) 29.0 26.0 32.0 (0.02) 18.0 

Q2(20) 21.0 23.0 21.0 10.0 

*Significant at 5% level. 

 
and 1β ) are highly significant for all currency series and the estimated 
asymmetry coefficient, ( γ ) is negative for two of the series, suggesting the 
presence of the leverage effects as negative returns are more likely than positive 
returns. The shape parameter estimates that is associated with the degrees of 
freedom parameter which determines the kurtosis of its probability density 
function are statistically significant for all the series.The p-values of the 
specification tests carried out after estimating the model parameters including 
Jarque-Bera (JB) test for testing normality, Ljung-Box test of autocorrelation in 
the standardized and squared standardized residuals with 20 lags, Q(20) and 
Q2(20), and Lagrange Multiplier (LM)-test for ARCH effects, respectively are 
also presented in Table 2. For all the currency series, the null hypothesis of 
normality is rejected at the 5% significance level, given that the JB test statistic 
value is significantly high confirming that the residuals are not normally 
distributed. The LM-test for all the currency series fails to detect any serial 
correlation and presence of ARCH effects. The null hypothesis of no serial au-
tocorrelation remain is not rejected at 5% level, indicating that neither long 
memory dependence nor non-linear dependence is found in the residual series. 
Therefore, the AR(1)-GJR-GARCH (1, 1) specifications sufficiently filter the 
serial autocorrelation and volatility dynamics present in the conditional mean 
and variance of the currency return series effectively producing residuals that are 
closer to being i.i.d. on which extreme value theory can be applied. The fitted 
model is also applied as a risk measurement method to be compared with other 
conventional risk measurement methods and the extracted standardized resi-
duals are used in the filtered simulation approach. 

In this paper, the threshold value required to fit the GPD model is obtained 
using the graphical approach, which uses the Mean Excess Function (MEF) plot 
of the return series. Maximum likelihood estimation is implemented on the ex-
ceedances over the threshold. Table 3 reports the estimated parameters of the  
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Table 3. Maximum likelihood estimates of the fitted GARCH-GPD distribution. 

Parameters USD/KES UKP/KES EUR/KES SAR/KES 

Right Tail     

Number of Observations 1552 1571 1538 1537 

EVT threshold (u) 1.80 1.75 1.60 1.78 

Exceedances 137 125 152 150 

% of Exceedances 8.83 7.96 9.88 9.76 

GPD shape parameter 
(s.e.) 

0.4272 
(0.12028) 

0.1107 
(0.08759) 

0.1210 
(0.09050) 

0.1566 
(0.08789) 

GPD scale parameter 
(s.e.) 

0.6424 
(0.09182) 

0.5572 
(0.06953) 

0.4809 
(0.05826) 

0.5796 
(0.06913) 

Left Tail     

Number of Observations 1545 1510 1558 1559 

EVT threshold (u) 1.70 1.55 1.75 1.85 

Exceedances 159 162 123 136 

% of Exceedances in-sample 10.29 10.73 7.89 8.72 

GPD shape parameter 
(s.e.) 

0.02248 
(0.08855) 

0.06125 
(0.08878) 

0.1005 
(0.09564) 

0.06398 
(0.10290) 

GPD scale parameter 
(s.e.) 

1.01076 
(0.12015) 

0.54856 
(0.06498) 

0.7174 
(0.09408) 

0.51080 
(0.06836) 

 
generalized Pareto distribution (GPD) as well as their estimated asymptotic 
standard errors resulting from applying the POT approach to the filtered stan-
dardized innovations. For all the returns series, the shape parameter is found to 
be positive and significantly different from zero, indicating heavy-tailed distri-
butions of the innovation process characterized by the Frechet distribution. 

5. Out-of-Sample VaR Backtesting 

Backtesting is a statistical technique used to measure the accuracy of the 
computed VaR forecasts compared with actual losses realized at the end of the 
specified time horizon. This is key in financial risk management practices in 
order to evaluate the model performance in a sample period that is not used to 
estimate the model parameters [37]. Thus, the sample period that is used to 
estimate the parameters of the model is the in-sample period and the retained 
period for the forecast evaluation of the model is the out-of-sample period.  

