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Abstract 
Applications of the generalization of Mazur-Orlicz theorem to concrete spaces 
are proved. Suitable moment problems are solved, as applications of extension 
theorems of linear operators with a convex and a concave constraint. In par-
ticular, a relationship between Mazur-Orlicz theorem and Markov moment 
problem is partially illustrated. In the end of this work, an application to the 
multidimensional Markov moment problem of an earlier extension result on a 
distanced subspace with respect to a bounded convex set is proved. Contrary 
to preceding results based on this theorem, now the solution is defined on a 
space of continuous functions vanishing at the origin. Most of the solutions 
are operator valued, respectively function valued. 
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1. Introduction 

Using Hahn-Banach results and Mazur-Orlicz theorem in various applications 
(the moment problem, flows in infinite networks, transport problems, economic 
problems) is a useful technique (see [1] [2] and the references therein). In [3] [4] 
[5] [6] [7], more results on Mazur-Orlicz theorem and the moment problem 
have been stated or (and) proved. The present work can be regarded as a con-
tinuation of the study from the latter works. Most of these results are based on 
extension theorems for linear operators, with two constraints (one of which is 
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convex; the other one is concave). In the first part of this work, applications of a 
variant of Mazur-Orlicz theorem to concrete spaces are studied. In the second 
part, we solve appropriate moment problems. In most of the cases, the tar-
get-space of the solution is a space of self-adjoint operators or a function space. 
These are interpolation problems, with two constraints. The lower constraint is 
sometimes the positivity of the solution. The classical moment problem is an in-
terpolation problem, involving the positivity of the linear functional (or opera-
tor) solution. In the case of a Markov moment problem, an “upper domination” 
condition appears additionally. The latter constraint controls the norm of the 
solution. In Mazur-Orlicz problems, the interpolation conditions are replaced by 
inequalities. Both these problems are Hahn-Banach type results (see [8] [9] 
[10]). The main results of the second part (section 3) of this work are Theorems 
3.3, 3.5. The relationship between the Mazur-Orlicz and the corresponding mo-
ment problem is illustrated by means of Theorems 2.2, 3.2 of the present work. 
In time, different connections of the moment problem with several other fields 
have been pointed out. For example, in [11], one makes the connection to ele-
ments of fixed point theory. For the construction of a solution starting from its 
moments, see [6]. The same paper [6] contains connections between Markov 
moment problem and extreme points (Krein-Milman theorem). In solving mo-
ment problem, three aspects are studied: the existence, the uniqueness and the 
construction of the solution. Most of the results appearing in the present work 
refer to the existence of the solution. The interested reader may find results on 
the uniqueness of the solution in [12] [13]. The background of this work is par-
tially based on some chapters from [14] [15] [16]. The rest of the paper is orga-
nized as follows. Section 2 contains two applications of Mazur-Orlicz theorem. 
In Section 3, some Markov moment problems involving concrete spaces are 
solved. One of these results (Theorem 3.2) is somehow related to the corres-
ponding similar (last) statement of Section 2 (Theorem 2.2). Another theorem 
refers to a general extension result involving a vector subspace which is dis-
tanced with respect to a convex bounded set. The existence of a multiplicative 
solution on a space of continuous functions vanishing at the origin is deduced. 

2. Applications of Mazur-Orlicz Theorem 

We start this section by recalling the following variant of the Mazur-Orlicz 
Theorem [10]. This is a consequence of a Hahn-Banach type result.  

Theorem 2.1. (Theorem 5 [10]). Let X  be a preordered linear space, Y  an 
order-complete vector lattice, { } { }; , ;j jx j J X y j J Y∈ ⊂ ∈ ⊂  given finite or 
infinite families of elements. Let :P X Y→  be a sublinear operator. 

The following statements are equivalent 
1) there exists a linear operator ( ),F L X Y∈  such that 

( ) ( ) ( ) ( ), 0 ,j jF x y j J F x x X F x P x x X+≥ ∀ ∈ ≥ ∀ ∈ ≤ ∀ ∈        (2.1) 

2) for any finite subset 0J J⊂  and any { }0;j j J Rλ +∈ ⊂ , we have: 
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( )
0 0

j j j j
j J j J

x x y P xλ λ
∈ ∈

≤ ⇒ ≤∑ ∑                   (2.2) 

The next result of this Section uses the order relation given by the coefficients 
in spaces of analytic functions. On the other hand, let H  be a complex Hilbert 

