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Abstract 
This paper aims at extending our previous work on the solution of the 
one-dimensional Dirac equation using the Tridiagonal Representation Ap-
proach (TRA). In the approach, we expand the spinor wavefunction in terms 
of suitable square integrable basis functions that support a tridiagonal matrix 
representation of the wave operator. This will transform the problem from 
solving a system of coupled first order differential equations to solving an al-
gebraic three-term recursion relation for the expansion coefficients of the wa-
vefunction. In some cases, solutions to this recursion relation can be related to 
well-known classes of orthogonal polynomials whereas in other situations so-
lutions represent new class of polynomials. In this work, we will discuss vari-
ous solvable potentials that obey the tridiagonal representation requirement 
with special emphasis on simple cases with spin-symmetric and pseudos-
pin-symmetric potential couplings. We conclude by mentioning some poten-
tial applications in graphene. 
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1. Introduction 

The basic equation of relativistic quantum mechanics was formulated by Paul 
Dirac in 1928 in a way consistent with special relativity [1]. This equation de-
scribes the behavior of weakly coupled electrons at high speeds or strongly 
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coupled electrons such as in the case of core electron states in heavy atoms. 
Among the benefits of this relativistic formulation, it is the natural emergence of 
the electron spin and the prediction of the existence of an antiparticle partner to 
the electron, the positron, which was discovered experimentally few years later. 
The physics and mathematics of the Dirac equation is very rich, illuminating and 
providing a theoretical framework for different physical phenomena that are not 
present in the nonrelativistic regime such as the Klein paradox [2]. In addition, 
Dirac equation emerges in the study of the transport properties in graphene, 
which makes it important for future applications. Graphene is the first truly two 
dimensional system whose carriers exhibit a relativistic-like behavior. Electrons 
in graphene are described by a massless two dimensional relativistic Dirac equa-
tion that gives rise to a gapless energy dispersion near the K and K’ points of the 
first Brillouin zone. So in this context, graphene represents a test bed for many 
relativistic phenomena such as Klein tunneling that could be observed with car-
rier having speeds one thousand time smaller than the speed of light [3] [4] [5]. 

Exact solutions of the Dirac equation with a given potential configuration are 
limited and not trivial [6] [7] [8] [9] [10] compared to the nonrelativistic 
Schrödinger equation. In fact, the Dirac Hamiltonian being a matrix in the spi-
nor space allows for more structure in the potential interaction. The terminology 
given to relativistic problems such as the “Dirac-Coulomb”, “Dirac-Oscillator”, 
“Dirac-Morse”, ∙∙∙ etc. refers to the Dirac equation that reduces to an effective 
Schrödinger-like equation with the named potential for the large spinor compo-
nent. Different approaches were developed to generate exact solutions to the Di-
rac equation such as supersymmetric quantum mechanics [11], Darboux trans-
formation [12] and factorization method [13] to mention only few. 

This paper is an expanded version of our letters [14] with further develop-
ments and applications in which we use the J-matrix inspired Tridiagonal Re-
presentation Approach (TRA). The basic idea of the approach is to write the 
spinor wavefunction as a bounded infinite series with respect to a suitably cho-
sen square integrable basis function as  

( ) ( ) ( )m m
m

x f xεψ ε φ=∑  

where ( ){ } 0m m
f ε

∞

=
 is a set of expansion coefficients that are functions of the 

energy and potential parameters and ( ){ }
0m m

xφ
∞

=
 is a complete set of spinor 

basis functions that carry only kinematic information. Using this form of the 
spinor wavefunction in the stationary wave equation, ( ) 0H Jε ψ ψ− = = , 
where H is the Dirac Hamiltonian and requiring that the matrix representation 
of the wave operator, ( ),n m n mJ Hφ ε φ= − , be tridiagonal and symmetric so 
that the action of the wave operator on the elements of the basis is allowed to 
take the general form ( ) 1 1n n n nH E φ φ φ φ− +− ∼ + + . This requirement 
transforms the wave equation to the following three-term recursion relation for 

( ){ } 0m m
f ε

∞

=
 [15]:  

( ) ( ) ( ), , 1 1 , 1 1 0n n n n n n n n nJ f J f J fε ε ε− − + ++ + =             (1.1) 
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Thus, the problem now reduces to solving this three-term recursion relation 
which is equivalent to solving the original wave equation. Of course, this equa-
tion can be solved in different ways in mathematics [16] [17]. Sometimes solu-
tions of Equation (1.1) can be written in a closed form by direct comparison to 
well-known orthogonal polynomials. However, in other cases this recursion re-
lation does not correspond to any of the known orthogonal polynomials giving 
rise to new class of orthogonal polynomials. The challenge will then be to write 
these solutions in a closed form and find the properties of the associated ortho-
gonal polynomials such as the weight function, generating function, spectrum 
formula, asymptotics, zeroes, etc. 

In the following section, we introduce the general formulation of the problem 
and show how to calculate the matrix elements of the Dirac wave operator in a 
general basis. Then we consider two important choices of bases depending on 
the configuration space of the problem. One is written in terms of the Jacobi po-
lynomials and the other is written in terms of Laguerre polynomials. In the third 
section, we present various examples of exactly solvable potentials with special 
focus on possible applications. We give our conclusions and discuss future work 
in the last section. 

2. Theoretical Modeling 

The most general form of 1D time-independent Dirac equation in the presence 
of scalar potential ( )S x , two-component (time, space) vector potential 
( ) ( ) ( )( ),x V x U x=A  and pseudo-scalar potential ( )W x  can be written in the 

following form (in the relativistic units 1c= = ):  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )
( )

( )
( )

d
d

d
d

m S x V x W x iU x x xx
x xW x iU x m S x V x

x

ψ ψ
ε

ψ ψ

+ +

− −

 + + + −    
  =          + + − − + 
 

−
   (2.1) 

where ε  is the energy and ( ) ( ) ( )( ),
t

x x xψ ψ+ −Ψ =  is the two-component 
spinor wavefunction. The space component of the vector potential can be 
gauged away to simplify the problem using a unitary transformation  

( ) ( ) ( )e i xx xψ ψ− Λ± ±→  provided that the phase function Λ(x) obey the rela-
tionship ( )d dx U xΛ = , hence from now on we set U(x) = 0 in our equations. 
Our strategy then is to write the spinor components as an expansion over a 
complete basis set  

( ) ( ) ( )n n
n

x f xψ ε φ± ±= ∑  

where ( ){ }
0n n

xφ
∞±

=
 is now a two-component spinor basis. The matrix elements, 

,n mJ  associated with (2.1) is written below: 

( ),

d d
d d

n m n m n m n m

n m n m

J H Q Q

W W
x x

φ ε φ φ φ φ φ

φ φ φ φ

+ + − −
+ −

+ − − +

= − = +

   + − + + +   
   

         (2.2) 
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where ( ) ( )Q V x S x m ε± = ± ± −  and ( ) ( ) ( )( ),
t

n n nx x xφ φ φ+ −=  is the spinor 
wavefunction. 