In this paper, the dynamic backtesting is used to evaluate the relative 
performance of the conventional methods and conditional EVT approach to 
forecast VaR is implemented at five different levels of significance namely; 95%, 
99%, 97.5%, 99.5% and 99.9% for the out-of-sample currency returns. The 
backtesting results have also been evaluated using a rolling window of size 1000 
daily returns (about 4 years) for all the VaR models. The rolling window 
procedure has a two-fold advantage of assessing the accuracy of the VaR 
forecasts as well as the stability of the model over time. The stability of the model 
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is evaluated in terms of whether the coefficients of the fitted model are 
time-invariant. When dealing with long time periods, it is impracticable to 
evaluate the suitable fitting model on a daily basis and to select a new exceedance 
value over the given threshold for the implementation of GARCH-GPD 
specification in tail estimation to be assumed to be adequate for each rolling 
window.  

Table 4 presents the comparative performance results of the forecasting VaR 
model in terms of the violation ratio for the left tail (losses) and right tail (gains) 
implemented at different levels of significance. The rankings (shown in 
parenthesis) indicate the absolute departure of the estimated VaR forecasts from 
the expected violation ratios. Based on the proximity of the actual violation ratio 
to the expected violation ratio, the rankings demonstrate GARCH-GPD model 
generates the best performance for all the currency exchange rates passing the 
violation test 75% of the time in forecasting the VaR in the specified backtesting 
period. The GJR-GARCH Student-t model is ranked second with a success rate 
of 20%. The Filtered Historical simulation, standard GARCH model and other 
conventional models perform relatively poorly compared to the conditional EVT 
model. The unconditional EVT, unconditional normal, RiskMetrics and 
Historical simulation models performs the worst realizing violation ratios that 
are far from the expected failure. The consequence of overestimating risk is an 
unnecessary increase in capital allocation leading to an inflated cost of doing 
business. 

Table 5 and Table 6 presents the p-values of unconditional coverage and 
conditional coverage tests the out-of-sample performance of various VaR models 
considered at five different levels of significance. Under the unconditional 
coverage null hypothesis that ˆp p=  where p is the specified probability of 
occurrence of the violations corresponding to the confidence level. The 
backtesting results provide evidence that most of the VaR methods considered 
demonstrate satisfactory performance at low confidence levels (95% up to 
99.7%). However, from the 99% level and above the superiority of the extreme 
values technique emerges. Therefore we can conclude that GARCH-GPD does 
better in forecasting the VaR in the specified backtesting period and this makes 
it relatively better in forecasting VaR.The conditional EVT model yield the 
highest success rate for both tests with higher p-values that are statistically 
significant in most of the cases demonstrating the supremacy of the model over 
the other competing models. 

Table 7 presents the summary evaluation of the overall performance of the 
competing models during the backtesting period considering the violation ratios 
and the number of rejections of the null hypotheses for the statistical backtesting 
tests. The comparative performance of the VaR estimation models is among the 
models that satisfy both unconditional PoF test and the conditional test and also 
must be ranked among the top two in terms of the violation ratios out of the 40 
possible cases (four currency exchange rates, two (left and right) tails and five  
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Table 4. Out-of-sample one-day VaR violation ratios of currency returns (in %) and model ranking. 

α  5% 2.5% 1% 0.5% 0.1% 

USD/KES Left Tail Right Tail Left Tail Right Tail Left Tail Right Tail Left Tail Right Tail Left Tail Right Tail 

Normal 1.63 (10) 1.68 (10) 1.54 (9) 1.15 (9) 1.50 (8) 0.75 (7) 1.45 (10) 0.35 (4) 1.45 (10) 0.15 (4) 

HS 2.26 (9) 2.79 (8) 1.59 (8) 1.25 (8) 1.45 (7) 0.15 (9) 1.40 (9) 0.10 (8) 1.40 (9) 0.00 (5) 

FHS 4.56 (2) 4.43 (5) 2.37 (3) 2.44 (2) 1.00 (1) 1.07 (2) 0.79 (4) 0.64 (3) 0.30 (5) 0.50 (8) 

RiskMetrics 5.09 (3) 4.71 (4) 3.17 (7) 2.98 (7) 1.55 (9) 1.35 (8) 0.90 (5) 0.90 (8) 0.40 (6) 0.35 (7) 

GARCH-n 3.72 (7) 3.43 (7) 2.43 (2) 2.15 (6) 1.33 (5) 1.14 (4) 1.24 (8) 0.76 (6) 0.62 (7) 0.62 (9) 