( )0U H∈Α  a selfadjoint operator from H  into H . One defines 

( ){ } { }
( ){ }

1 0 0 1 1; , ; ,

; , 0

Y U H UU U U Y U Y UV VU V Y

Y U Y U h h h H+

= ∈Α = = ∈ = ∀ ∈

= ∈ ≥ ∀ ∈
    (2.3) 

Obviously, Y  defined by (2.3) is a commutative algebra of selfadjoint 
operators. Moreover, Y  is a vector lattice, being complete with respect to the 
order relation (cf. [14]), and the operatorial norm on Y  is solid: 

, ,U V U V U V Y≤ ⇒ ≤ ∈                     (2.4) 

The next result is an application of Theorem 2.1 to the space X  of all abso-
lutely convergent power series in the disc z r< , continuous up to the boun-
dary, with real coefficients. The order relation is given by the coefficients: we 
write 

( ),n n
n n n n

n n
z z nλ γ λ γ

∈Ν ∈Ν

⇔ ≤ ∀ ∈Ν∑ ∑≺                (2.5) 

Denote ( ) , ,n
n z z n z rϕ = ∈Ν ≤ . Let Y  be the space defined by (2.3), 

( )n n
B

∈Ν
 a sequence in Y , and U Y∈  such that U r< . 

Proposition 2.1. Consider the following statements 

1) there exists a linear positive bounded operator ( ),F L X Y+∈ , such that

( ) ( ) ( ) 1, , ,n nF B n F r rI U Xϕ ψ ψ ψ−

∞
≥ ∈Ν ≤ − ∀ ∈        (2.6) 

rF
r U

≤
−

 

2) the following relations hold 

0 ,n
nB U n≤ ≤ ∈Ν                      (2.7) 

3) the following inequalities hold 

( ) 11 ,n
nB r rI U n−+≤ − ∈Ν                   (2.8) 

Then 2) ⇒ 1) ⇒ 3).  
Proof. 2) ⇒ 1). One applies theorem 2.1, 2) implies 1), to ,j jx jϕ= ∈Ν . If 

0

,j j n n j
j J n

Rλ ϕ ψ α ϕ λ +
∈ ∈Ν

≤ = ∈∑ ∑                  (2.9) 

then the hypothesis, Cauchy inequalities and the above relation yield: 

( ) ( ) ( )

0 0

1
1

0 ,

:

j j
j j j j

j n
j j j n

j J j J n N

B U U j

B U U
r

UI r rI U P P
r

λ λ α

ψ
λ α

ψ ψ ψ ψ

∞

∈ ∈ ∈

−
−

∞ ∞

≤ ≤ ≤ ∈Ν

⇒ ≤ ≤

 = − = − = = − 
 

∑ ∑ ∑         (2.10) 
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Hence, the implication of 2), Theorem 2.1 is accomplished and an application 
of the latter theorem leads to the existence of a linear positive operator F apply-
ing X into Y, with the properties stated at point 1): 

( ) ( ) ( ) 1, , ,n n r rI UB F XF nϕ ϕ ϕ ϕ−

∞
≤ −≥ ∈ ∈           (2.11) 

Since the norm on Y is solid, we infer that  

( ) ( ) 1 ,F I U r Xϕ ϕ ϕ−

∞
≤ − ⋅ ∈                 (2.12) 

In particular, the following evaluation for the norm of F holds 

0 0

nn

n n
n n

UU rF
r Ur r

∞ ∞

= =

≤ ≤ =
−∑ ∑                  (2.13) 

On the other hand, 1) ⇒ 3) is almost obvious, because of: 

( ) ( ) ( )1 11n
n n nB F r rI U r rI Uϕ ϕ − −+

∞
= ≤ − = −            (2.14) 

and n Xϕ +∈  for all n∈Ν . The conclusion follows.                     □ 
Theorem 2.2.Let ( )1 , 0X L Mν ν= ≥  and ( )n n

ϕ
∈Ν

 a sequence of positive 
functions in X , such that d 1,n

M

nϕ ν = ∀ ∈Ν∫ . Let ( ) ( ), 0, n n
Y L yµ µ∞

∈Ν
= Ω ≥  

a sequence of positive functions in Y . Then ( )supn ny b∈Ν = < ∞  if and only if 
there is a linear positive operator ( ),F L X Y∈  such that 

( ) ( ), , d ,n n
M

F y n F b Xϕ ψ ψ ν χ ψΩ

 
≥ ∈Ν ≤ ⋅ ⋅ ∀ ∈ 

 
∫        (2.15) 