In the presence of symmetry, we get more solutions to Equation (2.1). These 
symmetries include the spin-symmetric coupling in which ( ) ( )V x S x= , the 
pseudospin symmetric coupling which requires ( ) ( )V x S x= − , and the pres-
ence of the scalar potential alone, i.e. ( ) ( ) 0V x W x= = . We have discussed all 
the possible symmetries in Section 3. In these symmetries, the problem reduces 
to solving an effective 1D Schrödinger-like equation which has been treated us-
ing the TRA in the past [18] [19] [20] [21], and very recently in [22]. In what 
follows, we will discuss the situation in which there is no relationship between 
the potentials in Equation (2.1).  

We start here by relating the spinor components using Equation (2.1), in ab-
sence of U(x), as follows:  

( ) ( )1 d
d

x W x
m S V x

ψ ψ
ε

− + = + + + −  
               (2.3) 

We refer sometimes to ( )xψ +  as the “larger” component due to the domi-
nator in (2.3). The general case we refer to holds when we have V(x) alone or 
V(x) and S(x) together with or without W(x) with no symmetry between V(x) 
and S(x). To simplify the problem, we relate the corresponding basis functions 
through the kinetic balance relation [23]:  

( ) ( )d
dn nx W x

m x
η

φ φ
ε

− + = + +  
                   (2.4) 

where η  is just a real dimensionless constant and mε ≠ −  which means that 
this solution will cover only the positive energy space. Using Equation (2.4) in 
(2.2) with the coordinate transformation ( )x y x→ , we can write the matrix 
elements of the wave operator, J, as follows:  

( )

2
2

, 2 2

2

d d
ddn m n m

n m

yJ y
m yy y

m Q W W
m

η
φ φ

ε

η ε
φ φ

ε η

+ +

+ +
+

 ′′
′= − + ′+  
 + ′+ + − +  

          (2.5) 

where the prime over the variable stands for the derivative with respect to x, i.e. 
d
d
WW
x

′ =  The coordinate transformation is made such that we make the do- 

main of the Hamiltonian compatible with the domain of the basis functions, see 
Table 1. The next step is to use basis functions that make (2.5) tridiagonal and 
symmetric. We usually use two important bases which are mentioned below: 

1) Laguerre Basis: 

( ) ( )e y
n n ny A y L yα β νφ+ −=                    (2.6) 

where ( )nL yν  is the generalized Laguerre polynomial of order n in y,  

( )
( )

1
1n

n
A

n ν
Γ +

=
Γ + +

 is just a normalization constant, and { }, ,α β ν  are real pa-

rameters. 

https://doi.org/10.4236/jamp.2017.510172


I. A. Assi, H. Bahlouli 
 

 

DOI: 10.4236/jamp.2017.510172 2076 Journal of Applied Mathematics and Physics 
 

Table 1. Few interesting coordinate transformations that are very useful in our approach 
which will be used to obtain different class of solvable potentials. 

Transformation equation Domain mapping: x y→  Basis 

y xλ=  [ [ ] [0, 0,∞ → ∞  

Laguerre ( )2y xλ=  ] [0,ℜ→ ∞  

e xy λµ −=  ] [0,ℜ→ ∞  

( )tanhy xλ=  [ ]1,1ℜ→ −  

Jacobi 

1 2e xy λ−= −  [ [ [ ]0, 1,1∞ → −  

( )cosy xλ=  [ ] [ ]0,π 2 1,1→ −  

( )22 1y x L= −  [ ] [ ]0, 1,1L → −  

( )22 tanh 1y xλ= −  [ [ [ ]0, 1,1∞ → −  

 
2) Jacobi Basis:  

( ) ( ) ( ) ( ) ( ),1 1n n ny A y y P yα β µ νφ+ = − +              (2.7) 

where 
( ) ( ) ( )

( ) ( )1

2 1 1 1
1 12n

n n n
A

n nµ ν

µ ν µ ν
ν µ+ +

+ + + Γ + Γ + + +
=

Γ + + Γ + +
 is just a normalization 

constant, [ ]1,1y∈ −  and ( ) ( ),
nP yµ ν  is Jacobi polynomial of order n. The para-

meters { }, , ,α β µ ν , with , 1µ ν > − , are real numbers.  

An interesting task for the motivated reader is to use these bases to verify that 
Equation (2.3) leads to Equation (2.4), i.e. the tridiagonal representation of ,n mJ  
cannot be made unless we use the kinetic balance relation. In this section, we do 
the calculations in Laguerre basis, while the calculations in Jacobi basis can be 
found in Appendix B. This gives the following form of the matrix elements:  

( )

( )

2 2

, 2

2

2

d de 1
dd

e

yn m
n m n m

yn m
n n

A AJ L y y y L
m yy

A A yL y G y L
m y

ν ν ν

ν ν ν

η κ
ν

ε

η κ
ε

−

−

 
= − + + − +  

−
′+

      (2.8) 

where,  

( ) ( ) ( )

( )

2
2

1

2

m ayG y W W Q
yy

a b b y

ε α α
η

αβ β α β β

+

+ + − 
′= − + − ′  

+ + − − −

         (2.9) 

Using the properties of nLν  (A1), (A3), and (A4), we impose the following 
constraints:  

1) We use the coordinate transformation that satisfies ea byy yκ′ = , for reals 
{ }, ,a b κ . This form is compatible with the Laguerre weight function in (2.6) and 
eases the measure transformation. 