GARCH-t 5.15 (4) 4.91 (3) 3.10 (6) 2.43 (3) 1.19 (3) 0.90 (3) 0.52 (2) 0.48 (2) 0.05 (2) 0.10 (1) 

GJR-GARCH-n 3.77 (6) 3.48 (6) 2.24 (4) 2.24 (5) 1.33 (5) 1.24 (6) 1.10 (7) 0.86 (7) 0.62 (7) 0.71 (10) 

GJR-GARCH-t 5.15 (4) 5.00 (1) 2.86 (5) 2.67 (4) 1.19 (3) 0.86 (4) 0.48 (2) 0.43 (5) 0.00 (3) 0.10 (1) 

EVT 2.93 (8) 2.07 (9) 1.15 (10) 1.01 (10) 0.20 (10) 0.15 (9) 0.10 (5) 0.10 (8) 0.00 (3) 0.00 (5) 

GARCH-GPD 5.03 (1) 5.05 (2) 2.52 (1) 2.48 (1) 1.05 (2) 0.96 (1) 0.49 (1) 0.50 (1) 0.12 (1) 0.10 (1) 

UKP/KES           

Normal 3.41 (10) 3.89 (9) 1.92 (7) 2.40 (2) 1.10 (3) 1.55 (8) 0.80 (9) 1.05 (8) 0.40 (7) 0.40 (7) 

HS 4.71 (3) 4.38 (8) 1.97 (6) 2.26 (4) 0.80 (5) 0.55 (7) 0.40 (5) 0.45 (3) 0.10 (1) 0.10 (1) 

FHS 5.51 (4) 5.57 (6) 3.08 (7) 3.27 (9) 1.67 (10) 1.00 (1) 1.00 (10) 0.64 (5) 0.50 (10) 0.50 (8) 

RiskMetrics 4.76 (2) 4.42 (7) 1.88 (9) 2.36 (3) 0.95 (2) 1.00 (1) 0.55 (2) 0.50 (1) 0.15 (3) 0.10 (1) 

GARCH-n 4.08 (8) 5.19 (2) 2.21 (2) 3.08 (7) 1.35 (7) 1.63 (9) 0.87 (7) 1.30 (9) 0.43 (8) 0.57 (9) 

GARCH-t 4.27 (6) 5.33 (4) 2.16 (5) 2.88 (6) 0.77 (6) 1.25 (5) 0.43 (3) 0.67 (6) 0.19 (5) 0.10 (1) 

GJR-GARCH-n 3.99 (9) 5.24 (3) 2.21 (2) 3.27 (9) 1.39 (8) 1.78 (10) 0.87 (7) 1.30 (9) 0.43 (8) 0.62 (10) 

GJR-GARCH-t 4.37 (5) 5.48 (5) 2.21 (2) 3.17 (8) 0.82 (4) 1.25 (5) 0.43 (3) 0.77 (7) 0.24 (6) 0.14 (6) 

EVT 4.09 (7) 4.76 (3) 1.59 (10) 2.25 (5) 0.60 (9) 0.85 (4) 0.25 (6) 0.40 (4) 0.05 (3) 0.10 (1) 

GARCH-GPD 4.80 (1) 5.02 (1) 2.25 (1) 2.55 (1) 1.02 (1) 1.00 (1) 0.46 (1) 0.49 (2) 0.13 (2) 0.10 (1) 

EUR/KES           

Normal 3.46 (10) 3.51 (10) 2.26 (5) 1.78 (8) 1.20 (6) 0.95 (2) 0.70 (5) 0.55 (3) 0.25 (7) 0.20 (5) 

HS 4.18 (4) 3.94 (9) 1.63 (10) 1.30 (10) 0.45 (10) 0.45 (9) 0.20 (8) 0.25 (8) 0.05 (2) 0.10 (1) 

FHS 5.13 (2) 5.00 (1) 2.56 (1) 2.76 (6) 1.13 (5) 1.47 (7) 0.79 (7) 0.79 (9) 0.30 (8) 0.50 (10) 

RiskMetrics 3.94 (6) 4.13 (7) 1.97 (8) 1.83 (7) 0.90 (3) 0.65 (6) 0.55 (3) 0.30 (7) 0.15 (2) 0.15 (3) 

GARCH-n 3.72 (9) 4.87 (3) 2.34 (3) 2.43 (4) 1.29 (7) 1.10 (4) 0.86 (9) 0.52 (1) 0.52 (10) 0.29 (8) 

