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Abstract

We study a random planar honeycomb lattice model, namely the random
double hexagonal chains. This is a lattice system with nonperiodic boundary
condition. The Wiener number is an important molecular descriptor based on
the distances, which was introduced by the chemist Harold Wiener in 1947.
By applying probabilistic method and combinatorial techniques we obtained
an explicit analytical expression for the expected value of Wiener number of a
random double hexagonal chain, and the limiting behaviors on the annealed
entropy of Wiener number when the random double hexagonal chain be-
comes infinite in length are analyzed.
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1. Introduction

Topological indices (molecular structure descriptors) based on the distances
between the vertices of a graph are widely used in theoretical chemistry to
establish relations between the structure and the properties of molecules and
provide correlations with physical, chemical, and thermodynamic parameters of
chemical compounds [1]. Among the variety of these indices, the Wiener
number, denoted by W (G), is the best known one which was introduced by the
chemist Harold Wiener in 1947 [2] as a simple parameter. Wiener number has
been found to correlate with various physicochemical properties of a molecule
(modeled by a graph): Boiling point, heat of vaporization, heat of isomerization,
surface energy, specific dispersion, and sound velocity. In addition, the
parameter also correlates with some s-electron characteristics of conjugated

polymers; for example, the total 7-electron energy and HOMO-LUMO (Highest
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Occupied Molecular Orbital-Lowest Unoccupied Molecular Orbital) separation,
for details see [3] [4] and the references therein.

Let G be a connected graph with vertices labeled as 1,2,---,n. The standard
distance between two vertices 7 and j, denoted by dg (i, j), is the length of a
shortest path connecting them. In terms of graph theory, Wiener number [2] [3]
is defined as the sum of distances between all pairs of vertices in G, ie,

W(6)=3de ()= > 3 defic)= X d(ilG), o)

i<j ieV(G)jev(G) ieV(G)

where d(i|G) is the Wiener number of vertex / in G, defined by
d(i|G)= > d(ij).

A hexagé?lgl system is a 2-connected plane graph whose every interior face is
bounded by a regular hexagon of unit length 1. Hexagonal systems are of great
importance for theoretical chemistry because they are the natural graph
representation of benzenoid hydrocarbons [5] [6] [7] [8]. A hexagonal system A
is said to be catacondensed if all its vertices are on the outerface, otherwise H is
said to be pericondensed. In [4], Gutman et al obtained an explicit analytical
expression for the expected value of the Wiener number of a random benzenoid
chain with n hexagons(a graph of unbranched catacondensed benzenoid-like
structure). The random multiple chain was introduced in [9], the generating
procedure of which is inspired by the growth of single walled zigzag nanotubes
[10]. Some results on double hexagonal chains (a special type of pericondensed
hexagonal system with nonperiodic boundary condition, which is constructed by
successively fusing a series of naphthalenes), can be found, for example, in [11]
[12] [13] [14] [15] and the references therein. In statistical mechanics, entropy is
related to the number of microscopic configurations that a thermodynamic
system can have when in a state as specified by some macroscopic variables. In
this paper, we study the annealed entropy of Wiener number on random double
hexagonal chains.

The random double hexagonal chain RD, 6 can be obtained from a

2xn
naphthalene by stepwise triple-edge fusion of a new naphthalene. For convenience,
we orient each naphthalene so that its interior edges are horizontal. There are
two types of triple-edge fusion of two naphthalenes: a-type fusion and S-type
fusion, as shown in Figure 1(a). At each step & (k > 3) , a random selection is
taken from one of the two possible fusions: a-type fusion with probability p and
p-type fusion with probability 1-p. In our model, we assume that the
probability p is a constant, invariant to the step parameter & That is, the process

described is a zeroth-order Markov process. For n>2, RD, = isa pericondensed

2xn
hexagonal system. Random (double) hexagonal chains offer a good model for a
class of conjugated polymers [16], many features of which have already been
established [4] [11] [16]. By applying probabilistic method and combinatorial
techniques an explicit analytical expression for the expected value
W, (:E(W(RDM))) of the Wiener number of a random double hexagonal

chain with z naphthalenes is obtained. We note that the expression of W, isa
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(a) (b)

Figure 1. The triple-edge fusions. (a) a-type fusion and B-type fusion. (b) D, is obtained by two possible fusions.

polynomial in the variable n. Furthermore, the limiting behaviors on the
annealed entropy of Wiener number when the random double hexagonal chain
becomes infinite in length are analyzed.

