
Applied Mathematics, 2017, 8, 1529-1538 
http://www.scirp.org/journal/am 

ISSN Online: 2152-7393 
ISSN Print: 2152-7385 

 

DOI: 10.4236/am.2017.811111  Nov. 2, 2017 1529 Applied Mathematics 
 

 
 
 

Lindblad Equation for Harmonic Oscillator: 
Uncertainty Relation Depending on 
Temperature 

Boris V. Bondarev 

Moscow Aviation Institute, Moscow, Russia 

 
 
 

Abstract 
Specific nonequilibrium states of the quantum harmonic oscillator described 
by the Lindblad equation have been hereby suggested. This equation makes it 
possible to determine time-varying effects produced by statistical operator or 
statistical matrix. Thus, respective representation-varied equilibrium statistic-
al matrixes have been found. Specific mean value equations have been found 
and their equilibrium solutions have been obtained. 
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1. Lindblad Equation 

Statistical operator ̂  or density matrix is basically applied as the quantum 
mechanics tool, any information of the nonequilibrium process proceeding 
within the tested system may be gained from [1] [2] [3] [4] [5]. When the 
process concerned proceeds within the system which fails interacting with its 
environment, statistical operator ̂  will satisfy Liouville-von Neumann equa-
tion as follows: 

ˆˆ ˆHi  =  
��  .                    (1.1) 

With provision for the fact that the system interacts with any environment, a 
new equation shall be produced [4]-[18]. Lindblad is the first one who offered 
the equation describing interaction of the system with a thermostat [11]. This 
work is devoted to Markovian equation, which hereby describes nonequilibrium 
quantum harmonic oscillator performance. 
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We will write the kinetic equation for a quantum harmonic oscillator as fol-
lows: 

( ) ( )ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, , , ,ˆi i A a aH a a i B a a a a+ + + +         = + + + +        
�� � �      , (1.2) 

where 

( )ˆ ˆ 1 2ˆ aH aω += +� ,                     (1.3) 

A and B are constants. Operator â  is formulated as follows: 

( )ˆ ˆ ˆ 2a ip m xκ ω= + � ,                   (1.4) 

where 

mω κ= . 

Equation (1.2) is very precise to describe time varying state of the thermos-
tat-interacted quantum harmonic oscillator and its equilibrium state. 

2. Energy Representation 

Now, we will define the wave functions describing specific energy state ( )n xϕ . 
The very functions satisfy the equation as follows: 

( ) ( )ˆ
n n nH x xEϕ ϕ= ,                      (2.1) 

where 

( )1 2nE nω += � ,                       (2.2) 

0,1,2,n = �  

As referred to energy representation, the matrix elements of statistical opera-
tor ̂  will be formulated by the equation as follows: 

( ) ( )* ˆ dmn n nx x xϕ ϕ′ ′= ∫  .                    (2.3) 

Wave functions satisfy the following equations: 

1 1ˆ ˆ,   1n n n na n a nϕ ϕ ϕ ϕ+
− ++= = .                (2.4) 

With provision for the above formulas the following matrix-formed equation 
(1.2) is derived: 

( ) ( )( ) ( )

( )

1, 1

1, 1

2 1 1

        2 2 .

nn nn n n nn

n n nn

n n A n n n n

B nn n n

iω′ ′ ′ ′+ +

′ ′− −

 ′ ′ ′− + + + − + 
 ′ ′+ − +

=

+

−

 

�   

 
  (2.5) 

Now, we will write the equation for diagonal elements of density matrix 

nn nw= , where nw  is the probability referred to oscillator state nϕ . The equa-
tion produced has the form as follows: 

( ) ( )1 12 1 2 1n n n n nw w nw w wA n B n n+ −= + + + −  − � .      (2.6) 

This kinetic equation describes particular harmonic oscillator state transitions. 
In this case, there may be gained coefficients A and B as follows: 

( ) ( ) ( ) ( )2 ,   21 2 exp 1 2 expA P B Pβ ω β ω= = −� � ,      (2.7) 
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where P is probability of transition per unit time; ( )1 Bk Tβ =  is reciprocal 
temperature. 