GARCH-t 4.01 (5) 5.34 (5) 2.19 (7) 2.34 (5) 1.00 (1) 0.52 (8) 0.57 (3) 0.38 (5) 0.24 (5) 0.24 (7) 

GJR-GARCH-n 3.91 (7) 5.20 (4) 2.29 (4) 2.53 (2) 1.29 (7) 0.95 (2) 0.86 (9) 0.57 (4) 0.48 (9) 0.33 (9) 
GJR-GARCH-t 4.25 (3) 5.68 (6) 2.24 (6) 2.53 (2) 1.10 (3) 0.71 (5) 0.52 (1) 0.38 (5) 0.24 (5) 0.19 (4) 

EVT 3.79 (8) 4.04 (8) 1.97 (8) 1.78 (8) 0.60 (9) 0.35 (10) 0.25 (6) 0.20 (10) 0.05 (2) 0.00 (5) 

GARCH-GPD 4.88 (1) 5.05 (2) 2.44 (1) 2.52 (1) 1.05 (2) 0.98 (1) 0.53 (2) 0.47 (2) 0.11 (1) 0.10 (1) 

KES/SAR           

Normal 3.13 (9) 3.70 (10) 1.73 (7) 2.45 (3) 0.95 (4) 1.40 (5) 0.60 (4) 1.00 (10) 0.35 (9) 0.75 (10) 

HS 4.71 (3) 3.85 (9) 2.21 (2) 1.83 (6) 0.70 (6) 0.95 (1) 0.45 (3) 0.55 (2) 0.15 (5) 0.10 (1) 

FHS 5.13 (2) 5.89 (8) 2.95 (4) 3.33 (9) 1.27 (5) 1.67 (8) 0.93 (10) 0.79 (6) 0.50 (10) 0.60 (9) 

RiskMetrics 3.56 (8) 4.95 (1) 1.68 (9) 2.50 (1) 0.70 (6) 1.15 (3) 0.35 (6) 0.60 (4) 0.00 (6) 0.05 (5) 

GARCH-n 3.63 (6) 5.39 (4) 1.91 (5) 3.39 (10) 1.00 (1) 1.91 (10) 0.52 (2) 1.29 (8) 0.10 (1) 0.57 (8) 
GARCH-t 3.77 (5) 5.73 (6) 1.72 (8) 3.29 (8) 0.57 (8) 1.48 (7) 0.19 (8) 0.76 (5) 0.00 (6) 0.14 (4) 

GJR-GARCH-n 3.63 (6) 5.10 (3) 2.10 (3) 3.24 (7) 1.00 (1) 1.81 (9) 0.38 (5) 1.29 (8) 0.10 (1) 0.52 (7) 

GJR-GARCH-t 3.91 (4) 5.53 (5) 1.86 (6) 3.15 (5) 0.52 (9) 1.43 (6) 0.19 (8) 0.81 (7) 0.00 (6) 0.19 (6) 

EVT 2.88 (10) 4.13 (7) 1.11 (10) 2.02 (4) 0.40 (10) 0.70 (4) 0.20 (7) 0.45 (2) 0.10 (1) 0.10 (1) 

GARCH-GPD 5.02 (1) 5.08 (2) 2.45 (1) 2.49 (2) 1.00 (1) 1.05 (1) 0.51 (1) 0.49 (1) 0.10 (1) 0.10 (1) 

https://doi.org/10.4236/jmf.2017.74045


C. O. Omari et al. 
 

 

DOI: 10.4236/jmf.2017.74045 864 Journal of Mathematical Finance 
 

Table 5. P-value of the Kupiec unconditional coverage test. 

VaRp VaR0.95 VaR0.975 VaR0.99 VaR0.995 VaR0.999 

KES/USD Left Tail Right Tail Left Tail Right Tail Left Tail Right Tail Left Tail Right Tail Left Tail Right Tail 

Normal 0.000 0.000 0.002 0.000 0.063 0.167 0.000 0.251 0.000 0.558 

HS 0.000 0.000 0.004 0.000 0.096 0.000 0.000 0.001 0.000 0.000 

FHS 0.359 0.248 0.635 0.756 0.805 0.994 0.312 0.724 0.323 0.032 

RiskMetrics 0.908 0.488 0.068 0.193 0.039 0.205 0.035 0.035 0.002 0.008 

GARCH-n 0.005 0.001 0.841 0.287 0.142 0.516 0.000 0.113 0.000 0.000 
GARCH-t 0.753 0.853 0.090 0.841 0.391 0.660 0.874 0.880 0.398 0.946 