2. Some Fundamental Recursion Relations

A double hexagonal chain D, , with n naphthalenes can be constructed from

DZX(H) by attaching a new terminal naphthalene spanned by vertices

{SH,IM,gnfl,hnfl,XG,XS,X“,X3,X2,X1} (or {rn—l'sn—l'tn—l’gn—l’xl'XZ’X3’X4’X5'X6})
(see Figure 1(b)).

Lemma 2.1. If D,,, isobtained from D, by a-type fusion, then

d(% 1D,y ) =60 +13+d (8,1 1Dy )10 (% | D) =120 414 (5,31 Dy ),
d(% | Dy) =60+7+0(gys | Dy g )-8 (X | Doy ) =120+5+d (g4 1 Dy y ).
d (% |Dy) =120 +7+ (N4 Dy ) d (% | Dyiy) =60+13+d (4D, ),

W (D, ) =W (D, )+ 2[d (541 Doy )+ (904 Do)

+d (N1 1Dy )] +54n +11.

and

Similarly, if D, is obtained from D, , by S-type fusion, then
d (Xi | Dan ) = 6n +13+ d (gnfl | DZx(nfl))’d (Xz | D2><n) :12n +1+ d (gn—l | D2><(n—1))’

d (%] D) =6n+7+d (5,5 1D, 0y )0 (% | Dy ) =120 450 (5,4 1Dy ).
d(% | Dy0) =120+7+d (1,11 Dyy 0y .8 (X | D) =60+13+0 (1,4 Dy ),

w (D2><n ) =W (D2><(n—1) ) + 2|:d (Sn—l | DZx(n—l) ) +d (gn—l | DZx(n—l))
+0 (1 Dy ) | +540+11,
where d (51 | D2><1) =d (91 | Dle) =21, d (h1 | D2><1) =d (rl | D2><l) =25.

and
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Proof. By (1), we have d(s;|D,,)=d(g,|D,,)=21,
d(h|D,,)=d(r,|D,,)=25. Since a naphthalene is not a vertex rotation
symmetry, we must distinguish between two different situations for the Wiener
number of the vertex in the terminal naphthalene. In the following, we only
consider the case of a-type fusion (the argument for the case of S-type fusion is
analogous). Note that D, , has 6n—2 vertices. If D, is obtained from

D,.(py by a-type fusion then, for n> 2, we have the following relations:
d(x1|D2Xn):6n—2+d( 41Dy, )+15
d(%,|D,,)=2(6n—-2)+A,, —6+11,
d(x3|DM):6n—2+d(gnfl|DZX(n_l))+9,

d (%, 1Dy ) =2(6n=2)+d (9, 11 Dy ) +9,
d (%] Dyy) = 2(60=2) +d (N4 | Dy y 411,

d (%D, )=6n-2+d(h,,|D,, ) +15.

2xn

W (szn):W (DZX(n—l ) ( na | sz (n 1)) Z[d (gn—l | D2><(n—1))

( hos [ Dona )]+An,1+54n+11,

and

where A = min{ ( n1 | Do ) (gn_1 I Dy )} . In this case, s, and
0,, coincide with the vertices X, and X,, respectively. Thus,

( nl|D2an) (gnl|D2xn1) —4—d(gn72|D2X(n71))<0. By induction
on 1, we know that A =d|(s ;]| sz et ) The proof is completed.

For a random double benzenoid chain RD,, there are two cases to be
considered:

Case 1. RD,, —RD

2xn 2x(n+1)
r,s,t,0,.h, (of RD,,) coincide with the vertices X, X,,X;,X,, X5, respectively.

Case 2. RD, . — RD

2xn 2x(n+1)

case, n1 nxtnvgm n (Of RD

by a-type fusion with probability p. In this case,

by f-type fusion with probability 1-p. In this
) coincide with the vertices Xy, X, X3, X, % »

2xn

respectively.