Equation (2.6) has specific oscillator state equilibrium distribution, which sa-
tisfies the following equation: 

( ) ( )1 11 1 0n n n nA n Bw nw w n wn+ −− −+ + + =       .        (2.8) 

This equation is solved by the method as follows: 

( )1 n
nw qq= −                        (2.9) 

under the following condition 

( )expq B A β ω= = − � .                 (2.10) 

3. Mean Value of Coordinate 

Mean value b  assigned by operator b̂  is defined as 

( )ˆ ˆb Tr b=  .                       (3.1) 

For gaining mean value a  the respective equation may be derived from 
Formula (1.2). Using the equality of: 

ˆ ˆ ˆ ˆ 1aa a a+ +− = ,                        (3.2) 

we will get the equation as follows: 

( )a i A B aω= − − +� .                    (3.3) 

Now, we can find the derivatives from mean values x  and p . By applying 
Formula (1.4) we will get: 

( )( )x i A B ipi p m m xωκ κ= − − ++ +�� . 

Then, we will try to equate both the real and imaginary parts of this equation: 

( )
( )

,
.

x x pA B
p A B

m
x pκ

 = − − +
 = − − − �
�

                 (3.4) 

If we eliminate p  from this set of equations, we can obtain the mean coor-
dinate equation 

( ) ( )222 0x A B x A B xω + − + + − = 
�� � .            (3.5) 

The above Equation (3.5) provides the following solution: 

( ) ( ) ( )1 2cos sin expx t C t C t A B tω ω= + − −   ,        (3.6) 

where 1C  and 2C  are arbitrary constants. 

4. Mean Oscillator Energy 

Now, we will find the time derivative from a a+ . By applying the above equality 
(3.2) we will produce the following derivative from Equation (1.2): 

( ) 2 2a a A B a a B+ ++ − =
.

.                    (4.1) 
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We can define harmonic oscillator time-varying energy effects inserting the 
following formula in Equation (4.1): 

( ) 1 2a a H ω+ = −� . 

Thus, the following differential equation is derived: 

( ) ( )2 ?H A B H A Bω+ − = +�� .                (4.2) 

The solution of the equation is: 

( ) ( )
( ) ( )

exp 2

2

H t C A B t

A B A Bω

= − −  
+ + −      �

,             (4.3) 

where C is an arbitrary constant. The Equation (4.2) has specific stationary solu-
tion: 

( ) ( )2H A B A Bω= + −      � .                 (4.4) 

Since constants A and B are related (2.7), the stationary solution obeys the 
formula as follows: 

( ) ( ) ( ) ( )21 1 2 2e e cH thβ ω β ωω ω β ω   = =  + − 
� �� � � .  (4.5) 

If T = 0, then ( )2H ω= � . If T increases to infinity, then BH k T= . 

5. Kinetic Equation Expressed in Terms of Coordinate and 
Momentum Operators 

Let us express the Equation (1.2) in terms of operators x̂  and p̂ . For this 
purpose, we will firstly write the Equation (1.2) as follows: 

( )
( )

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ       

ˆ ˆ ˆ ˆ ˆ ˆ2

ˆ ˆ ˆ .2  

H H a a a a a a

a a a

i i A

i B a aa

+ + +

+ + +

+ −

+

= −

−

−

−

�� �

�

    

  
            (5.1) 

Since the energy operator is equal to: 

( )2 2ˆ ˆ ˆ2 2H p m xκ= + ,                    (5.2) 

we will insert it in Equation (5.1) along with Formula (1.4) to obtain the follow-
ing one: 

( ) ( )

( ) ( ) ( ) ( )
( )( )

2 2 2 2

2 2 2 2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ2 2 2 2

ˆ ˆ ˆ ˆˆ ˆˆ ˆ ˆ ˆ ˆˆ ˆˆ        2 2 + 2

ˆ ˆˆ ˆ ˆˆ ˆ        .

p m x p m x

i A B p p p p m x x x x

A B x

i

ip p x

κ κ

ω κ

   + − +   
 − + − + − + 

− − −

=

+

�

�

�  

     

  

 (5.3) 

6. Coordinate Representation 

In coordinate representation the density matrix looks like this: ( ), ,t x x′=  . 
The coordinate and momentum operators are: 

ˆ ˆ,    xx x p i= = − ∂� . 