GJR-GARCH-n 0.007 0.001 0.440 0.440 0.142 0.287 0.001 0.035 0.000 0.000 
GJR-GARCH-t 0.753 0.988 0.300 0.621 0.391 0.504 0.880 0.637 0.000 0.946 

EVT 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.000 0.000 

GARCH-GPD 0.867 0.768 0.544 0.435 0.759 0.677 0.743 0.733 0.453 0.876 

KES/UKP           

Normal 0.001 0.016 0.079 0.775 0.795 0.036 0.107 0.004 0.002 0.002 

HS 0.539 0.180 0.108 0.473 0.269 0.018 0.436 0.655 0.955 0.955 

FHS 0.366 0.310 0.186 0.077 0.032 0.836 0.050 0.703 0.030 0.030 

RiskMetrics 0.609 0.217 0.056 0.668 0.686 0.858 0.855 0.899 0.550 0.955 

GARCH-n 0.048 0.693 0.388 0.104 0.132 0.008 0.033 0.000 0.000 0.000 

GARCH-t 0.121 0.489 0.313 0.274 0.269 0.271 0.655 0.289 0.238 0.955 
GJR-GARCH-n 0.028 0.621 0.388 0.032 0.089 0.001 0.033 0.000 0.000 0.000 
GJR-GARCH-t 0.180 0.324 0.388 0.059 0.386 0.271 0.655 0.107 0.087 0.550 

EVT 0.048 0.609 0.004 0.891 0.035 0.386 0.062 0.436 0.404 0.955 
GARCH-GPD 0.541 0.546 0.378 0.345 0.542 0.499 0.845 0.567 0.764 0.772 

KES/EUR           

Normal 0.001 0.001 0.442 0.023 0.514 0.662 0.299 0.873 0.089 0.243 

HS 0.066 0.018 0.006 0.000 0.003 0.003 0.022 0.059 0.399 0.947 

FHS 0.891 0.927 0.987 0.624 0.796 0.151 0.311 0.311 0.322 0.032 

RiskMetrics 0.018 0.052 0.098 0.034 0.506 0.060 0.873 0.131 0.558 0.558 

GARCH-n 0.005 0.778 0.631 0.844 0.204 0.659 0.035 0.873 0.000 0.028 

GARCH-t 0.031 0.475 0.361 0.631 0.993 0.016 0.646 0.423 0.089 0.089 

GJR-GARCH-n 0.018 0.676 0.532 0.933 0.204 0.832 0.035 0.646 0.000 0.008 
GJR-GARCH-t 0.104 0.163 0.442 0.933 0.659 0.168 0.873 0.423 0.089 0.243 

EVT 0.007 0.031 0.098 0.023 0.032 0.000 0.059 0.022 0.398 0.000 

GARCH-GPD 0.876 0.422 0.675 0.766 0.567 0.786 0.457 0.785 0.758 0.354 

KES/SAR           

Normal 0.000 0.004 0.015 0.844 0.662 0.142 0.646 0.009 0.008 0.000 

HS 0.491 0.009 0.361 0.034 0.164 0.662 0.639 0.873 0.558 0.947 

FHS 0.415 0.139 0.339 0.064 0.458 0.036 0.103 0.311 0.032 0.008 

RiskMetrics 0.001 0.857 0.009 0.955 0.104 0.659 0.251 0.646 0.000 0.398 

GARCH-n 0.002 0.417 0.070 0.013 0.993 0.000 0.873 0.000 0.947 0.000 

GARCH-t 0.007 0.136 0.015 0.027 0.032 0.040 0.022 0.113 0.000 0.558 

GJR-GARCH-n 0.004 0.826 0.227 0.037 0.993 0.001 0.423 0.000 0.947 0.000 

GJR-GARCH-t 0.018 0.269 0.050 0.067 0.016 0.062 0.222 0.064 0.000 0.243 

EVT 0.000 0.052 0.000 0.132 0.001 0.104 0.022 0.639 0.947 0.947 

GARCH-GPD 0.867 0.437 0.446 0.765 0.745 0.778 0.533 0.741 0.645 0.987 

A p-value above 5% (in bold) implies that the corresponding VaR model has adequate forecasting capacity. 
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Table 6. P-value of the Christoffersen conditional coverage test. 