The distance d(r,|RD,,), d(s,|RD,,), d(g,|RD,,), d(h,|RD,,)
and W éRDZX(“) are random variables. We denote their expected values by
R,=E(d(r,|RD,,)) , S,=E(d(s,|RD,,)) ., G,=E(d(g,|RD,,)) ,
H, =E(d(h,|RD,,)) and W,=E(W(RD,,)) (or E(W(n)) in brief),

respectively. Then, by Case 1, Case 2 and Lemma 2.1 we have

R, = p(6n+13+d (s, |RD, )+ (21~ P)(120+7+0d (1, IRD,, ));
S, = p(12n+1+0 (s, IRD, ., )) + (1~ P)(120+5+d (5,4 |RD, . )):

G

n 2x(n-1)

p(12n+5+d (g, IRD, ;) ))+ (L= p)(120+1+d (g, IRD,. (0 ));

)
)+

Hn:p(12n+7+d(hn,l|RD n1)) +(1- p)(6n+13+d(9n1|RD n1>))
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and

W, =W (RD,,(, ) )+2(d (5, |RD, 0y ) + 8 (9,11 RD, o )
+2pd (h, 1| RD, ;) ) +2(1= p)d (5, 1| RD,, , ) +54n+11.

Theorem 2.1. For n>2, then
R, =p(6n+13+S,,)+(1-p)(12n+7+R,,);
S, =12n+5-4p+S, ;;
G, =12n+1+4p+G, ,; (2)
H,=p(12n+7+H, ,)+(1-p)(6n+13+G, ,);
W, =W, _,+2(S,,+G,,)+2pH, , +2(1- p) R, +54n+11
with boundary conditions W, =109, S, =G, =21 and R, =H, =25.

Proof. Noting that E(R,)=R,, E(S,)=S,, E(G,)=G,, E(H,)=H
and E(W,)=W,. Thus, Theorem 2.1 holds.

n

3. The Explicit Analytical Expression for W,

From (2), by successive subtraction method we have
S,=6n"+1In—4pn+4p+4,G, =6n*+7n+4pn—4p+8. (3)
Therefore,
R, =12n+5p-7np+6n°p+8p” —4np’ +7+(1- p)R,
H, =20+n+6n>-21p+15np—6n”p+8p* —4np* + pH,, ,, (4)
W, =W, +2pH, , +2(1- p)R,_, + 23+ 42n+24n*,

Thus, we get the following result.

Theorem 3.1. For n>2, if p=0 then R, =6n’+13n+6, S, =6n"+11n
+4, G,=6n*+7n+8, H, =20+n+6n°, W =12n°+40n*+49n+8; and if
p=1 then R, =6n"+n+20 , S =6n"+7n+8 , G,=6n"+1ln+4 ,
H, =6n*+13n+6, W, =12n>+40n° +49n+8.

We now consider the case when 0< p<1 by using the method of generating
functions. Let

R(t)=> Rt" H(t)=D Ht", W(t)=> Wt"

=] =] =
Then, by (4) we get

R(t)-R, = (1- p)tR(t)+(19+4p+4p* )5, +(12+5p-4p*)5, +6ps,,

HI(t) —H, = ptH(t)+(27-12p+4p* )5, +(13+3p—-4p* )35, +(6-6p)s,, (5)
W (t)—W, =tW (t)+2ptH(t)+2(1- p)tR(t)+895, + 905, + 245,,

where &, =Y n’t"™, 5,=> nt"™ and 5, =) t". Since (1—t)7j =y clHmH,

n=0 n=0 n=0 n=0
Then (1- p’[)fl = Z( p'[)n and (1—t)7l = Ztn . Thus, by (5) we have
n=0 n=0
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R(t)=Y((1-p)t)’ [RO +(19+4p+4p*) D t"

n>0 m>1

+(12+5p—4p2)2(m Dt"+6pY (m-1)°t }

m>1

:nZZORO((l Pty +> > (1-p) [(19+4p+4p2)