Proof. For the “only if” part, let 0J ⊂ Ν  be a finite subset, { }
0

j j J
Rλ +∈

⊂  be 
such that 

0

j j
j J

λ ϕ ψ
∈

≤∑  in X . Hypothesis on the functions ,n nϕ ∈Ν  and in-
tegration in the relation 

0

j j
j J

λ ϕ ψ
∈

≤∑  yield 

( ) ( )

0 0

0 0

d d

d

d : ,

j j j
j J j J M M

j j j j
j J j J M

M

y y b

b P P X

λ λ ϕ ν ψ ν

λ λ χ ψ ν χ

ψ ν χ ψ ψ ψ

∈ ∈

Ω Ω
∈ ∈

Ω

= ≤

 
⇒ ≤ ⋅ ≤ ⋅ ⋅ 

 

 
≤ ⋅ ⋅ = = − ∈ 
 

∑ ∑ ∫ ∫

∑ ∑ ∫

∫

          (2.16) 

Application of theorem 2.1 leads to the existence of a linear positive operator 
( ),F L X Y∈  with the following properties 

( ) ( ), , d ,n n
M

F y n F b Xψϕ ψ ν χ ψΩ

 
≥ ∈Ν ≤ ⋅ ⋅ ∀ ∈ 

 
∫      (2.17) 

In particular, one has F b≤ . Next we prove the “if” part. Assume that 
( ) , Nn ny F nϕ≤ ∈  and F  has the qualities in the statement, then, because 

the norm on Y is solid, we derive 

( ) d ,n n n
M

y F b b nϕ ϕ ν
 

≤ ≤ = ∈Ν 
 
∫            (2.18) 

This concludes the proof.                                          □ 
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3. On Markov Moment Problem 

We recall an earlier result on the abstract Markov moment problem, in order to 
apply it to the multidimensional classical moment problem. 

Theorem 3.1. (Theorem 4 [10]). Let X  be a preordered linear space, Y  an 
order-complete vector lattice, { } { }; , ;j jx j J X y j J Y∈ ⊂ ∈ ⊂  given finite or 
infinite families of elements, ( )1 2, ,F F L X Y∈  two linear operators. The fol-
lowing statements are equivalent 

1) there exists a linear operator ( ),F L X Y∈  such that 

( ) ( ) ( ) ( )1 2,j jF x y j J F x F x F x x X += ∀ ∈ ≤ ≤ ∀ ∈           (3.1) 

2) for any finite subset 0J J⊂  and any { }0;j j J Rλ ∈ ⊂ , we have 

( ) ( )
0 0

2 1 2 2 1 1, , 1, 2j j l j j
j J j J

x X l y F Fλ ψ ψ ψ λ ψ ψ+
∈ ∈

= − ∈ = ⇒ ≤ −∑ ∑    (3.2) 

The next result is quite similar to that of theorem 2.2.  
Theorem 3.2. Let ( ) ( ), , ,n nn n

X Y yϕ  be as in Theorem 2.2, and 0 b< < ∞ ; 
consider the following statements: 

1) there exists a linear positive operator ( ),F L X Y∈  such that 

( ) ( ), , d , ,n n
M

F y n F b X F bψ ψ ν χ ψϕ Ω= ∈Ν ≤ ⋅ ⋅ ∈ ≤∫        (3.3) 

2) for any finite subset 0J ⊂ Ν  and any { }
0

j j J
Rλ

∈
⊂ , the following relation 

holds 

0 0

j j j
j J j J

y bλ λ
∈ ∈

⋅ ≤∑ ∑                      (3.4) 

Then 2) ⇒ 1). 
Proof. We apply Theorem 3.1, 2) implies 1). If 

0

2 1j j
j J

λ ϕ ψ ψ
∈

= −∑ , where 

1 2, Xψ ψ +∈ , then the following implications hold 

0 0

0

1 2

2 1 2 1

d d d

d d

j j j
j J j JM M M

j
j J M M M M

ψ ν λ ϕ ν λ ψ ν

λ ψ ψ ψ ν ψ ν

∈ ∈

∈

− ≤ = ≤

 
⇒ ≤ + = − − 

 

∑ ∑∫ ∫ ∫

∑ ∫ ∫ ∫ ∫
          (3.5) 

Now the hypothesis 2) yields 

( ) ( ) ( )