2) The parameters are constrained to be 2 1aα ν+ = +  and 2 1bβ − = , to 
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ensure the tridiagonal representation of the first matrix element in (2.8). 
3) ( )G y yρ σ= + , for reals ρ  and σ , to ensure the tridiagonal represen-

tation of the last matrix element in (2.8). 
Thus, the tridiagonal form of ,n mJ  becomes:  

( ){
( ) ( ) }

2

, ,

, 1 , 1

2 1

( 1) 1

n m n m

n m n m

J n n
m

n n n n

ηκ
ν ρ σ δ

ε

ρ ν δ ν δ+ −

= + + + +  +
 − + + + + + 

     (2.10) 

The potentials that allow (2.10) to hold must be chosen such that:  

( ) ( )

( )

2
2

1

2

m ayy W W Q
yy

a b b y

ε α α
ρ σ

η

αβ β α β β

+

+ + − 
′+ = − + − ′  

+ + − − −

      (2.11) 

We will discuss all the possible symmetries in Section 3. 

3. Results and Discussions 

This section is divided into three parts organized as follows. In Section 3.1, we 
expose different results related to graphene. In Sections 3.2, we discuss the set of 
possible solvable potentials in presence of spin symmetries. Then we move to 
Section 3.3 to expose some results on the general case.  

3.1. Scalar Potential 

In this situation we consider ( ) ( ) 0W x V x= = . Applying the unitary transfor-

mation 
π
4e yi σ

, where yσ  is the 2 × 2 Pauli matrix 
0

0
i

i
− 

 
 

, on Dirac Hamil-

tonian in Equation (2.1), this gives the following form of the wave equation:  

( )
( )

( )
( )

d0
d

d 0
d

m S x xx
x xm S

x

χ χ
ε

χ χ

+ +

− −

 + +    
  =          − + + 
 

        (3.1.1) 

where 
π
4e yi σ

χ ψ= . The reason behind this transformation is that Equation  

(3.1.1) is equivalent to Dirac-Weyl equation for an electron in graphene moving 
under the influence of an external magnetic field acting perpendicular to the 
plane of the graphene sheet. To see the correspondence, we write down the Di-
rac-Weyl equation which reads [24] [25]1:  

( ) ( ), ,F
ev x y E x y
c

 ⋅ + Ψ = Ψ 
 

p Aσ             (3.1.2) 

where Fv  is the Fermi speed, ( )T
,x yσ σ=σ  is the vector Pauli matrices, 

,i
x y

 ∂ ∂
= −  ∂ ∂ 

p   is the 2D momentum operator, e is the electron’s charge, c is  

 

 

1In the presence of electric fields, we just add the vector potential to the Hamiltonian in (3.1.2). 
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the speed of light, A  is the two-vector potential, and E  is the energy eigen-
value. Now, choosing the z-axis normal to the graphene sheet, then the magnetic 
field could be generated from the two-vector potential in the Landau gauge 

( )( )0, ,0yA x=A  as 

( )( ) ( ) ( )
d

0, ,0 , 0,0, ( ) ,
d

y
y

A
A x B x B x

x
= = =A B          (3.1.3) 

This gauge suggests that the spinor is separable as ( ) ( ), eikyx y xψΨ =  
(translational symmetry). This will reduce Equation (3.1.2) to Equation (3.1.1) 
with the following maps:  

m k→ , y
eS A

c
→



, FE vε =  , and χ ψ→  

If we define ( ) ( )F x m S x= + , we can now relate the spinor wavefunction 
components in Equation (3.1.1) as follows:  

( ) ( ) ( )1 d
d

x F x x
x

χ χ
ε

±  = ± +  
               (3.1.4) 

The constraint in Equation (3.1.4) allows us to break Dirac equation into two 
effective Schrödinger equations for each spinor component which we write 
down in compact form as follows:  

2

2

d 2 2 0
d

U E
x

χ± 
− + = 

 
                   (3.1.5) 

where 
2

2
F FU

′±
= , and 

2

2
E ε
= , with 

d
d
FF
x

′ = . Consequently, we just need  

to solve the effective Schrödinger Equation (3.1.5) for any component and find 
the other spinor component using the relation in (3.1.4). However, we need to 
stress that each solution of (3.1.5) will cover part of the energy space comple-
mentary to the other one. Luckily, Schrödinger equation has been treated in the 
past, using the TRA, by different authors including Alhaidari and Bahlouli [15] 
[18] [19] [20] [21]. We have tabulated few of the solvable potentials of Equation 
(3.1.5), which were treated by the TRA, in Table 2. We should point out that the 
situation with 0S V= =  is mathematically similar to the previous case which 
results, again, in having two Schrödinger equations for each spinor component 
as in Equation (3.1.5) with ( )2 2U W W ′= ±  and ( )2 2 2E mε= − . Next, we-
will discuss different situations that will be useful for graphene system.  

As a first example, we consider the following hyperbolic magnetic field bar-
rier:  

( ) ( )
0

2cosh
BB x

xα
=                      (3.1.6) 

where 0B  and α  are constants. This case corresponds to m k=  and  
( )0 tanhS S xα= , with 0 0S eB cα=  . Comparison to Schrödinger equation, 

this situation is equivalent to the following potential:  
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Table 2. Some of the solvable potentials for Schrödinger equation which were obtained in the past using the TRA [14] [23] [28]. 

( )V x
 

Domain 
(x)

 
nE

 

( ) ( ) ( ), n m n m
m

x E f E xψ φ=∑  Constraints
 

( )
2

1 2B l lA
x x

+ +
+  [ [0,∞  

2
1
2 2 1

A
n ν

 
−  + + 

 ( ) ( )1 2 2e x
n n nx A x L xν νφ + −=  

( )21 2 1 2 2l Bν = − + + +
 

1ν > −  

( )4 2
2

1 21
2

B l l
x

x
λ

+ +
+  ] [,−∞ ∞  ( )2 2 2nλ ν+ +  ( ) ( )

3
22 4e x

n n nx A x L x
ν

νφ
+ −=  

( )21 2 1 2 2l Bν = − + + +
 

1ν > −  

( )
22

2e e
2 2

x x

V x

A λ λλ µ− −
  = +     

 ] [,−∞ ∞  
22 1

2 2
A nλ
µ

 
− + + 

 
 ( ) ( )