k>0n+m=k,m>1

+(12+5p-4p?)(m-1)+6p(m-1 J

)
:%‘;Ro(a p)t)’ +ZZ (1-p)"” ”‘[(19+4p+4p )
)

n>0m=1

+(12+5p-4p*)(m-1)+6p(m-1 ZJ

=Y R t",

n>0

where,

M-

R, =R,(1-p)"+ Y (1-p)""[7+12m+5p—7mp+6m’p+8p° —4mp’ |,

2

3
I

H(t)=(pt)’ (HO +m21[(27—12p+4p2)

n>0

+(13+3p-4p*)(m-1)+(6-6p)(m-1)" |t")

—ZH (pt)'+>. > p (20+m+6m —21p+15mp—6m2p+8p2—4mp2)tk

k>0n+m=k,m>1

—ZH (pt)' +22p” m[20+m+6m —21p+15mp-6m*p +8p” 4mp2]t”
n>0m=1

_ZHnt“,

n=0

n
H, =H,p" +Zp"’m[20+m+6m2—21p+15mp—6m2p+8p2—4mp2],

m=1

W(t)=>t" {W +2pY H, t"+2(1-p) YR, " +Z(23+42m+24m) }

n>0 m>1 m>1

- z{wo + 2(2 PH, . +2(1- p)R, , +23+42m+ 24m2)t”}

n>0 m=1
=> W.it",
n>0
W, =W, +i(2 PHL, ; +2(1- )R, , +23+42m+24m’).
m=1

Thus, we reach the following result.
Theorem 3.2.If n>2 and 0< p<1, then

R, =R, (1-p)" +Zn:(1— p) " [7+12m+5p—7mp+6m2p+8p2 —4mp2],
m=2

S, =6n?+1In—4pn+4p+4,
G,=6n*+7n+4pn—4p+8, (6)

H, =H,p"+> p"" [20+ m+6m? —21p +15mp —6m?p +8p? —4mp2]
m=1

W, =W, +§n:(2 PH.,, +2(1- p) R, +23+42m+24m?).
m=1
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) ) n - 1— pn+1 n . pn_(n +1) pn -1
It is easy to verify that =, m = + >
y o verily Z)p 1-p Zl P p-1  (p-1)
n _ n 1-p"
e LoD PR

et 1-p (1-p)’

n

> mpt :(—n2 —p+2np+2n°p—p?-2np? —n’p® + p"" + pz*“)/(—1+ p)3.

m=1

So by (4), we can calculate the values of R;,H;, and W,, and by using
Mathematica software(Mathematica 9.0) to (6) we obtain the solution of (6) as
follows:

Theorem 3.3. For n>2 and 0< p<1,then
R, :;(8—8(1— p)' +5np+6n°p+6(1-p)' p

(1-p)p
—4p® -9np® —6n°p? —4p° +4np3),
S, =6n"+1In—4pn+4p+4,
G,=6n"+7n+4pn—4p+8,
H, =;(—20p—np—6nzp+16 p? —3np?
(-1+p)p
+6n’p® —4p° +4np® +2p" +6p™"),
W, =;22(—16+16(1— p)" +44p+16np—44(1-p)" p—32p?
(-1+p) p
+13np® +32n’p? +12n°p® +40(1- p)" p® —40p° —34np® - 72n° p°
—24np® -12(1- p)" p* +60p* —43np* +56n°p* +12n°p* - 48p°
+72np° —24n° p° +16p° —24np® +8n° p° +4p*" +12p>")

4. Conclusions and Suggestions

From Theorem 3.1 and Theorem 3.3, we know that W, ~12n* as n tends to
infinity. Note that W, is a polynomial in the variable 1, which is different from
the expected value of the Wiener number of the random benzenoid chain in the
general case. And the limiting behaviors on the annealed entropy log W, when
the random double hexagonal chain becomes infinite in length are

lim iIog[Wn]=O,

m—oo V

where Vis the number of the verticesin RD,,,, ie, V =6n+4.
Open problem. For any p#0,1 and n21, is it true that the annealed
entropy logW, of m-tuple random hexagonal chain is zero as M—>o or

m,n—co.
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