0 0 0

0

2 1

2 2 1 1 2 1 2

d d

, : d , :

j j j j j j
j J j J j J

j
j J M M

M

y y y

b b

F F F b F F

λ λ χ λ χ

λ χ ψ ν χ ψ ν χ

ψ ψ ψ ψ ν χ

Ω Ω
∈ ∈ ∈∞

Ω Ω Ω
∈

Ω

 
≤ ⋅ ≤ ⋅ ⋅ 

 

  
≤ ⋅ ≤ ⋅ − − ⋅     
= − = ⋅ = −

∑ ∑ ∑

∑ ∫ ∫

∫

        (3.6) 

Application of theorem 3.1 leads to the existence of a linear operator 
( ),F L X Y∈  such that 
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( ) ( ) ( ) ( )

( )

( ) ( ) ( ) ( )

1 2, , d

d , d ,

d

d ,

n n
M

M M

M

M

F y n F b F F

b X F b X

F F F b

b X

ψ ψ ν χ ψ ψ

ψ ν χ ψ ψ ψ ν χ ψ

ϕ ϕ ϕ ϕ ϕ ν χ

ϕ ν χ

ϕ

ϕ

Ω

Ω + Ω +

+ − + −
Ω

Ω

= ∈Ν = − ⋅ ≤ ≤

= ⋅ ∈ ⇔ ≤ ⋅ ∈

⇒ ≤ + ≤ ⋅ +

= ∈

∫

∫ ∫

∫

∫

    (3.7) 

This concludes the proof.                                          □ 
One goes on with an application of Theorem 3.1 to the operator valued real 

multidimensional moment problem. Let X  be the space of power series in n   

complex variables, absolutely convergent in the polydisc { }
1

n

k k
k

D z r
=

= ≤∏ , with  

real coefficients. The order relation on X  is defined by means of the coeffi-
cients, similar to the case of Proposition 2.1. Let H  be a complex Hilbert space, 

, 1, ,kA k n= �  linear positive self-adjoint commuting operators on H , such 
that , 1, ,k kA r k n≤ = � . We denote: 

( ){ } { }1 1; , 1, , , ;k kY U H A U UA k n Y V Y VU UV U Y= ∈Α = = = ∈ = ∀ ∈�  (3.8) 

Here ( )A H  is the real vector space of all selfadjoint operators acting on H . 
Then Y  is an order complete Banach lattice [14] and clearly is a commutative 
Banach algebra of selfadjoint operators. Denote 

( ) ( )1
1 1 1, , , , ,njj n

j n n nz z z z j j jϕ = = ∈Ν� � �            (3.9) 

Theorem 3.3. Let ( ) nj j
B

∈Ν
 be a sequence in , 0Y b >  a real number. The 

following statements are equivalent 
1) there exists a linear operator ( ),F L X Y∈  such that 

( ) ( ) ( )1, , 0 , , ,n
k k nF B k F b A A Xϕ ψ ψ ψ += ∈Ν ≤ ≤ ∀ ∈�       (3.10) 

2) the following relations hold 

( )1
1 10 , , ,nkk n

k n nB bA A k k k≤ ≤ ∀ = ∈� �              (3.11) 

Proof. The implication 1) ⇒ 2) is almost obvious, since , n
k X kϕ +∈ ∈  and 

the hypothesis 1) yields 

( ) ( ) 1
1 10, , , 0, nkk

k k k n nB F b A A bA Aϕ ϕ   = ∈ =   � �         (3.12) 

For the converse, we apply Theorem 3.1, 2) implies 1). Assume that 

0

2 1 , , ,
n n

n
j j k k k k k k

j J k k

R kλ ϕ ψ ψ α ϕ β ϕ α β +
∈ ∈Ν ∈Ν

= − = − ∈ ∈Ν∑ ∑ ∑     (3.13) 

From these relations we derive 

0,j j j Jλ α≤ ∈                       (3.14) 

which further yields 

( ) ( )1

0 0

1 2 2 1 1
n

n n

kk
j j j j k k k n

j J j J k k

B B B b A A F Fλ α α α ψ ψ
∈ ∈ ∈ ∈

≤ ≤ ≤ = −∑ ∑ ∑ ∑ �
 

 (3.15) 

Thus the implication from 2), Theorem 3.1 is verified, where  
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1
2 1 1: , : 0n

n n

kk
k k k n

k k

F b A A Fα ϕ α
∈ ∈

 
= = 

 
∑ ∑ �
 

          (3.16) 

Application of the latter theorem leads to the existence of a linear operator 
( ),F L X Y∈  satisfying the moment conditions ( ) , n

k kF B kϕ = ∈Ν , such that 
on the positive cone of X , the following relations hold 

( ) ( ) ( ) ( )1 2 10 , , ,nF F F b A A Xψ ψ ψ ψ ψ += ≤ ≤ = ∈�      (3.17) 

This concludes the proof.                                          □ 
We go on with applications related to a convexity and extension of linear op-

erators result, having a nice geometric meaning. If V  is a convex neighbor-
hood of the origin in a locally convex space, we denote by Vp  the gauge at-
tached to V . 