VaRp VaR0.95 VaR0.975 VaR0.99 VaR0.995 VaR0.999 

KES/USD Left Tail Right Tail Left Tail Right Tail Left Tail Right Tail Left Tail Right Tail Left Tail Right Tail 

Normal 0.000 0.000 0.000 0.000 0.005 0.000 0.000 0.000 0.000 0.000 

HS 0.000 0.000 0.000 0.000 0.006 0.000 0.000 0.000 0.000 0.000 

FHS 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

RiskMetrics 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

GARCH-n 0.019 0.002 0.955 0.363 0.235 0.449 0.000 0.080 0.000 0.000 

GARCH-t 0.728 0.231 0.237 0.364 0.408 0.345 0.135 0.000 0.000 0.000 

GJR-GARCH-n 0.026 0.000 0.741 0.207 0.235 0.354 0.002 0.037 0.000 0.000 

GJR-GARCH-t 0.728 0.062 0.486 0.012 0.408 0.276 0.111 0.000 0.000 0.000 
EVT 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

GARCH-GPD 0.675 0.072 0.537 0.204 0.675 0.523 0.453 0.007 0.000 0.000 

KES/UKP           

Normal 0.001 0.049 0.104 0.109 0.471 0.026 0.077 0.001 0.000 0.001 

HS 0.132 0.407 0.269 0.059 0.153 0.008 0.000 0.083 0.000 0.003 

FHS 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
RiskMetrics 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
GARCH-n 0.039 0.891 0.689 0.208 0.000 0.009 0.000 0.000 0.000 0.000 
GARCH-t 0.063 0.723 0.601 0.365 0.000 0.342 0.000 0.000 0.000 0.000 

GJR-GARCH-n 0.028 0.841 0.689 0.054 0.000 0.001 0.000 0.000 0.000 0.000 

GJR-GARCH-t 0.074 0.611 0.689 0.081 0.000 0.342 0.000 0.077 0.000 0.000 

EVT 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

GARCH-GPD 0.085 0.659 0.645 0.075 0.522 0.457 0.239 0.058 0.000 0.000 

KES/EUR           

Normal 0.000 0.000 0.002 0.001 0.449 0.345 0.127 0.000 0.000 0.000 
HS 0.000 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

FHS 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

RiskMetrics 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

GARCH-n 0.005 0.859 0.882 0.798 0.000 0.472 0.000 0.000 0.000 0.000 

GARCH-t 0.008 0.549 0.658 0.677 0.000 0.000 0.000 0.000 0.000 0.000 

GJR-GARCH-n 0.009 0.568 0.819 0.858 0.000 0.405 0.000 0.000 0.000 0.000 

GJR-GARCH-t 0.036 0.258 0.743 0.858 0.000 0.096 0.000 0.000 0.000 0.000 

EVT 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

GARCH-GPD 0.456 0.373 0.965 0.784 0.546 0.522 0.265 0.000 0.000 0.000 

KES/SAR           

Normal 0.000 0.007 0.047 0.123 0.000 0.007 0.000 0.002 0.000 0.000 
HS 0.428 0.004 0.442 0.002 0.000 0.035 0.000 0.135 0.000 0.000 

FHS 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
RiskMetrics 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
GARCH-n 0.005 0.530 0.188 0.044 0.000 0.000 0.000 0.000 0.000 0.000 

GARCH-t 0.010 0.162 0.000 0.077 0.000 0.000 0.000 0.000 0.000 0.000 

GJR-GARCH-n 0.006 0.547 0.481 0.073 0.000 0.000 0.000 0.000 0.000 0.000 

GJR-GARCH-t 0.045 0.444 0.000 0.130 0.000 0.000 0.000 0.000 0.000 0.000 

EVT 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

GARCH-GPD 0.765 0.345 0.745 0.073 0.668 0.854 0.000 0.082 0.000 0.000 

A p-value above 5% (in bold) implies that the corresponding VaR model has adequate forecasting capacity. 
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Table 7. VaR backtesting summary of the violation ratios, unconditional coverage test, and conditional coverage test. 