1 1
2 2e 2e e e

x
A An x n

x
n n nx A L

λλ
µ µµ λψ µ

−− + + + +
− −=  , 0µ λ >  

( )2 e 1e 1 xx

C A
λλ

+
−−

 [ [0,∞  ( )
2

22 21
18 2

2

n

A C
E n

n

λλ ν
ν

 
 −+

= − + + + +  

 
( ) ( )( ) ( )( )

( ) ( )

1 2 1 2

,

1 1n n

n

x A y y

P y

ν µ

µ ν

ψ + +
= − +

×
 

( )2 2 1
8

C
λ ν −

=
 

, 1µ ν > −  

1 2e xy λ−= −  

( ) ( )

( )2

tanh

cosh

V x C x
A

x

λ

λ

=

+
 ] [,−∞ ∞  

22
2 2

22n n n

CE λ ϑ ϑ
λ

−
  = − +  

   
 

( ) ( ) ( ) ( ) ( )2 2 ,1 1n n n n

n n nx A y y P yν µ µ νψ = − +  

( )tanhy xλ= , 0λ >  

( ) ( )2 22 2C λµ λν= −  

1
2n n Dϑ λ = + − 

 
 

( ) ( )2 22 2nE λµ λν= − −  

( )0 cosV k xλ  [ ]0, L  See [28] ( ) ( ) ( )1 2, 1 2 cosn nx P k xψ λ± ±∝     
π Lλ =  

0,1,2,3,k = 
 

 

( ) ( )
( ) ( )0 0 2 2

0 02

1 2 tanh
2 cosh

S S
U x k S kS x

x
α

α
α

 −
= + + + 

  
         (3.1.7) 

This potential is called the hyperbolic Rosen-Morse potential which was 
treated using the TRA in [15]. Using the energy spectrum of this potential (See 
Table 2), we write the energy spectrum of an electron in graphene in this 
hyperbolic barrier as follows:  

22 2
2 2 2 2 2 2 0

0 2

1 1
2 2n F

kSv k S n nε α γ γ
α

−     = + − + − + + −     
      

   (3.1.8) 

where 
( )0 02

2

1
4

S S α
γ

α
−

= +  and ( )
2

0 0 4
S S α

α− > − . This result agrees with the 

result obtained in [3]. The upper component of the spinor wavefunction is now 
written as [15]:  

( ) ( )( ) ( )( ) ( ) ( )( )2 2 ,, 1 tanh 1 tanh tanh en n n n iky
n n nx y A x x P x

ν µ µ νχ α α α+ = + −  (3.1.9) 

where ( )0
1 2n n kSµ ϑ
α

= − − , ( )0
1 2n n kSν ϑ
α

= − − , 
2

2 22
n

n
Fv

ε
ϑ =



, and  

( ) ( ) ( )
( ) ( )1

2 1 1 1
1 12n

n n n
A

n nµ ν

α µ ν µ ν
ν µ+ +

+ + + Γ + Γ + + +
=

Γ + + Γ + +
 is just a normalization con-
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stant. The lower spinor component can be easily calculated using Equation 
(3.1.4).  

Another interesting example we mention here is the case when the magnetic 
barrier takes the following exponentially decaying form:  

0e
xB B α−=                        (3.1.10) 

where 0B  and α  are constants with 0α > . This case corresponds to a scalar 
potential of the form 0e

xS S α−= , where 0 0S eB c α= −  . Now, using Equation 
(3.1.5), we find that the Schrödinger potential reads: 

( ) ( )2 2 2
0 0

1
2

e 2 ex xS S kU x k α αα− −
+ += − 

          (3.1.11) 

This is simply the 1D Morse oscillator potential, up to a constant, which was 
treated using the TRA for Schrödinger equation by Alhaidari in [15]. Using the 
results in [15], we write the energy eigenvalues for Dirac-Weyl equation as fol-
lows:  

2
2 2 2 2 2 1

2n Fv k nγ
ε α

µ
 

= − + + 
 

               (3.1.12) 

where ( )0
22S kγ αα−=  and 02Sµ α= . The upper component of the spi-

nor wavefunction reads:  

( ) ( ) ( )e 2
, e e e

xx x
n n n

ikyx y A L
ααν µ ν αχ µ

−− ++ −=           (3.1.13) 

where 
2 2 1nγ

ν
µ

= + + . Our results in this example agree with previous findings 

[3].  
One last example we mention in this section is what we call the Hulthén bar-

rier in which the magnetic field takes the following form:  

( )
( )

0
2

e

e 1

x

x

BB x
α

α
=

−
                    (3.1.14) 

where 0B  and 0α >  are constants. Following the same procedure, this will be 

the situation when the scalar potential is ( ) 0

e 1x

SS x α=
−

. The associated super-

symmetric potential (Schrödinger potential) now reads: 

( ) ( )
( )

( )0 0 0 2
2

2
1 e

1

1 e2 xx

S S S k
U kx αα

α α− −
+ +

 
 =
 


− ++ −
           (3.1.15) 

The potential in (3.1.15) is the generalized Hulthén potential which was 
treated in the TRA in [15]. Based on the results obtained in [15], we write the 
energy eigenvalue of Dirac-Weyl equation for this situation as follows:  

( )
2

22
2 2 2 2 21

14 2
2

n Fv k n
n

γ ω αα ν
ε

ν

 
 −+

= − + + + +
 


        (3.1.16) 
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where ( )0
2 2

0 1
2 2 4

S S αα ν
ω

 −
= = 



−



, 
( )0 2

2
S k α

γ =
−

, and 1ν > − . Now, we 

write down the spinor component as follows:  

( ) ( )( ) ( )( ) ( ) ( )
2

1 2 1 2 ,2, 2 1 e e e 1 2e
n

n nx x iky x
n n nx y A P

ν µ
ν µ µ να α αχ

+ +
+ ++ − − −= − −  (3.1.17) 

where 1nµ > −  and satisfies ( )
2

2 221 1 1
12 4 2

2

n n
n

γ ω αµ ν
ν

 
 −+ +  = + +   +   +
 

. We  

leave it to the interested reader to calculate the lower component using Equation 
(3.1.4). Up to our knowledge, this situation was not treated in the past. Note that 
for very large values of x the barrier will behave similarly to the previously men-
tioned case. It is obvious that all of the previous systems have finitely many 
bound states as shown in the spectrum formulas.  