Using the above values we can write Equation (5.3) by the formula as follows: 
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( )( ) ( )( )
( ) ( ) ( ) ( )
( )( )

2 2 2 2

2 22

2

         2

         

2

1 .

t x x

x x

x x

i x x

A B m x x

x

i

A B x

m κ

ω κ

′

′

′

′∂ ∂ − ∂ − −

 ′+ + ∂ − ∂ − − 
′+ − + + ∂

=

∂

�

� �

�  





        (6.1) 

Physical interpretation of density matrix implies that the following expression 

( ) ( ), , ,w t x t x x=                       (6.2) 

is the probability density. 
Let us introduce new variables 

( )1 22,    x x x x x x′ ′= + = − .                   (6.3) 

In this case 

( ) ( )1 2 1 22,    2x x′∂ ∂ ∂ ∂ ∂= − ∂+ = . 

Referring to density matrix ( )1 2, ,t x x  and using the above new variables we 
will get the equation as follows: 

( ) ( ) ( ) ( )
1 2 1 2

2 2 2
1 2 1 1 2 2         2 2 1 ,

t i m i x x

A B m x x x

κ

ω κ ε

∂ = ∂ ∂ −

 + + ∂ − + + ∂ ∂ −

� �

� �

  

  
 (6.4) 

where 

( ) ( ) ( )th 2A B A Bε ω ω β ω= − + =� � � .          (6.5) 

In this case 

( ) ( ), ,0 ,t x w t x=  .                 (6.6) 

We will find the solution of Equation (6.4) as follows: 

( ) ( ) ( ) ( )1 2 2 1, , 1 2π , , exp dt x x f t k x ikx k= ∫  .        (6.7) 

Reciprocal transformation 

( ) ( ) ( )2 1 2 1 1, , , , exp df t k x f t x x ikx x= − .           (6.8) 

Taking into account (6.6) we will obtain: 

( ) ( ) ( ),0,0 , ,0 d , d 1f t f t x x w t x x= = =∫ .        (6.9) 

Thus, in view of function (6.8) the following equation is formed: 

( ) ( ) ( ) ( )22 2         .2 2
t x k

k x

f f

A B x k x f

f k m x

k m

κ

κ εω

+

 − +

∂ = − ∂ ∂

+ ∂ ∂+ + 

� �

� �
  (6.10) 

This equation has an equilibrium solution which satisfies both equations as 
follows: 

0x kk m xf fκ =− ∂+∂� � ,                (6.11) 

( ) ( )2 2 2 2 02 k xk x f x ff m kκ ε +∂ ∂++ =� .          (6.12) 

We will write the performance equation of the above Formula (6.11): 

( )2d dm x k x k κ− =� . 
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This equation has the solution as follows: 

( )2 2 22 2 constk m xκ+ =� . 

This formula implies that the general solution of Equation (6.11) takes the 
form as follows: 

( )f f E= , 

where 

( )2 2 22 2E k m xκ= +� . 

We put this function into Equation (6.12) to get the following formula: 

( )d d 2 0f E f ε+ = . 

Taking into account condition (6.9) this equation has the following solution: 

( ) ( )exp 2f E E ε= −   . 

Thus, the equilibrium solution of Equation (6.10) takes the form as follows: 

( ) ( ) ( ){ }2 2 2, exp 2 2 2f k x k m xκ ε = − + � .        (6.13) 

We will find the equilibrium density matrix by formula (6.7): 

( ) ( ) ( ) ( ){ } 12 2 2
1 2 2, 1 2 exp 2 2 2 dikxx x k m x e kκ ε = π − + ∫ � . 