 95% 97.5% 99% 99.5% 99.9% 

 Left Right Left Right Left Right Left Right Left Right 

 VR UC CC VR UC CC VR UC CC VR UC CC VR UC CC VR UC CC VR UC CC VR UC CC VR UC CC VR UC CC 

Normal 10   10   9   9   8 **  7 **  10 **  4 **  10      

HS 9   8   8   8   7 **  9   9   8   9   5   

FHS 2 **  5 **  3 **  2 **  1 **  2 **  4 **  3 **  5 **  8   

RiskMetrics 3 **  4 **  7 **  7 **  9   8 **  5 **  8   6   7   

GARCH-n 7   7   2 ** ** 6 ** ** 5 ** ** 4 ** ** 8 ** ** 6 ** ** 7   9   

GARCH-t 4 ** ** 3 ** ** 6 ** ** 3 ** ** 3 ** ** 3 ** ** 2 ** ** 2 **  2 **  1 **  

GJR-GARC
H-n 

6   6   4 ** ** 5 ** ** 5 ** ** 6 ** ** 7 ** ** 7   7   10   

GJR-GARC
H-t 

4 ** ** 1 ** ** 5 ** ** 4 **  3 ** ** 4 ** ** 2 ** ** 5 **  3   1 **  

EVT 8   9   10   10   10   9   5   8   3   5   

GARCH-G
PD 

1 ** ** 2 ** ** 1 ** ** 1 ** ** 2 ** ** 1 ** ** 1 ** ** 1 **  1 **  1 **  

UKP/KES                               

Normal 10   9   7 ** ** 2 ** ** 3 ** ** 8   9 ** ** 8   7   7   

HS 3 ** ** 8 ** ** 6 ** ** 4 ** ** 5 ** ** 7   5 **  3 ** ** 1 **  1 **  

FHS 4 **  6 **  7 **  9 **  10   1 **  10 **  5 **  10   8   

RiskMetrics 2 **  7 **  9 **  3 **  2 **  1 **  2 **  1 **  3 **  1 **  

GARCH-n 8   2 ** ** 2 ** ** 7 ** ** 7 **  9   7   9   8   9   

GARCH-t 6 ** ** 4 ** ** 5 ** ** 6 ** ** 6 **  5 ** ** 3 **  6 **  5 **  1 **  

GJR-GARC
H-n 

9   3 ** ** 2 ** ** 9  ** 8 **  10   7   9   8   10   

GJR-GARC
H-t 

5 ** ** 5 ** ** 2 ** ** 8 ** ** 4 **  5 ** ** 3 **  7 ** ** 6 **  6 **  

EVT 7   3 **  10   5 **  9   4 **  6 **  4 **  3 **  1 **  

GARCH-G
PD 

1 ** ** 1 ** ** 1 ** ** 1 ** ** 1 ** ** 1 ** ** 1 ** ** 2 ** ** 2 **  1 **  

EUR/KES                               

Normal 10   10   5 **  8   6 ** ** 2 ** ** 5 ** ** 3 **  7 **  5 **  

HS 4 **  9   10   10   10   9   8   8 **  2 **  1 **  

FHS 2 **  1 **  1 **  6 **  5 **  7 **  7 **  9 **  8 **  10   

RiskMetrics 6   7 **  8 **  7   3 **  6 **  3 **  7 **  2 **  3 **  

GARCH-n 9   3 ** ** 3 ** ** 4 ** ** 7 **  4 ** ** 9   1 **  10   8   

GARCH-t 5   5 ** ** 7 ** ** 5 ** ** 1 **  8   3 **  5 **  5 **  7 **  

GJR-GARC
H-n 

7   4 ** ** 4 ** ** 2 ** ** 7 **  2 ** ** 9   4 **  9   9   

GJR-GARC
H-t 

3 **  6 ** ** 6 ** ** 2 ** ** 3 **  5 ** ** 1 **  5 **  5 **  4 **  

EVT 8   8   8 **  8   9   10   6 **  10   2 **  5   
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Continued 