We have also solved other interesting situations in which the magnetic field is 

constant, singular 2

1
x

, and few other cases are summarized in Table 3.  

3.2. Spin-Symmetry and Pseudo-Spin Symmetry 

Defining V SΣ = +  and V S∆ = − , we refer to the spin-symmetric coupling 
the situation where we have 0∆ = , and the pseudo spin symmetric coupling for  

 
Table 3. List of magnetic field configurations in graphene with the energy eigenvalue and the supersymmetric potential 
(Schrödinger potentials) of each case [14]. 

( )B x  ( )U x

 

2
nε

 

0B  
( )21

2 2
x k γγ + +  

0eB cγ =   

( )2 2 2 2 1Fv nγ ω+ +   
 

2 2mγ ω=  

0
2

B
x

 

( )2

2

1
2 2
k k

x x
γ γ γ−

+ +  

0eB cγ = −   

2

2 2 2 1
2 1Fv k

n
γ
ν

  
−  + +   

  

( )2 1 1ν γ= − > −  

( ) ( )
0

2cos
BB x

xλ
=  

( ) ( ) ( )
2 2

0 0 20
0 tan sec

2 2
S Sk S kS x x

λ
λ λ

+−
+ +  

where 0 0S eB c λ=   

2
2 2 2 2 2

0

2 2
2 0

2

1
2

1
2

Fv k S n D

kS n D

λ λ

λ λ
λ

−

  − + + −  
 

   − + −   
   



 

where ( )2 2
0 0 4D S S λ λ= + +  and ( ) 2

0 0 4S S λ λ+ > −  

( ) ( )
0

2sinh
BB x

xλ
=  

( ) ( )
( )

2 2
0 00

0 2coth
2 2sinh

S Sk S kS x
x
λ

λ
λ
−−

− +  

where 0 0S eB c λ= −   

2
2 2 2 2 2

0

2 2
2 0

2

1
2

1
2

Fv k S n D

kS n D

λ λ

λ λ
λ

−

  − − + −  
 

   − + −   
   



 

where ( )2 2
0 0 4D S S λ λ= − +  and ( ) 2

0 0 4S S λ λ− > −  
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which 0Σ = .2 These cases are very useful in nuclear physics [26] [27] [28]. For 
the case when 0∆ = , we use Equation (2.1) to write an equation for the upper 
spinor component which reads: 

2

2

1 d
2 d ssU E

x
ψ ψ+ + 

− + = 
 

                  (3.2.1) 

where ( )
2

2ss
W WU m Vε

′−
= + + , 

2 2

2
mE ε −

= , and 
d
d
WW
x

′ = . Thus, we need  

to solve Schrödinger Equation (3.2.1) for ψ +  and then use (2.1) to compute 
ψ − . As discussed in previous section, we will rely on the obtained solutions of 
Schrödinger equation using the TRA, where we tabulated few of these solvable 
potentials in Table 2, to obtain solvable potentials in these cases. Similarly, one 
can follow the same procedure for 0Σ = , which results in an effective 
Schrödinger equation for the spinor lower component which is shown below:  

2

2

1 d
2 d psU E

x
ψ ψ− − 

− + = 
 

                 (3.2.2) 

where ( )22 2psU W W m Vε′= + + − , and 2 22E mε= − . In what follows, we ex-
pose different examples in which (3.2.1) and (3.2.2) are exactly solvable in the 
TRA in the presence of the potentials ssU  and psU , respectively.  

The first example of solvable potentials we would like to mention here is the 
case when ( ) ( ) 2

0V x S x V x= − =  with ( ) 0W x = . The effective Schrödinger 
equation in this case reads:  

( )
2

2
02

1 d
2 d

m V x E
x

ε ψ ψ− − 
− + − = 
 

             (3.2.3) 

where 2 22E mε= − . This is equivalent to Schrödinger equation for the Har-
monic oscillator with “frequency” ( ) 02 m Vω ε= − . The basis components are 
written in Laguerre basis as ( ) ( ) ( )2 21 2 2 2 2e x

n n nx A x L xν λ νφ λ λ+− −= , which was 
treated in the TRA, see [15], with 1 2ν = ± . Using the energy spectrum for the 
Harmonic oscillator obtained in the TRA, we write the bound states spectrum 
formula for this potential configuration in Dirac equation as follows:  

( ) ( )2 2
02 2 2 1n nm m V nε ε ν− = − + +             (3.2.4) 

where 0, 0m Vε > > , and 0,1,2,n =  . It is well known that Laguerre and Her-
mite polynomials are related when 1 2ν = ± , see [16] [17]. The spinor wavefunc-
tion lower component for this case reads 

( ) ( ) ( )2 21 2 2 2 2e x
n n nx A x L xν λ νψ λ λ+− −=             (3.2.5) 

where ( ) ( )1 1nA n nλ ν= Γ + Γ + + . The spinor upper component can be easily 
evaluated using Equation (2.1). For applications, this situation can be modeled 
for an electron in graphene moving under the influence of linear electric and 
magnetic fields by considering the following map in Dirac-Weyl equation:  

 

 

2Sometimes we use ssC∆ =  and psCΣ = , where ssC  and psC  are constants for spin symmetry 
and pseudo spin symmetry, respectively. 
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m k→ , y
eS A

c
→



, FV V v→  , FE vε =  . Moreover, this case has also  

been studied in nuclear physics and our results match with what other authors 
obtained, see for example, [29] [30] [31]. However, one can follow a similar 
procedure for the same oscillator potentials for spin-symmetric couplings, i.e. 
for ( ) ( ) 2

0V x S x V x= = , with ( ) 0W x = , and obtain the spectrum to be similar 
to (3.2.4) with m mε ε− → +  under the square root.  