Theorem 3.4. (see [9]). Let X  be a locally convex space, Y  an order com-
plete vector lattice with strong order unit 0u  and S X⊂  a vector subspace. 
Let A X⊂  be a convex subset with the following qualities: 

1) there exists a neighborhood V  of the origin such that  

( )S V A+ = Φ∩                      (3.18) 

(that is, by definition, A  and S  are distanced); 
2) A  is bounded. 
Then for any equicontinuous family of linear operators { } ( ),j j J

f L S Y
∈
⊂  

and for any { }\ 0y Y+∈� , there exists an equicontinuous family 

{ } ( ),j j J
F L X Y

∈
⊂  such that 

( ) ( ) ,j jF s f s s S= ∈  and ( ) , ,jF y A j Jψ ψ≥ ∈ ∈�        (3.19) 

Moreover, if V  is a neighborhood of the origin such that 

( ) [ ] ( )0 0, ,jf V S u u S V A⊂ − + = Φ∩ ∩             (3.20) 

and if 0α >  is such that ( )Vp a a Aα≤ ∀ ∈ , while 1 0α >  is large enough 
such that 1 0y uα≤� , then the following relations hold 

( ) ( ) ( )1 01 , ,j VF x p x u x X j Jα α≤ + + ⋅ ∈ ∈           (3.21) 

Recall that the definition and terminology of distanced (convex) subsets writ-
ten above is motivated by the fact that in the particular case when X is a normed 
vector space, the neighborhood V appearing in relation (3.18) can be chosen as a 
ball centered at the origin. Then (3.18) is equivalent to the relation ( ), 0d S A r≥ > , 
where ( ),d S A  is the distance between the two subsets S and A. with respect to 
the metric defined by the norm on X, and r is the radius of that ball. In this par-
ticular case, V can be chosen as ( )0,V B r= , for some 0r >  sufficiently small. 
If V is a convex circled neighborhood of zero in a locally convex space, one can 
define ( ) ( ), :V Vd x y p x y= − , where Vp  is the gauge attached to V. Then Vd  
has all the properties of a distance defined by means of a norm, except one of 
them. Precisely, ( )1 2, 0Vd x x =  does not imply 1 2x x= , since Vp  is just a se-
minorm, not a norm. On the other hand, it is the case when X is a normed vec-
tor space to which Theorem 3.4 will be applied in the sequel. Namely, in the next 
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theorem X will be the space [ ] [ ]( )10, 0, nC b b× ×� , ( )1, , nY Y A A= �  is the 
space defined by (3.8) ( 1, , nA A�  are commuting positive selfadjoint operators), 
under the additional assumption ( ) [ ]0, , 1, ,k kA b k nσ = = � , 

( ) ( ) [ ] [ ]

( )

1
1 1 1 1

1
1

, , , , , , 0, 0, ,

, , , : 1

njj
j j n n n n

n
n

n k
k

X t t t t t t b b

j j j j j

ϕ ϕ

=

∈ = ∈ × ×

= ∈Ν = ≥∑

� � � �

�
    (3.22) 

Theorem 3.5. Let ( ) nj j
ψ

∈Ν
 be a sequence in X  such that ( )0, ,0 1jψ =�  

( )0, ,0 1ψ ≡� , 1jψ
∞
≤  for all nj∈Ν , and let ,B Y B I∈ ≥ . Then there exists a 

linear bounded positive operator ( ),F B X Y∈ , which is multiplicative on the 
subspace of continuous functions vanishing at the origin, such that 

( )
( ) ( ) ( )

1
1 , , 1,

, , 2 ,

njj n
j n

n
j

F A A j j

F B j F B I X

ϕ

ψ ϕ ϕ ϕ

= ∈Ν ≥

≥ ∀ ∈Ν ≤ + ⋅ ⋅ ∀ ∈

�
       (3.23) 