GARCH-G
PD 

1 ** ** 2 ** ** 1 ** ** 1 ** ** 2 ** ** 1 ** ** 2 ** ** 2 **  1 **  1 **  

KES/SAR                               

Normal 9   10   7   3 ** ** 4 **  5 **  4 **  10   9   10   

HS 3 ** ** 9   2 ** ** 6   6 **  1 **  3 **  2 ** ** 5 **  1 **  

FHS 2 **  8 **  4 **  9 **  5 **  8   10 **  6 **  10   9   

RiskMetrics 8   1 **  9   1 **  6 **  3 **  6 **  4 **  6   5 **  

GARCH-n 6   4 ** ** 5 ** ** 10   1 **  10   2 **  8   1 **  8   

GARCH-t 5   6 ** ** 8   8  ** 8   7   8   5 **  6   4 **  

GJR-GARC
H-n 

6   3 ** ** 3 ** ** 7  ** 1 **  9   5 **  8   1 **  7   

GJR-GARC
H-t 

4   5 ** ** 6 **  5 ** ** 9   6 **  8 **  7 **  6   6 **  

EVT 10   7 **  10   4 **  10   4 **  7   2 **  1 **  1 **  

GARCH-G
PD 

1 ** ** 2 ** ** 1 ** ** 2 ** ** 1 ** ** 1 ** ** 1 **  1 ** ** 1 **  1 **  

VR-Violation Ratio test, UC-unconditional coverage test, CC-conditional coverage test, **indicates the corresponding VaR model passes the test. 

 
levels of significance). This approach is justified because a model that is never 
rejected by both the unconditional PoF test and conditional test is certainly 
preferable to a rejected (one or more times) model: thus, a VaR model with 
fewer rejections is considered more accurate. The VaR estimation and forecasting 
performance of the models are outlined as follows: the conditional extreme value 
theory (conditional EVT) model based on the peaks-over-threshold method sa-
tisfies the ranking requirements 72.5% times outperforming all the other com-
peting conventional methods (non-parametric and parametric). In addition, the 
conditional EVT performs better on the left tail at 75% compared to 70% on the 
right tail. The performance of the fat-tailed conditional GJR-GARCH Student-t 
model is ranked second with an overall 12.5% success rate. The right tail per-
formance is slightly higher at 20% while the left tail is at 15% success rate. Gen-
erally, the conditional GARCH models with Student-t distribution performs 
moderately better compared to the conditional GARCH models with normal 
distributions for both tails and all the levels of significance. This is expected as 
the normal distribution assumption underestimates risk and also fails to capture 
the excess kurtosis and fat-tailed distribution exhibited by financial returns. The 
Historical Simulation and variance-covariance models perform inadequately in 
the estimation and forecasting VaR. The models total success rate is less than 5% 
for both the left and right tails. The models in most cases underestimate the risk 
and hence are rejected by the two statistical backtesting tests in most of the levels 
of significance. The RiskMetrics, Filtered Historical Simulation and uncondi-
tional EVT models perform the worst in estimating and forecasting VaR at all 
levels of significance and for both tails. The models are actually rejected by the 
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two statistical backtesting measures 100% of the time and always take the last 
two positions of the violation ratio rankings in most of the cases. The dynamic 
backtesting evidence demonstrates that the conditional extreme value theory 
(conditional EVT) model outperforms all the competing conventional models at 
low levels of significance (from 95% up to 97.5%). However at higher levels from 
the 99% level and above the dominance of the extreme value technique stands 
out since it is the only method where most VaR forecasts are statistically signifi-
cant.  

6. Conclusion 

In financial risk management, the implementation of Value-at-Risk (VaR) has 
been widely used to measure risk. The objective of this paper is to provide a 
comparative analysis of the out-of-sample forecasting performance for the 
conditional extreme value theory (conditional EVT) model based on the 
peaks-over-threshold approach compared to conventional VaR estimation 
techniques such as Historical Simulation, Filtered Historical Simulation, va-
riance-covariance model, unconditional Extreme Value theory model, RiskMe-
trics model, GARCH and GJR-GARCH models under normal and Student-t dis-
tributions. The conditional EVT approach is based on the two-step procedure 
suggested by McNeil and Frey [14] in modeling the tails of distributions and in 
estimating and forecasting VaR. Empirical backtesting results demonstrate that 
the conditional EVT and conditional GJR-GARCH Student-t models are the 
most appropriate techniques in measuring and forecasting risk since they out-
perform the competing conventional methods (non-parametric and parametric) 
and are ranked as the top two models in most cases. Such models produce a VaR 
estimate which reacts to the volatility dynamics and provides a significant im-
provement over the widely used conventional VaR models. Predominantly, the 
non-parametric models such as HS and its modification; Filtered Historical Si-
mulation (FHS), unconditional EVT model and the models with the normal as-
sumption which usually fail to provide statistically accurate VaR estimates espe-
cially for higher confidence levels and tends to underestimates risk. For purposes 
of further research, we recommend the modeling of dependence structure of a 
portfolio of assets using copula functions. The copula function plays a critical 
role in portfolio construction and risk management. 
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