Another example we would like to mention here is the case when we have 
spin-symmetric coupling with ( ) ( )2

0 coshV x V xα= , and ( )0 tanhW W xα= . 
Using Equation (3.2.1), we write ( )ssU x  as follows:  

( ) ( )
( )

22
0 0 00

2

2 2
2 coshss

m V W WWU x
x

ε α
α

+ − −
= +             (3.2.6) 

This is a special form of Rosen-Morse potential which was treated in the TRA 
in [15]. Using the spectrum formula for ( )ssU x , we calculate the bound states 
spectrum formula of Dirac particle in this potential configuration to be:  

2
2 2 2 2

0
1
2n m W n Dε λ λ = + − + − 

 
                (3.2.7) 

where ( )2 2 2
0 0 02 4D W W m Vα ε λ= + − + + , and  

( )2 2
0 0 04 2m W W Vε α α+ < + + . The upper spinor component is written as be-

low [14]: 

( ) ( )( ) ( )( ) ( ) ( )( )2 2 ,1 tanh 1 tanh tanhn n nx A x x P x
ν µ µ νψ λ λ λ+ = − +   (3.2.8) 

where 
( ) ( ) ( )

( ) ( )1

2 1 1 1
1 12n

n n n
A

n nµ ν

λ µ ν µ ν
ν µ+ +

+ + + Γ + Γ + + +
=

Γ + + Γ + +
, and  

2 21
n n nmµ µ ε ν

λ
= = − = . To avoid complex parameters in Jacobi polynomials  

we require that 0 2mκ< < , where ( )2 2
0 0 04 2W W Vκ α α= + + . Thus, the con-

dition in (3.2.7) requires mε < , which means that this system has finitely many 
bound states. We leave it to the interested reader to calculate ( )xψ −  using 
(3.2.8) in (2.1).  

One last case we would like to discuss in this section is when  
( ) ( ) ( )0 cosS x V x V xκ= = , and ( ) 0W x = . The potential function ( )ssU x  for 

this case is ( ) ( )0 cosssU m V xε κ= + . The Schrödinger equation in the presence 
of sinusoidal potential was studied by Alhaidari and Bahlouli in [21]. The spinor 
basis component is written in terms of Jacobi basis. By comparison, we write the 
J-matrix elements associated with this case as follows: 

( )
2

2 2 2 2
, , 0 , 1 , 1

1
2n m n m n m n mJ m n m Vµ ν

κ ε κ δ ε δ δ+ −

 + +   = − − + − + +       
 (3.2.9) 

where 2 2 1 4µ ν= = . Using (3.2.9) in (1.1), we write the three-term recursion 
relation as: 

( ) [ ]
2

2 2 2
0 1 1

1
2 n n nm n f m V f fµ ν

ε κ ε − +

 + + − − + = + +  
   

      (3.2.10) 
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Based on (3.2.10), we have exact solution of the expansion coefficients 
{ } 0n n

f ∞

=  that can be evaluated exactly at any order n with initial conditions 
usually taken to be 1 00, 1f f− = = . Unfortunately, exact solutions of (3.2.10) 
cannot be written in a closed form as the recursion relation cannot be compared 
to any well-known class of orthogonal polynomials contrary to what we had in 
the previous examples. In fact, the solutions are referred to new polynomials 
which have been called “dipole polynomials” and have been found in different 
physical problems like electron in the dipole field and non-central potential 
problems [19] [20], see also Equation (8) in [32]. Moreover, the eigenstates can 
be evaluated at any order and the energy eigenvalues can be computed numeri-
cally with high accuracy. As an illustration, we have tabulated the lowest ten 
energy eigenvalues in Table 4. The spinor upper component for this system is  

written as ( ) ( ) ( ), n j n j
j

x f xψ ε ε φ+ += ∑ , where ( ){ } 0j n j
f ε

∞

=
 are solutions to 

(3.2.10) and ( )j xφ+  is written in terms of Jacobi basis below: 

( ) ( )( ) ( )( ) ( ) ( )( )
2 1 2 1

,4 41 cos 1 cos cosj j jx A x x P x
ν µ

µ νφ κ κ κ
+ +

+ = + −    (3.2.11) 

where 
( ) ( ) ( )

( ) ( )1

2 1 1 1
1 12n

n n n
A

n nµ ν

κ µ ν µ ν
ν µ+ +

+ + + Γ + Γ + + +
=

Γ + + Γ + +
. Similarly, we can fo- 

llow this procedure to find solutions for the pseudo-spin-symmetric coupling for 
the same sinusoidal potentials. For more solvable potentials in the presence of 
spin symmetries, we have tabulated more results in Table 5.  

3.3. General Case 

An interesting example we mention here is when 0S W= = , and ( ) 2
0V x V x= , 

which can be used for an electron in graphene moving under the influence of a  
 
Table 4. The first ten positive and negative energy solutions to Equation (3.23). Here we 
took 01, 0.5m V= = , 1 2µ ν= = , and 1.5, 0.1κ = . 

n 
1.5κ =  0.1κ =  

ε +  ε −  ε +  ε −  

0 1.36094 −2.36093 0.177463 −1.177460 

1 2.70386 −3.70384 0.353700 −1.353680 

2 4.13751 −5.13747 0.493753 −1.493710 

3 5.60360 −6.60352 0.610999 −1.610920 

4 7.08308 −8.08296 0.711619 −1.711500 

5 8.56935 −9.56917 0.798889 −1.798710 

6 10.05950 −11.05930 0.874517 −1.874280 

7 11.55220 −12.55180 0.939061 −1.938750 

8 13.04640 −14.04600 0.993513 −1.993110 

9 14.54190 −15.54140 1.045450 −2.044960 
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Table 5. Few examples of solvable potentials in the spin-symmetric coupling with the bound states spectrum formula and spinor 
wavefunction upper component for each [14]. One can obtain similar results in the pseudo-spin symmetry. 

( ) ( )V x S x=  ( )W x  nε  ( )n xψ +

 

2
2 2e e

2
x xA Bλ λλ − −+    0 ( )

2
2 2 2 1

2n n

Am m n
B

ε λ ε − = − + + +  
 

( )
( )

( )
( )( )

1 e
2

2 2 1

e

2 e

x
n

n

A m n B
B

n n

A m n
xB

n

x A

L B m

λλ ε

ε
λ

ψ

ε

−− + + + −
+

+ + +
−

=

× +

 

mε < , 0B > , 

( ) ( )1 1nA n nλ ν= Γ + Γ + +  

0e
xV λ−  0e

xW λ−  ( )
2

2 2 2 0

0

2 3
2n n

Vm m n
W

ε λ ε
λ

 
− = − + + + 

 
 

( )
( )

( )
( )