Proof. Denote { } { }( ); , ; 1n
j jA conv j S Span jψ ϕ= ∈Ν = ≥ . Then we get 

( ) ( )
( )( ) ( )0,1 , : 0,1 , 1

0 0 1, ,

: ,

s a

S B A V

s s a A

B A

a S

ψ α ψ
∞

∞

+ = Φ =

− ≥ − = ∀ ∈ ∀

≤ =

∈

∀⇒ ∈∩
    (3.24) 

Thus, the unit ball ( )0,1B  of the space X  stands for V  of the preceding 
theorem 3.4,  stands for Vp , and A  is the convex hull of the collection of 
functions , Nn

j jψ ∈ . Define 

( ) 1

0 0

1: , njj
j j j n

j J j J
f S Y f s f a a A Aϕ

∈ ∈

 
→ = = 

 
∑ ∑ �         (3.25) 

where { }0 ; 1n nJ j N j N⊂ ∈ ≥ ⊂  is a finite subset. If ( )0,1s S B∈ ∩ , then 

( ) [ ] [ ]

( )

1

0

1

0

1 1 1

1

1 1 , , 0, 0,n

n

jj
j n n n

j J

jj
j n

j J

s a t t t t b b

I f s a A A I
∈

∈

− ≤ = ≤ ∀ ∈ × ×

⇒ − ≤ = ≤

∑

∑

� � �

�
    (3.26) 

because of the positivity of the spectral measures associated to the n-tuple 
( )1, , nA A� . On the other hand B B I≤ ⋅ , so that all conditions of theorem 3.4 
are verified for 

1 0, 1,B u Iα α= = =                   (3.27) 

Application of theorem 3.4 leads to the existence of a linear extension F  of 
f , such that 

( ) ( )
( ) ( )

( ) ( )

2 ,

2 2 ,

: , 1n
j

F B I

X F B I F B

F B y j F B

ϕ ϕ

ϕ ϕ ϕ

ψ

∞

∞

≤ +

∀ ∈ ⇒ ≤ + ⋅ ⇒ ≤ +

≥ = ∀ ∈Ν ⇒ ≥�

        (3.28) 

In particular, F  is continuous. Now we prove that F  is also positive. Let 
𝑝𝑝 be a polynomial 

( ) ( ) [ ] [ ]1

1

1 1 1 1, , 0 , , 0, 0,njj
n j n n n

j J
p t t a t t t t b b

∈

= ≥ ∀ ∈ × ×∑� � � �    (3.29) 
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where 1 NnJ ⊂  is a finite subset. Then using the positivity of the spectral 
measures attached to n-tuple of operators ( )1, , nA A� , as well as the relations 

( ) ( )( ) ( ) ( )0, ,0 0, ,01 , 0, ,0 0F F B I a pψ= ≥ ≥ = ≥� � �           (3.30) 

we derive the following implications 

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )

1 1

1 1

1 10, ,0 0, ,0
, 1 , 1

0, ,0 0, ,0 0, ,0

:

1 1 0

n nj jj j
j n j n

j J j j J j
s a t t a F s a A A a I

F p a F F s a F I a B I
∈ ≥ ∈ ≥

= ≥ − ⇒ = ≥ − ⋅

⇒ = + ≥ − ≥ − ≥

∑ ∑� �

� � �

� �
 (3.31) 

Application of Weierstrass approximation theorem and the continuity of F 
lead to the positivity of F on X. 

Hypothesis on the fact that 1, , nA A�  are permutable and a straightforward 
computation shows that 

( ) ( ) ( )1 2 1 2f p p f p f p=                    (3.32) 

for all polynomials of n variables, vanishing at the origin. Since F is a continuous 
linear extension of f and the product operation on the Banach algebra Y is con-
tinuous, we infer that F is multiplicative on the subspace of continuous functions 
vanishing at the origin (use Bernstein approximating polynomials of n variables: 
if a continuous function vanishes at the origin, then all the corresponding 
Bernstein polynomials do the same). This concludes the proof.             □ 

4. Conclusions 

In the first part of this work, new applications of Mazur-Orlicz theorem have 
been proved (Section 2). In Section 3, Markov type moment problem results are 
studied. Comparing theorems 2.2 and 3.2, we see that the proofs of the two 
type-problems mentioned above are different, even in cases of similar state-
ments. The last result of the paper is an application of an earlier theorem. The 
new element with respect to previous submissions is that here the solution is de-
fined on a space of continuous functions of several real variables, vanishing at 
the origin (see Theorem 3.5). Our solutions are operator or function valued. 
Further applications could be deduced, depending on the knowledge and imagi-
nation of the authors. 
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