Integration brings us to the formula: 

( ) ( )2 2 2
1 2 1 2, exp 4x x x xα α σ α = π − −  ,        (6.14) 

where 

( )2 ,    th mα σ β ω σ ω= =� � . 

Using Formulas (6.3) we will get the equation as follows: 

( ) ( ) ( ) ( )2 22, exp 4 4x x x x x xα α σ α ′ ′ ′= π − + − −  .    (6.15) 

Using Formula (6.2) we will get equilibrium probability density [19] 

( ) ( )2expw x xα α= π − .                   (6.16) 

7. Momentum Representation 

In momentum representation the coordinate and momentum operators are: 

ˆ ˆ,    px i p p= ∂ =� . 

In this representation the density matrix looks like this: ( ), ,t p p′=  . This 
enables to write Equation (5.3) as follows: 

( )( ) ( )
( ) ( ) ( ) ( )
( )( )

2 2 2 2

22 2

2 2

          2

          1 .

t p p

p p

p p

i m p p i

A B p p m

A B p p

κ

ω κ

′

′

′

′∂ = − − + ∂ − ∂

 ′− + − − ∂ + ∂  
′− − + ∂ + ∂

� �

� �

  





  (7.1) 

Physical interpretation of density matrix ( ), ,t p p′  implies that the expres-
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sion 

( ) ( ), , ,w t p t p p=                         (7.2) 

is the probability density to detect the state when an oscillator have impulse p. 

8. Wigner Function 

In order to better understand the physical meaning of various kinetic state 
summands we will derive the equation for Wigner function ( ), ,w w t x p= , 
which is a quantum analog of classical distribution function and can be defined 
with the use of density matrix ( ), ,t x x′  by the relation: 

( ) ( ) ( ) ( ), , 1 2π , 2, 2 exp dw t x p t x q x q ipq q= + − −∫ � � .        (8.1) 

If the density matrix depends on 1x  and 2x , than 

( ) ( ) ( ) ( )1 2 2 2, , 1 2π , , exp dw t x p t x x x ip x x= = −∫� � .        (8.2) 

Reciprocal transformation 

( ) ( ) ( )1 2 1 2, , , , exp dt x x w t x p ip x p= ∫ � .               (8.3) 

Since there is Formula (6.9) 

( )1 1, ,0 d 1t x x =∫ , 

Wigner function satisfies the normalization requirement 

( ), , d d 1w t x p x p =∫ .                      (8.4) 

From Equation (6.4) for density matrix ( )1 2, ,t x x  we will get the equation 
for Wigner function 

( ) ( ) ( ) ( )2 2 2 2         2 2 2 2 .
t x p

x p x p

w p m w x w

A B m w w x p w

κ

ω κ ε

∂ = − ∂ + ∂

 + + ∂ + ∂ + + ∂ + ∂ � � �
 (8.5) 

The equation obtained is much different from its quantum analog of Fokker- 
Planck equation. Summands containing derivatives 2

xw∂  and 2
pw∂  can be in-

terpreted as those describing phase space diffusion. And still, it is necessary to 
add that it is rather hard to find physical meaning of the formula in parentheses 
that follows coefficient ε . 

The equilibrium solution of Equation (8.5) should at the same time be a solu-
tion for the following equations: 

0x pp m w x wκ− ∂ + ∂ = ,                      (8.6) 

( ) ( )2 2 2 22 2 2 0x p x pm w w x p wκ ε∂ + ∂ + + ∂ + ∂ =� � .        (8.7) 

General solution of the Equation (8.6) is the function: 

( )w w E= ,                             (8.8) 

where 

( )2 22 2E p m xκ= + . 