0
0

0

0

0

2 3 e
2

4 2 3

0

e

2 e

xV m n W
W

n n

V m n
W x
n

x A

L W

λλ ε λ
λ

ε
λ λ

ψ

λ

−− + + + −
+

+ + +
−

=

×

 

mε < , 0 0W > , 

( ) ( )1 1nA n nλ ν= Γ + Γ + +  

( )0 tanhV V xλ=  ( )0 tanhW W xλ=  

2
2 2 2 2 2 2 2

0 0 2
n

n n n

mm W V εε λ ϑ ϑ
λ

−
 + − = − +  

   
 

1
2n n Dϑ λ = + − 

 
 

2 2 2
0 0 4D W Wα λ= + +  

( ) 2
0 0 4W W α λ+ > −  

( ) ( )( ) ( )( )
( ) ( )( )

2 2

,

1 tanh 1 tanh

tanh

n n

n n

n n

n

x A x x

P x

ν µ

µ ν

ψ λ λ

λ

+ = + −

×
 

( )2 2
02n n nm V mµ ε ε λ= − − − +    

( )2 2
02n n nm V mν ε ε λ= − − + +    

, 1n nµ ν > −  

( )2 e 1e 1 xx

C A
λλ −−

+
−−

 0 

( ) ( )
2

22
2 2 21

14 2
2

n
n

m A C
m n

n

ε λλ νε ν

 
 + −+

= − + + + +  

 

( )22 2 2 1 4n mε λ µ− = − +  

( ) ( )( ) ( )( ) ( ) ( )1 2 1 2 ,1 1n n nx A y y P yν µ µ νψ + +
= − +  

1 2e xy λ−= −  

( ) ( )
2 2 1

8 nC m
λ ν

ε
−

= +  

( )
( )( )

( )

2

2
0 1

2

sinh

2 tanh 1
2

cosh

V
r

V V r
r

λ

λ
λ

+

+ −
+

 0 see [22] see [22] 

( )
( )

0 1
2

tanh
cosh

V V x
x
λ

λ
+

 0 see [22] see [22] 

( )

( )0 1

1
e 1

2 1 2e
1 e

r

r
r

V r

VV V

λ

λ
λ

−+
−

=
−

 × + + − − 

 0 see [22] see [22] 

( )
( ) ( )

( )

( )

( )

2 20

2

2 21

1 4 2
1

1
2

1 1

VV x V
x L x L

x LV V
x L x L

+

−


= +

− 

−
+ −

− −

 0 see [22] see [22] 
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confining parabolic electrostatic barrier. Using the transformation 
21

2
y xκ =  

 
 

in (2.11), we obtain 
( ) 0

4

4 1
4

m Vε
ρ

ηκ
+

= − , and 
2 2

2

1
2

m ε ν
σ

ηκ
− +

= +  for 1 2ν = ± . 

The J-matrix for this situation is given below: 

( )

( ) ( ) ( ) }

2 2 2
0

, ,4 2

0
, 1 , 14

81 1
2 2

4 1 ( 1) 1
4

n m n m

n m n m

m V mJ n
m

m V
n n n n

εηκ ν ε
δ

ε ηκ ηκ

ε
ν δ ν δ

ηκ + −

 + + −  = + + +    +     
+   − − + + + + +    

 (3.3.1) 

Using Equation (1.1), we write the three-term recursion relation as follows:  

( )

( ) ( ) ( )

2 2
0

2 4

0
1 14

81 1
2 2

81 1 ( 1) 1
2 2

n n

n n

m Vm f n f

m V
n n f n n f

εε ν
ηκ ηκ

ε
ν ν

ηκ − +

+ − + = − + +  
  

+   + − + + + + +    

   (3.3.2) 

by comparison with the three-term recursion relation of Meixner-Pollaczek po-
lynomials (A13), we find that the solutions to Equation (3.3.2) are the norma-
lized Meixner-Pollaczek polynomials. Using the infinite spectrum formula of 
these polynomials (A13), we obtain the following bound states spectrum for 

1 2ν = :  

( )2 2
0

34
4n nm m V nε ε η   − = ± − +    

               (3.3.3) 

where 00, 0Vε > >  (or 00, 0Vε < < ), and 4
032m Vε ηκ> + . The upper spi-

nor wavefunction associated with this case is given below: 

( ) ( ) ( )2 2 8 2 2, e 4
2

x
n j j n j

j
x x A f L xκ νκ

ψ ε ε κ+ −= ∑           (3.3.4) 

where ( ) ( )1 3 2jA j j= Γ + Γ + , ( ) ( )
3
4 ;n nf Pω ξ ξ θ= , where ( )

3
4 ;nP ξ θ  is 

the Meixner-Pollaczek polynomial of order n in ξ , ( )ω ξ  is its weight func-
tion (A11), with  

( )

2 2

04
m

m V
εξ

ε η
−

=
+

 and ( ) ( ) ( )0 0
4 4

8 81 1cosh
2 2

m V m Vε ε
θ

ηκ ηκ
+ +   

= + −   
   

 

the spinor wavefunction lower component can be easily obtained using the 
above result in Equation (2.1).  

We will not be able exhaust all solvable potentials in this section, but one can 
follow the same procedure to obtain different solvable potentials like ( ) 0e

xV x V κ−= , 
( ) ( )0 sinV x V xκ= , and others. We should point out here that we have used the 

kinetic balance relation [23] in our calculations which allow analytical solutions 
of the wave equation in the none simple cases. This relation is based on nonrela-
tivistic approximation which usually gives one energy solution either the “posi-
tive energy sector” or the “negative energy sector”. The interested reader is ad-

https://doi.org/10.4236/jamp.2017.510172


I. A. Assi, H. Bahlouli 
 

 

DOI: 10.4236/jamp.2017.510172 2087 Journal of Applied Mathematics and Physics 
 

vised to refer to [23] and references therein.  