We will insert this function in Equation (8.7) and get the following equation: 
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( )2 2d d 1 d d 0E w E E w E wµ µ+ + + = ,               (8.9) 

where 

( ) ( )2 2thµ ω β ω= � � .                      (8.10) 

The solution of this equation is the function: 

( ) e Ew E C µ−= .                          (8.11) 

Wigner function can be obtained by Formula (8.2) inserting in it equilibrium 
function (6.14). We have: 

( ) ( ) ( ) ( )2 2 2
2 2 2, 1 2π π exp 4 exp dw x p x x ipx xα α σ α = − − − ∫� � . (8.12) 

Integration brings us to the equilibrium function 

( ) ( ) ( ){ }2 2, 2π exp 2 2w x p p m xµω µ κ = − +  .         (8.13) 

This function can be represented as: 

( ) ( ) ( )2 2, π exp π expw x p x pα α γ γ= − − ,          (8.14) 

where 

( )2mγ µ= .                         (8.15) 

Let us find the mean value 

( )2 2 2 2 , d dx p x p w x p x p= ∫ .                 (8.16) 

Calculation gives the following formula: 

( ) ( ) 22 2 2 4 e 1 e 1x p β ω β ω = + − 
� �� .               (8.17) 

This formula leads to the following result. If T = 0, the uncertainty is equal to 
2 2 2 4x p = � . 

If T →∞  , than 

( )22 2
Bx p k T ω= . 

9. The Lindblad Equation Is a First Order Approximation 

In work [17] it was proved that the Lindblad equation can be derived the quan-
tum equation for a small system that interacts with the equilibrium system from 
the equation equations of Liouville-von Neumannas. The Lindblad equation can 
be written as 

( )ˆ ˆˆ ˆ ˆi H i Dλ = + + 
�� � �   ,                   (9.1) 

here λ is the order parameter. Statistical operator ϱ write as well 

0 1ˆ ˆ ˆλ= + +�                           (9.2) 

Let us substitute the operator (9.2) in Equation (9.1). We have 

( )0 1 0 1 0 1
ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ,i H i Dλ λ λ λ + + = + + + + + 

� �� � � � �      .   (9.3) 
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If the order parameter λ = 0, we get the unperturbed statistical operator 0̂ : 

0 0
ˆˆ ˆi H =  

��  .                        (9.4) 

The first value of λ, gives 

( )1 1 0
ˆ ˆˆ ˆ ˆi H i D = + 

�� �   ,                  (9.5) 

Equilibrium values obey the equations: 

0
ˆ ˆ 0H  =  ,                         (9.6) 

( )1 0
ˆ ˆˆ ˆ 0H i D  + =  �  .                      (9.7) 

Equation (9.7) is equivalent to the equation 

( )0
ˆ ˆ 0D = .                           (9.8) 

So, the equilibrium values satisfy the following equations 

( )
0

0

ˆ ˆ 0,

ˆ ˆ 0.

H

D

  = 


=




                         (9.9) 

Examples of such equations are the Equations (6.11), (6.12) and (8.6), (8.7). 

10. Conclusion 

We considered the equation proposed by Lindblad for the statistical operator 
describing nonequilibrium state of quantum harmonic oscillator. From this eq-
uation, first we obtained the density matrix equation in energy representation 
and the equation for the diagonal elements of this matrix. We formulated the 
expressions defining physical meaning of Lindblad equation coefficients. Then 
we derived the equation for the mean value of a coordinate and found its general 
solution. We demonstrated that the mean coordinate value exponentially de-
creases in time. We obtained the equation for the mean oscillator energy and its 
general solution. We found the equilibrium mean energy value. This value is a 
monotonic decreasing function of temperature. We formulated Lindblad equa-
tion using coordinate and momentum operators. We obtained the density ma-
trix equation in the coordinate representation. From this equation, we derived 
the formula for equilibrium density matrix. We wrote the density matrix equa-
tion in the momentum representation. We obtained Wigner function equation 
and found the respective equilibrium state function. We found the uncertainty 
relation for various temperatures by applying Wigner equilibrium function. 
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