4. Conclusion and Future Recommendations 

We have solved the one-dimensional Dirac equation using the Tridiagonal Re-
presentation Approach (TRA). This approach, even limited, provides a very easy 
and handy approach to find analytical solutions to a certain class of solvable po-
tentials for the 1D Dirac Equation. In the presence of symmetry between the po-
tential components in Dirac Equation, the problem can be reduced to solving an 
effective Schrodinger-like equation which was treated previously using the TRA 
[15] [18] [19] [20] [21]. The solvable potential configurations we obtained have 
been discussed in details in Section 3. As a potential application of our analytical 
results, we have mentioned in Section 3 that some of our results can be used di-
rectly in graphene to treat electrons subject to electrostatic or magneto static (or 
both) barriers, a subject of major importance in recent graphene literature. Fi-
nally, we would like to express our interest in extending our approach to Dirac 
Equation in higher dimensions.  
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Appendix A: Orthogonal Polynomials  

A1. The Generalized Laguerre Polynomials: 
Theses polynomials are solutions of the following second order differential 

equation:  

( ) ( )
2

2

d d1 0
dd ny y n L y

yy
νν

 
+ + − + = 

 
                (A1) 

where [ [0,y∈ ∞ , 1ν > − , and n Z +∈ .  
These polynomials satisfy the following useful properties:  

( ) ( ) ( )1
d ( )
d n n ny L y nL y n L y

y
ν ν νν −= − +                 (A2) 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 12 1 1n n n nyL y n L y n L y n L yν ν ν νν ν − += + + − + − +        (A3) 

( ) ( ) ( )
,

0

1
e d

!
y

n m n m
n

y L y L y y
n

ν ν ν ν
δ

∞
− Γ + +

=∫               (A4) 

A2. The Jacobi Polynomials:  
Jacobi polynomials ( ) ( ),

nP yµ ν  defined on [ ]1,1−  are solutions to the follow-
ing ODE:  

( ) ( ) ( ) ( ) ( )
2

,2
2

d d1 2 1 0
dd ny y n n P y

yy
µ νµ ν µ ν µ ν

 
− − + + + − + + + + =   

 
 (A5) 

Theses polynomials satisfy the following recursion properties:  

( )
( )

( ) ( ) ( ) ( )
,

, ,2 d
1 2

d 2 2
n

n n
n nPy n y P P

y n n

µ ν
µ ν µ νν µν µ

ν µ µ ν
+ + −

− = − + + + + + + 
   (A6) 
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yP y P y
n n

n n
P y

n n

n n
P y

n n
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( ) ( ) ( ) ( )

( ) ( )
( )

1
, ,

1
1

,

1 1 d

1 12
2 1 1 !

n m

n m

y y P P y

n n
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µ ν µ ν µ ν

µ ν µ ν
δ

µ ν µ ν

−

+ +

− +

Γ + + Γ + +
=

+ + + Γ + + +

∫
            (A8) 

A3. The Meixner-Pollaczek Polynomials 
These polynomials are defined in terms of the hypergeometric function as 

follows [16] [33]:  

( ) ( )
( ) ( ) ( )2

2 1

2
; e , ;2 ;1 e

2 1
in i

n
n

P y F n iy
n

µ θ θµ
θ µ µ

µ
−Γ +

= − + −
Γ Γ +

      (A9) 

where ( ),y∈ −∞ ∞ , 0µ >  and 0 πθ< < .  
These polynomials satisfy the following three-term recursion relation: 
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( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( )1 1

sin ; cos ;

1 2 1 ; 1 2 ;
2

n n

n n

z P z n P z

n n P z n n P z

µ µ

µ µ

θ θ µ θ θ

µ θ µ θ− +

= − +      

 + + − + + + 
      (A10) 

The associated weight function reads as follows:  

( ) ( ) ( )( ) ( ) ( ) 22 2 π1 2sin e
2π 2

zz iz
µ θω θ µ

µ
−= Γ +

Γ
           (A11) 

To calculate the bound states we use the infinite spectrum formula associated 
with these polynomials which is given below:  

( )22z n µ= − +                         (A12) 

In some cases we obtain a recursion relation similar to (A10) but we cannot 
have the sine and the cosine between −1 and 1. In such circumstances we trans-
form the problem by making a replacement θ → iθ which makes (A10) reads:  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( )1 1
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1 2 1 ; 1 2 ;
2

n n

n n

iz P z n P z
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θ θ µ θ θ

µ θ µ θ− +

= − +      

 + + − + + + 
     (A13) 

Appendix B: The Jacobi Basis 

Jacobi basis functions are defined in terms of Jacobi polynomials as follows:  

( ) ( ) ( ) ( ) ( ),1 1n n ny A y y P yα β µ νφ+ = − +                 (B1) 

where 
( ) ( ) ( )

( ) ( )1

2 1 1 1
1 12n

n n n
A

n nµ ν

µ ν µ ν
ν µ+ +

+ + + Γ + Γ + + +
=

Γ + + Γ + +
 is just a normalization  

constant, [ ]1,1y∈ −  and ( ) ( ),
nP yµ ν  is Jacobi polynomial of order n. The para-

meters { }, , ,α β µ ν  will be constrained in order to satisfy the tridiagonal re-
quirements. Following the same procedure as in the case of Laguerre basis we 
write the J-matrix as: 

( ) ( )
22

, ,1 e yn m
n m n m n m

A AJ n n L y G y L
m m

ν ν νκκ
µ ν δ

ε ε
−= + + + +

+ +
    (B2) 

where, 

( ) ( ) ( )

( ) ( )

2
2 2 2

2

1 2

1 11 1 2
1 1

yG y W W m V x m
y

y yb a b a
y y

ε ε

β β α α αβ α β

−  ′= − + + + − ′

 − +
− + − + + − − − − + − 

  (B3) 

and we used the properties of ( ) ( ),
nP yµ ν  to impose the following constraints: 

1) 2 1bβ ν+ = +  and 2 1aα µ+ = +  

2) The coordinate transformation is chosen such that ( ) ( )d 1 1
d

a by y y
x

κ= − + .3 

Recall that our main objective is to make (B2) tridiagonal and symmetric 
which can be achieved, again, by the linearity of (B3), that is:  

 

 

3This choice of transformation where y′  is compatible with the weight function of ( ),
nP µ ν  ease the 

analytical calculations. 
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( ) ( )

( ) ( )
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2 2 2
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1 11 1 2
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y

y yb a b a
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ρ σ ε ε

β β α α αβ α β

−  ′+ = − + + + − ′
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   (B4) 

For reals ρ  and σ , the condition (B4) is tricky and can only be achieved 
for certain coordinate transformations, certain choice of parameters and poten-
tial configurations. Section 3 in this paper discusses few examples of solvable 
potentials that satisfy (B4). Once this linearity achieved, we can write the 
J-matrix in its tridiagonal symmetric form as follows:  

( ) ( )( )
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, 1
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−
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+
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